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Preface 

The purpose of this book is to introduce graduate students as well 
as research physicists, chemists, and electronic engineers to the essence 
of the theory of multiplets of transition-metal ions in crystals, more 
simply known as ligand field theory. The reader is assumed to be 
familiar with the fundamentals of quantum mechanics and, in particular, 
with the theory of atomic spectra. This book may be used as a textbook 
for a full-year course for graduate students. 

Much effort has been made to present the material simply and clearly 
without a sacrifice of depth. For clearness illustrative examples are 
always given for each topic. The book is written in a self-sustaining 
form; consequently it contains only a minimum number of references. 
The reader who wants to know individual works related to the theory 
and its application should refer to the books cited at the end of the 
Introduction. 

Throughout this book the formulation is based on the strong field 
scheme, and no use will be found of the weak field scheme. The exclusive 
use of one of the two schemes has been based on the hope that it would 
increase the readability of the book. A further discussion of this choice 
will be found in the Introduction. 

In order to keep a suitable balance among the chapters, several 
important topics have been omitted which should properly be discussed 
in Chapter IX. They include the broadening and shift of zero-phonon 
lines, and effects of tunneling between Jahn-Teller distortions. 

It is our great pleasure to express sincere thanks to Professor Masao 
Kotani for guiding us to this field. We are also indebted to Professors 
C. J. Ballhausen, C. K. Jorgensen, J. de Heer, and P. O. D. Offenhartz 
for criticism and comments on the manuscript, and to Drs. R. G. 
Shulman, J. H. Gallagher, and P. M. Maas for helpful discussions. 
One of the authors (S. S.) is grateful to the National Science Foundation 
for providing him with the opportunity of preparing the preliminary 
manuscript at the University of Colorado. 

Finally we should like to thank Miss E. Hidaka for her typing of 
the manuscript and the staff of Academic Press for their cooperation. 
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I N T R O D U C T I O N 

It is well known that the spectral lines of atoms having many electrons 
are classified into multiplets which are assigned to transitions between 
terms. Each term that consists of almost degenerate discrete energy 
levels is specified by SL. Here we are speaking of the case in which the 
spin-orbit interaction is relatively small. For example, the lower terms 
of a C r 3 + ion, which has three electrons outside the closed shell, are 
known as follows: 

Term 
Terms energies (cm - 1 ) 

0 
—14,200 

2 p —14,200 
2 G -15 ,200 
2D —20,400 
m —21,200 

2 F —36,700 

These terms are the quantum states in which three outer-shell electrons 
are accommodated in the 3d atomic orbitals. Energy separation of these 
terms are due to the Coulomb interaction between these outer-shell 
electrons. Optical transitions between these terms are seen in gaseous 
C r 3 + ions. 

When a Cr 3+ ion is incorporated as an impurity in a white sapphire, 
an A1 2 0 3 crystal, the crystal exhibits a beautiful red or pink color. The 
absorption spectrum of this crystal called ruby, in the visible spectral 
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2 INTRODUCTION 

region, is illustrated in Fig. 5.9 on p. 118. Inorganic complex salts in­
volving, for example, [ C r ( H 2 0 ) 6 ] 3 + molecular ions and antiferromagnetic 
crystals C r 2 0 3 also show qualitatively similar absorption spectra in the 
visible region. As naturally expected, these absorption spectra in crystals 
are quite different from the spectrum of gaseous Cr 3+ ions. 

However, in the past ten years, it has been established that the spectral 
lines and bands in the insulating crystals involving rf-electrons, such as 
those described above, are also classified into multiplets which are 
assigned to transitions between terms. The terms in this case have been 
found to be the quantum states in which ^-electrons are accommodated 
in some orbitals relatively localized around the transition-metal elements. 
Naturally, this theory for the crystal spectra is similar to the theory of 
atomic multiplets, but it differs from it in that atoms in crystals do not 
have spherical symmetry but approximately cubic or tetrahedral sym­
metry in many cases, because of their surroundings. This difference 
brings a new aspect to the theory of multiplets. We call this theory of 
crystal multiplets Ugand field theory. 

The original form of the ligand field theory can be found in the 
crystalline field theory developed by Bethe,* in 1929. This theory deals 
with the splitting of the atomic multiplets by the electric field arising 
from regularly distributed charges and electric dipoles of the sur­
roundings, and can be shown to be equivalent to the ligand field theory 
to some approximation. Therefore, some people, mainly solid state 
physicists use the term, crystalline field theory, in place of the ligand 
field theory. Strictly speaking, the ligand field theory is more general 
than the crystalline field theory; this point will be discussed in detail in 
Chapter X. 

Although the origin of the ligand field theory is very old, it is only in 
recent years that the importance of the theory has been fully recognized. 
This was achieved by successful applications of the theory to the inter­
pretation of such optical spectra as those mentioned above as well as to 
the interpretation of microwave absorption spectra and paramagnetic 
susceptibilities in paramagnetic crystals. 

Historically, it was Finkelstein and Van Vleck§ who first applied the 
crystalline field theory to interpreting optical spectra of paramagnetic 
crystals involving rf-electrons. They studied the absorption lines of a 
chromium alum crystal located at 6700 Â, which correspond to the 
R lines of ruby, and concluded that the excited states responsible to these 
lines are Stark split components, Kramers doublet's, of the 2 G term of a 

* H. Bethe, Ann. Physik 3, 133 (1929). 
§ R. Finkelstein and J. H. Van Vleck, J. Chem. Phys. 8, 790 (1940). 



Introduction 3 

free C r 3 + ion. This conclusion is in agreement with the result of recent 
detailed studies by the use of the ligand field theory. 

In 1951, Hartmann, Schlaefer, and Use* published a series of papers 
in which they discussed the origin of broad absorption bands observed 
in inorganic metal complexes. By using the crystalline field theory, they 
concluded that these absorption bands were due to the transitions 
between the crystalline-field split components of the lowest term of the 
central metal ion, and showed that the number of broad absorption 
peaks near the visible region could be explained by their theory, at least 
when the central metal ion has no more than five rf-electrons. 

Since 1954 much work has been done on the optical spectra of 
rf-electron systems. Through this work, the ligand field theory has become 
very successful in explaining both the absorption lines and bands 
observed in many kinds of metal complexes and insulators involving 
rf-electrons. The most successful example of the application of the ligand 
field theory is the analysis of the optical spectrum of ruby (see Chapter V). 
It has recently been found that the theory is even applicable to those 
excited states of ruby whose excitation energies are as high as 
45,000 c m - 1 . It has also been shown that the accuracy of the theory is 
generally comparable to that of the theory of atomic multiplets. 

In the ligand field theory there are two schemes, the strong-field 
scheme and the weak-field scheme, which will be explained in detail 
in Chapter X. In this book we exclusively use the strong-field scheme 
for the following reasons: (1) The strong-field scheme, taking no account 
of the configuration interaction, yields a good first-order approximation 
for the problems of rf-electrons in crystals. (2) There is a strong similarity 
of the concepts between the strong-field scheme and the theory of 
atomic multiplets. The latter smoothly goes to the former if one-electron 
atomic orbitals are replaced by one-electron molecular orbitals. From 
Chapter I through Chapter IV the derivation of terms and the calculation 
of term energies in the d^-electron systems in a cubic field are fully 
discussed on simple theoretical bases. The results obtained in these 
chapters are compared with experiments in Chapter V in order to show 
to what extent the theory is successful. 

From Chapter I through Chapter V, no account is taken of the spin-
orbit interaction and low-symmetry fields arising from a small distortion 
of a cubic system. These interactions split terms in a cubic field, resulting 
in fine structures of the multiplets. Fine structures of multiplets in 
crystals, including additional splittings induced by external pertur-

* H.Hartmann and H.L.Schlaefer, Z. Phys. 197,115 (1951). F.E.Ilse and H.Hartmann, 
Ζ. Phys. 197, 239 (1951). H. Hartmann and H. L. Schlaefer, Ζ. Naturforsch. 6a, 751, 
760 (1951). 



4 INTRODUCTION 

bâtions, such as an external magnetic field and an electric field, attract 
the interest of laser engineers as well as that of solid-state spectroscopists. 
Chapter VI through Chapter VIII are devoted to the theory of fine 
structures of the multiplets, Zeeman effects, and linear Stark effects 
in crystals. 

Up to this point in the book, the nuclear framework in crystals is 
assumed to be rigid. However, in actual problems, it vibrates even at 
0°K, and the interaction of electrons with the nuclear vibration brings 
important effects on the multiplets. In particular, in degenerate electronic 
states, the interaction induces static and dynamic Jahn-Teller effects. 
Fundamental problems relating to such an interaction shall be dealt 
with in Chapter IX. 

Finally, Chapter X is devoted to the elucidation of the physical 
picture of the ligand field theory. This starts with theoretical efforts 
to explain from the first principle the values of physical parameters 
appearing in the ligand field theory, such as a cubic-field splitting para­
meter, Coulomb interaction parameters, spin-orbit interaction para­
meter, and so forth. It is shown that the traditional picture of the 
crystalline field theory introduced by Bethe is no longer applicable. 
Instead, covalency or virtual electron transfer between a metal ion and 
ligands, which is neglected in Bethe's model, plays an important role 
in producing ligand fields, and so forth. We might be able to mention 
that, although applications of the ligand field theory have been very 
successful, the physical model of the theory has not been firmly estab­
lished. For expanding the area to which the ligand field theory can be 
applied, it is necessary to establish a rigid physical basis of the theory. 

For reading the present text, the following books would be helpful 
as general references: 

Ballhausen, C. J., "Introduction to Ligand Field Theory." McGraw-Hill, New York, 
1962. Recommended as a reference book for beginners. 

Condon, E. U. and Shortley, G. H., "The Theory of Atomic Spectra." Cambridge 
Univ. Press, London and New York, 1957. 

Di Bartolo, B., 'Optical Interactions in Solids." Wiley, New York, 1968. 

Griffith, J. S., "The Theory of Transition-Metal Ions." Cambridge Univ. Press, London 
and New York, 1964. Recommended as a reference book for detailed studies. 

Hamermesh, M., "Group Theory and Its Application to Physical Problems." Addison-
Wesley, Reading, Massachusetts, 1962. 

Jergensen, C. K., "Absorption Spectra and Chemical Bonding in Complexes." Pergamon, 
Oxford, 1962. 
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McClure, D. S., "Electronic Spectra of Molecules and Ions in Crystals, Part II, Solid 
State Physics" (F. Seitz and D. Turnbull, eds.), Vol. 9, p. 399. Academic Press, 
New York, 1959. 

Orgel, L. E., "An Introduction to Transition-Metal Chemistry." Methuen (Wiley), 
London 1960. 

Watanabe, H., "Operator Methods in Ligand Field Theory." Prentice-Hall, Englewood 
Cliffs, New Jersey, 1966. 

Wigner, E. P., "Group Theory and Its Application to the Quantum Mechanics of Atomic 
Spectra." Academic Press, New York, 1959. 



Chapter I SINGLE d-ELECTRON 

IN A LIGAND FIELD 

1.1 Single ^/-Electron in a Cubic Field 

In this section we consider a hydrogen atom surrounded by six point-
charges, —Ze, as indicated in Fig. 1.1. Here Ζ > 0 for the negative 
charge and Ζ < 0 for the positive charge. The distance between the 
hydrogen atom and each point-charge is a, so that the system has 
cubic symmetry. In this case, in addition to the Coulomb field due to 

the hydrogen nucleus, the electron of the hydrogen atom is exposed to 
the field due to the point-charges. The potential energy Vc of the electron 
due to the field of the point-charges is given as 

2 

4 
FIG. 1 .1 . Hydrogen atom surrounded by six 

point-charges; Oh symmetry. · , —Ze point 
charge. O, hydrogen atom. 

x 

6 
Ve{r) = X Zé*l\ Ri - r |, (1.1) 

6 



1.1 Single d-Electron in a Cubic Field 1 

where r is the electron coordinate and R̂  is the position vector of the 
zth point-charge. Then, the Schrodinger equation for the electron in this 
system is 

[-(*»/2i«) Δ + U(r) + Vc(r)] φ(ι-) = erfr), (1.2) 

where U(r) is the potential energy due to the field of the hydrogen 
nucleus, the wavefunction, and € the energy eigenvalue. 

In what follows, the perturbation method will be used to solve (1.2) 
by assuming Vc to be a small perturbation on a free hydrogen atom. 
For this purpose, it is convenient to expand Vc in terms of Legendre 
polynomials as follows: 

Vc(r) = Zê Σ J (r^/ff" 1 ) P,(cos ω,), (1.3) 
i=l k=0 

in which r< is the lesser and r> the greater of a and r, and ωί is the angle 
between vectors R̂  and r. When a is much larger than the radius of the 
hydrogen atom, we may replace, to a good approximation, r> and r< 

in (1.3) by a and r, respectively, and obtain 

Vc(r) = Ze* J £ a-\rlafPk(cos ω,). (1.4) 
i=l k=0 

Furthermore, the addition theorem for spherical harmonics shows 

P,(COSO>,) = [47T/(2^ + 1)] Σ YUWUOtPi), (1-5) 

where Ykm (0φ)' δ a r e t ' i e spherical harmonics, and (r, θ, φ) and {a, et, φ{) 
are the polar coordinates of r and R^, respectively. Here, Υ^βχΨί) *s 

the complex conjugate of Υ^τΑβιψυ a n d is equal to (— l)mYje^m(^^Pi)' 
From (1.5) and (1.4), Vc is given as a function of the electron coordinate r 
as follows: 

VJLr) = Σ Σ ^^(θφ), (1.6) 
Jc=0 m=—k 

where 

9 k m = ( 2k + 1 ) ' ^ Σ y ^ ^ ' ^ L 7 ^ 
and 

° ^ θ ψ ) = ( ^ λ Τ γ Γ ^ ^ · ( 1 · 8 ) 



8 I. S I N G L E rf-ELECTRON I N A L I G A N D F I E L D 

Since (#i<Pi), (θ2φ2),.» a r e known to be 

(τ ")· (τ t ) 

respectively, the qkm's are given as 

?fte = (ιττί" ̂  K(0) + 4Θ*° (τ) + Θ*ο(π)] ' ( L 9 a ) 

&« = < 2 ^ Γ J ^ M t ) ! 1 + e x p ( ί - χ - ) + « φ ( ^ ) 

+ exp (* - ^ ) ] (« : even φ 0), (1.9b) 

?*m = 0 (m : odd), (1.9c) 

in which @ k m is defined by 

= frr^UW"9' ( i - i o ) 

The explicit forms of Θ^ 'β are given in Table 1.1. By inserting thé^ 
explicit forms of ΘΗγη into (1.9 a-c), the explicit form of Vc(r) is obtained 
from (1.9 a-c) and (1.6) as follows: 

Vc(r) = *ψ + ™ r* jc<*>(<V) + [ C » m + c i * K ) ] j 

+ - . (1.11) 

The first term in (1.11) represents the potential energy of the electron 
located at the position of the hydrogen nucleus and elevates all the 
energy levels of the hydrogen atom by the same amount, 6Ze2/a. The 
other terms split some of the degenerate energy levels as shown later. 
The field giving rise to the potential energy whose angular dependence 
is given as (.1.11) is called a cubic field. This angular dependence is due 
to the geometrical arrangement of the point charges as shown in Fig. 1.1. 

Before discussing the details of the perturbation calculation, let us 
calculate the matrix elements of Vc which are necessary in the following 
arguments and estimate the order of magnitudes of their values. Since 
the first term of Vc which is independent of the electron coordinate 
appears in all the diagonal matrix elements, to make the following 
arguments simple we leave out the first term of Vc and shift the origin 



1.1 Single d-Electron in a Cubic Field 9 

Θ1η(θ) = ( - 1 ) - " ,. sin "0 — P,(cos 0), 
\ 2(1 + m)! / (d cos 0) m 

Θ ΐ - Λ = ( - l ) m G U 0 ) , m > 0 

®oo 

(Vï/Vl) cos 0 

@i±i Τ ( Λ / 3 / 2 ) s in0 

Θ 2 0 (λ/5/2 Λ/2)(2 cos 2 θ - sin 2 0) 

Θ2±ι Τ(λ / Ϊ5 /2 ) cos 0 sin 0 

Θ 2±2 (λ/Ϊ5/4) sin 2 0 

©30 (Λ/7/2 \ /2) (2 cos 3 θ - 3 cos 0 sin 2 0) 

Θ 3 ± ι Τ(\/2Γ/4 λ/2) sin 0(4 cos 2 0 - sin 2 0) 

®3±2 ( Λ / 105/4) cos 0 sin 2 0 

®3±3 = F ( \ / 3 5 / 4 \ / 2 ) s i n 3 0 

040 (3/8 \ /2)(8 cos 4 0 - 24 cos 2 0 sin 2 0 + 3 sin 4 0) 

0 4±1 =F(3 Λ/5/4 Vl) cos 0 sin 0(4 cos 2 0 - 3 sin 2 0) 

0 4±2 (3 λ/5/8) sin 2 0(6 cos 2 0 - sin 2 0) 

®4±3 =F(3 λ/35/4 Λ/2) COS 0 sin 3 0 

04±4 (3 Λ/35/16) sin 4 0 

of the energy by 6Ze2/a. Therefore, in what follows, we shall deal with 
Vc° given by 

Vc° = VC- {6Ze*/a). (1.12) 

Denote the hydrogen wavefunction as 

9nm(r) = Rnfr)YU*P)- (1.13) 

The matrix element of Vc° between the states with quantum numbers 
(nlm) and (ril'm') is given by 

<9Wl Vc« I W l W > = jdr ç>*m(r) Fc°(r) W l W ( r ) . (1.14) 

T A B L E 1.1 

EXPLICIT FORMS OF Θ1τη(θ) 



10 I. S I N G L E J - E L E C T R O N I N A L I G A N D F I E L D 

For calculating (1.14), it is necessary to evaluate the integrals of the 
following type: 

c\Vm\ l"m") = J dcp άθ sin θ Υ^(ΘΨ) 0^(θφ) Υιν(θφ). (1.15) 

Integration over φ directly indicates that (1.15) is nonvanishing only 
when 

m = m' — m . (1.16) 

Then ck(lm, I'm') can be calculated by using the explicit forms of 0 i m ' s ; 
their values are tabulated in Table 1.2. It should be noted that ck(lm, I'm') 
is nonvanishing only when 

& + / + /' = even, (1.17) 
and 

I / - / ' | + (1.18) 

Relation (1.18) tells us that the matrix elements of Vc° between the 
/>-states are vanishing, resulting in the absence of the cubic field splitting 
of the />-levels. Equation (1.18) also shows that, in calculating the matrix 
elements of Vc° between the rf-states, the terms proportional to rk 

(k > 4) in Vc give a vanishing contribution. 
Now let us calculate the matrix elements in (1.14) with η = n' and 

I = Γ = 2. The calculation is straightforward and the nonvanishing 
matrix elements are given as follows: 

where 

and 

(<Pnd±2 1 Ve° 1 <pnd±2) = Dq, (1.19a) 

<Ψη„±ι 1 Vco 1 <pnd±1> = -4Dq, (1.19b) 

<SPnm 1 Vc" 1 <Pndo> = 6Dq, (1.19c) 

<SPnd±2 1 Vc° \ <pN(IT2> = 5Dq, (1.19d) 

D = 35Ze2l4a\ (1.20) 

q = (2/105)<r*>Bd, (1.21) 

<rm>«d = f drr*+™\Rna(r)\*. (1.22) 

It should be remarked that D in (1.20) depends upon the point-charges, 
and that q in (1.21) reflects the properties of the electron of the central 
atom. The physical meaning of D may easily be understood if Vc° is 
reexpressed in the form 

F c ° = D(x* + y * + z*- %r*) + .·· . (1.23) 
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TABLE 1.2 

NUMERICAL VALUES 0 OF ck(lm, I'm') = { — \)m~m'c\rm\ Im) FOR / < 3, V < 3 

k = 1 

/ + /' = odd 
s ρ 0 ± 1 

0 ο 

s f 0 ± 3 
0 ± 2 
0 ± 1 
0 0 

ρ d ±1 ±2 
± 1 ± 1 
± 1 0 

0 ± 2 
0 ± 1 
0 0 

± 1 T 2 
± 1 + 1 

d f ±2 ± 3 
±2 ±2 
±2 ±1 
±2 0 
± 1 ± 3 
± 1 ±2 
± 1 ± 1 
± 1 o 

0 ± 3 
0 ± 2 
0 ± 1 
0 0 

± 2 + 3 
± 2 T 2 
± 2 T l 
± 1 + 3 
± 1 + 2 
± 1 T l 

- l / \ / 3 
+ l / \ / 3 

- λ / 6 Λ 

+ λ/5 
- 1 

ο 
- λ / 3 
+ 2 

0 
0 

Ζχ1 /λ / ΐ5 

1/λ/7 

1/7λ/5 

- λ / Ϊ Ι Ν 

W1 
- 1 

0 

+ λ / ι ο Ν 

- 2 λ / 5 
+ 2λ/6 
- 2 λ / 5 

0 
- λ / Ϊ Ο 
+ 2λ/2 
- λ / 3 

+ 5 
-λ / Ϊ Ι 
+ λ/2 
+ λ/2 

0 
0 

- λ / 6 

>xl/%/35 + * > 

- 3 
+ 3 + 4 

0 0 
0 
0 

0 
+ λ/ΪΟ 

0 0 
0 
0 > 

+ 5 
-λ/Τν 

:1/3λ/35 

- 1 
+ λ/5 
- λ / Ϊ 5 
+ λ/35 
- λ / 7 
+ 2λ/6 
- 5 λ / 2 
+ 4 λ Λ 
- 2 λ / 7 
+ 3λ/7_ 
- 3 λ / ΐ 0 
+ 10 
- Α / 2 1 0 
+ 3λ/Ϊ4 
- λ / 7 0 
- 2 λ / 2 Ϊ 
+ 4 λ / 7 
—λ/105 

1/6λ/254 

β Unlisted ones are zero. 
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TABLE 1.2 {continued) 

I V m m' k = 0 2 4 

I -\- V — even 

s s 0 0 + 1 

s d 0 ±2 + 1 ] 
0 ± 1 - 1 Χ Ι / Λ / 5 

0 0 
+ 1 1 

p p ±1 ± 1 + 1 - 1 

± 1 0 0 Wï 1 χ 1/5 
0 0 + 1 + 2 I 

χ 1/5 

± 1 T l 0 - Λ / 6 ; 

Ρ f ± 1 ± 3 + 3 Λ / ^ - 1 > 

± 1 ± 2 - Λ / 3 0 ΤΛ /5 
± 1 ± 1 + 3Λ/2 - Λ / 6 

± 1 0 - 3 +\/ιο 
0 ± 3 0 - Λ / 7 

0 ±2 Wis > x l / 5 \ / 7 + 2 Λ / 3 >χ1/3λ/21 

0 ± 1 - 2 \ / 6 - Λ / 1 5 

0 0 + 3λ/3 + 4 

± 1 T 3 0 -2y/l 
± 1 T 2 0 W2\ 
± 1 T l + Λ/3 y W\5 > 

d d ±2 ±2 + 1 - 2 ^ + 1 

±2 ± 1 0 + λ/6 W~5 
±2 0 0 - 2 Τ Λ / 1 5 

± 1 ± 1 + 1 + 1 - 4 

± 1 0 0 + 1 !>xl/7 + Λ/30 > Χ 1/21 

0 0 + 1 + 2 + 6 

±2 T 2 0 0 Wio 
±2 T l 0 0 - Λ / 3 5 

± 1 T l 0 WI ) -2\Λθ, 
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T A B L E 1.2 (continued) 

I V m m k = 0 2 4 6 

/ + V = even 

f f ± 3 ± 3 + 1 - 5 ^ + 3 > " 5 \ 
± 3 ±2 0 + 5 -V30 

+ 5 \ /7 1 
± 3 ± 1 0 + 3 \ / i - 1 0 \ / 7 
± 3 0 0 0 - 3 \ / 7 + 10Λ/2Ϊ 
±2 ±2 + 1 0 - 7 + 30 
±2 ± 1 0 T \ / l 5 + 4 λ / 2 - 5 \ / Ï Ô 5 
±2 0 0 -2V5 -V3 + 2 0 \ / l 4 
± 1 ± 1 + 1 + 3 

> x 1/429 
± 1 0 0 W2 > x l / 1 5 WTs > X 1 / 3 3 + 2 5 ^ 

> x 1/429 

0 0 + 1 + 4 + 6 + 100 
± 3 T 3 0 0 0 - 1 0 \ / 2 3 1 
± 3 T 2 0 0 0 + 5Λ/462 
± 3 T l 0 0 + Λ / 4 2 - 5 V 2 Ï Ô 
±2 T 2 0 0 + 30 \ / Ï4 
±2 T l 0 0 -Vu - 1 5 \ / 4 2 
± 1 T l 0 - 2 \ / 6 y -2V\0J -10Α/Ι05> 

The values of the matrix elements in (1.19) are of the order of magnitude 
of Ze\r*yndla5, which is ~ 1 0 ~ 3 atomic unit (~0.027 eV) when Ζ = 1, 
(r*)nd = 1 au, and a = 4 au. This value is much smaller than the energy 
separation, ~ 0 . 6 eV, between the levels with η = 3 and 4 of the 
hydrogen atom. This justifies the perturbation calculation within the 
3rf-states neglecting the nondiagonal elements between the η = 3 and 4 
states. It should, however, be noted that this argument on the values of 
the matrix elements and the energy separation of the energy levels of 
the central atom are valid only in our model problem. In the real problems 
of 3rf-electrons in insulating crystals, the quantities corresponding to 
the matrix elements of Vc° and the energy separation between the 
η = 3 and 4 states are much larger than those discussed here. 

Problem 1.1. Derive (1.23). Ο 

Now, according to the perturbation theory, the perturbed energies 
of the 3rf-level of the hydrogen atom due to the presence of the point-
charges are given by solving the secular equation, 
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e3° + Dq-e 0 0 0 5Dq 
0 e3°-4Dq-e 0 0 0 
0 0 € 3 °-f- 6Dq - e 0 0 = 0, 
0 0 0 €3° - 4Dq - e 0 

5Dq 0 0 0 e3° + Dq-e (1.24) 

where 
€3° = *3 + {βΖβηα\ (1.25) 

and € 3 is the energy of the 3rf-state of the hydrogen atom. The bases of 
the secular matrix for (1.24) are arranged in the order, m = 2, 1, 0, — 1, 
—2. As easily seen, (1.24) splits into three one-dimensional and one 
two-dimensional determinantal equations and the energy eigenvalues 
are obtained as 

ed) = € 3 0 + eDqy (1.25a) 

e ( 2 ) = € 3 o _ 4 Z ) ^ ( L 2 5 b ) 

where € ( 1 ) and e ( 2 ) are, respectively, doubly and triply degenerate. It is 
customary to call the states with energies € ( 1 ) and e ( 2 ) , the eg and t2g states, 
respectively, and to denote e ( 2 ) as €(eg) and e{t2g\ respectively. The 
reason why these notations are used will be explained later. The result 
given in (1.25) shows that, by the effect of the point-charges, the 3rf-level 
of the hydrogen atom, which has fivefold degeneracy, is split into doubly 

m— €(e^ 

FIG. 1.2. Splitting of the 3J-level of a 
hydrogen atom in a cubic field. 

and triply degenerate levels as indicated in Fig. 1.2. The magnitude of 
the splitting is given as 

<eg) ~ <t») = lODq. (1.26) 

That the center-of-mass of the energy levels does not change by the 
effect of Vc° can be seen from (1.25) as 

i[2e(e9) + 3 6 ^ ) ] = €8°. (1.27) 
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Diagonalizing the secular matrix, we can also obtain the wavefunctions 
associated with the split levels as follows: 

<Pzdl : 

(<Pzd2 + 933d-2)/V/2, 

9zd-l > (<Pzd2 — 9>3d-2)/V2, 

for the ^-state, 

for the ^g-state. 

The functions for the i^-state are not real, but can be made real by 
applying a unitary transformation within the subspace belonging to the 
ins t a t e : Any unitary transformation within a degenerate subspace does 
not change any physical situation. Let the unitary transformation be 
defined as 

where φ/s are 

<Pl = Ψζάΐ y Ψ2 = <Pzd-l y Ψζ = (<Pzd2 ~ Ψζά-^Ι^' 

By using the unitary transformation matrix, 

U 

(1.28) 

(1.29) 

~ i 1 
V2 

i 1 
V2 

- 0 0 

(1.30) 

real wavefunctions for the i 2„-state are obtained as follows: 

9>F = (ilVifoua. + = (15/4^/2 sin θ cos θ sin ψ R3d(r) 
= ( 1 5 / 4 ^ / 2 ( ^ 2 ) ^ ) , (1.3U) 

Ψ ν = -(llV2)(<p3dl - «Psd-i) = (15/47Γ)ν2 s in θ cos θ cos φ R3d(r) 
= (\5l^fl\zx^)R3d{r), (1.31b) 

«Pc = —(«'/V^Xç'ada — <P3d-a) = (15/47Γ) 1/ 2 sin2 θ cos φ sin φ R3Jr) 
= ( 1 5 / 4 7 7 ) 1 / 2 ( ^ 2 ) ^ ) . (1.31c) 

Similarly, the wavefunctions obtained in (1.28) for the e f f-state may be 
written as follows: 

Ψ. = 9sao = (5/167r)V2(3 cos2 θ - 1) Rsd(r) 
= (5/16»r)i/»[(3*» - r > 2 ] R3d(r), (1.32a) 

<Pv = (<P3d2 + 9>3d-2)/V2 = (IS/IOTT)1^ sin2 θ cos 2<p /? s d(r) 
= (15/16π)ΐ/2[(*2 - y»)/r2] R^r). (1.32b) 
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For intuitive discussions, it is useful to know the behaviors of these 
wavefunctions in real space. The most convenient way of illustrating 
the wavefunctions is to fix the value of r and plot the angular dependence 
of the wavefunctions representing their magnitude at angle (θφ) by a 
radial length. This method is particularly useful to know the angular 
behaviors of the wavefunctions. The wavefunctions obtained in (1.31) 
and (1.32) are illustrated in Fig. 1.3 by using this method. From Fig. 1.3 

it is clear that ψξ, φν , φζ have the same energy, whereas it is not why <pu 

and φν do. However, if one makes linear combinations of 9^ and φν as 

ψίχ) = - ~ 9 u - ^ v ^ y 2 - ^ (1.33a) 

it is clear from Fig. 1.4 that <pv , <p[x), and ψ{

ν

υ) have the same energy. Note 
that φν and <p{

v

x) are linearly independent. This tells us that the q>u and 
φν are the functions of a degenerate state. Since <pu and φν extend toward 

FIG. 1.4. Angular behaviors of wavefunc­
tions, φυ , <?<*>, and <p<v). 

the point-charges while ψζ, φν , and ψζ avoid them, it can easily be 
understood that the energy of the ^-state is higher than that of the 
* 2 g-state if the point-charges are negative (Z > 0). 
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In this section we have used notations t2g and eg for the states in a 
cubic field. The meaning of these notations will be explained in the next 
section in the light of the group theory. Although the wavefunctions of 
the t2g- and ^-states have been given in terms of the rf-functions of the 
hydrogen atom, a more general interpretation of these wavefunctions 
will also be given in the next section. 

Problem 1.2. Show that D in ( 1 . 1 9 ) is given by 

D = \15dej4a« 

when six point-dipoles with dipole moment d pointing outward (the 
positive poles are outside) are placed at the places of the point-
charges. Ο 

Problem 1.3. By using the perturbation method, calculate the splitting 
of the 4/-level of the hydrogen atom in the cubic field due to the point-
charges. Also obtain the wavefunctions associated with the split 
levels. Ο 

1.2 Group Theoretical Preliminaries 

In this section it will be shown that, considering the symmetry of the 
system alone, we can predict the qualitative nature of the splitting of the 
energy level and the angular behavior of the wavefunctions, which were 
discussed in the previous section by the use of a particular model. 

1.2.1 SYMMETRY OPERATIONS I N O-GROUP 

Let us again consider the system of a hydrogen atom surrounded by 
six point-charges as shown in Fig. 1.1. Suppose that this system is 
rotated around the x, y> and ζ axes by angles 27r/4, 47Γ/4, and 677-/4. The 
rotated system is identical to the original one, as all the point-charges 
are identical. We call these rotations symmetry operations, and denote, 
for example, the rotations around the #-axis by 277-/4, 47r/4 , and 677/4 as 
C 4(^), C 4

2(#), and C 4

3(#), respectively. Here, the direction of the rotation 
is defined as the same as that of a right-hand screw which is progressing 
toward the positive direction of the rotation axis. Note that for Ca(z) 
the positive direction of rotation axis is the negative direction of the 
#-axis. It is clear that successive operation C4(#) C4(#) leads to C 4

2(#). 
The x, y, and ζ axes are called fourfold symmetry (or rotation) axes. 
There are nine symmetry operations of this type. Furthermore, the 
following rotational operations are also symmetry operations: 
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C 3 , C 3

2 : rotations around the [111], [Til], [lTl], and [111] axes by 
angles 2ττ/3 and 4π/3. We denote, for example, the rotation around the 
[111] axis by 27r/3 and 4π/3 as Cs(xyz) and C3

2(xyz), respectively. There 
are eight symmetry operations of this type. 

C 2 : rotations around the [110], [lTO], [101], [10T], [Oil], and [Oil] 
axes by angle π. We denote, for example, the rotation around the [Oil] 
axis by π as C2(yz). There are six symmetry operations of this type. 

After all, by including the identity operation Ε which does not move 
the system, twenty-four symmetry operations have been found in our 
system. However, it should be remarked that there are other kinds of 
symmetry operations which leave our system invariant. They are those 
involving inversion with respect to the center of the system. For the 
moment we will ignore these symmetry operations, which will be taken 
into account in a later part of this section. 

By symmetry operation R, a point Ρ whose coordinate is r(xyz) is 
transformed to P' whose coordinate is r\x'y'z'). This transformation 
is simply expressed as 

For example, for R = C4(#) it is seen from Fig. 1.1 that x' = —y9 

y' = xy and z' = z. From the result of the C4(#) transformation of 
point P, rotation C4(#) may be represented by 

One of other methods of representing the rotational operations of our 
system, which favors our geometrical intuition more than (1.35), is 
to indicate how the six point-charges are transformed by the symmetry 
operations. For example, by rotation C4(#) point-charge 1 goes to the 
position of point-charge 2, 2 to that of 4, 4 to that of 5, 5 to that of 1, 
3 to that of 3, and 6 to that of 6. Denoting such transformation simply as 
( 2 4 3 5 1 e ) , which indicates that the point-charge with the upper 
number goes to the position of the point-charge with the number 
indicated just below, we may also represent rotation C4(#) as 

r' = Rr. (1.34) 

C 4 ( s ) = y-> χ (1.35) 
IZ —> ζ J 

CM = (. 
1 2 3 4 5 6 
2 4 3 5 1 6, (1.36) 

We shall use this method of representing the symmetry operations for 
a little while. 
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By using the representations as given in (1.36), one can confirm that 
an aggregate of our twenty-four symmetry operations satisfies the fol­
lowing four conditions: 

(1) A product of two arbitrary operations within the aggregate is 
also an operation within the aggregate. The product R2RX means the 
successive operation of R2 after operation i?j . For example, 

r ( (1 2 3 4 5 6\/l 2 3 4 5 6 \ 
C*(y)C&) = {6 2 j 3 5 4 ) ( 2 4 3 5 1 ό) 

2 3 Î 5 6 4 ) = C > < ^ » - < ' ' 3 ' > 

It should be noted that the operations do not commute with each other 
as shown by an example, 

n t . n t . /I 2 3 4 5 6 w l 2 3 4 5 6 \ 
C 4(*)C 4(,) = ( 2 4 3 5 j 6 ) ( 6 2 ! 3 5 4 ) 

= G 4 2 3 ί 5 ) = C ^ 

C4(y)C4(*). (1.38) 

(2) Let Rlf R2, and i? 3 be operations within the aggregate. Then, 
they satisfy (i?ii?2) ^ 3 = ^ 1 ( ^ 2 ^ 3 ) · F ° r example, when R1 = C^(y)9 

R2 = C 4(#), and i? 3 = C 4(#), using (1.37), we have 

[Ct(y)Ct(*)]Ct(*) = C , ( * y * ) C 4 ( * ) 

_ / l 2 3 4 5 6 w l 2 3 4 5 6 \ 

~~ \2 3 1 5 6 4A2 4 3 5 1 6 / 

= G ί ? 6 2 4 ) = C ^ ) > < L 3 9 > 

and 
C4(y)[C4(*)C4(*)] = C4(y)C4«(*) 

_ (I 2 3 4 5 6 \ / l 2 3 4 5 6 \ _ U 2 1 3 5 4Λ4 5 3 1 2 6 J 

(3) There is an identity operation £ which satisfies RE = ER = R 
for any operation R within the aggregate. 
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(4) There is an inverse operation R~x within the aggregate which 
satisfies RR-1 = R_1R = Ε for each operation R within the aggregate. 
For example, 0 4 ( # ) _ 1 = C 4

3(#). 

The aggregate of operations which satisfies the above-mentioned four 
conditions is called a group, and the operations are called the elements 
of the group. If the number of elements are finite as the present example, 
the group is called a finite group. Furthermore, if all the symmetry 
operations belonging to a finite group keep a lattice point unmoved, 
the group is called a point-group. Thirty-two point-groups have been 
known to exist. The group to which our twenty-four symmetry operations 
belong is one of the point-groups called O-group, octahedral group. 

The twenty-four symmetry operations of the O-group can further be 
classified into five classes, in each of which symmetry operations are the 
rotations around equivalent axes by the same angle. Here, the equivalent 
axes are those which are transformed to each other by the symmetry 
operations of the O-group: for example, the x, y, and ζ axes are equiv­
alent. The classification is shown in the tabulation. Operation C 4

3(#) 

Classes Symmetry operations 

Ê Ε 

ct C4<*), C 4(y), C4(*), 
Cftx), Cfty), Cftz) 

C4"(*), C^y), CA\z) 

C3(xyz), C3(xyz), C3(xyz), CB(xyz), 
C*\xyz), Cz\xyz\ Cz\xyz\ C*\xyz) 

c. C2(xy), C2(yz)y C2(zx), 
C,(«y), C2(yz)y C2(zx). 

is identical to C 4(#), and the .v-axis is equivalent to the axis.Therefore, 
C 4

3(#) and C 4(#) belong to the same class. A similar argument can be 
applied to Cs(xyz) and Cs

2(xyz). 
In order to define the class in a more general way, let us consider two 

rotational operations C(i) and C(j) around the equivalent i and j axes, 
respectively, by the same angle, and assume that the axis i is transformed 
into j by symmetry operation R in the same group. Then, the following 
relation may be proved: 

RCtyR-1 = C(j). (1.41) 
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For example, the #-axis is transformed to the jy-axis by C4(#) and 

C 4(*)C 4(*)C 4(*)-i 

= /l 2 3 4 5 6wl 2 3 4 5 6\/l 2 3 4 5 6\ 
\2 4 3 5 1 6Λ1 3 5 4 6 2/\5 1 3 2 4 6/ 

Equation (1.41) defines the transformation of operations: we say that 
operation C(i) is transformed to C(j) by R. With this terminology, the 
definition of the class may be stated as follows: The class is an aggregate 
of the elements of a group which are transformed to each other by 
appropriate elements of the group. 

Finally it is worth pointing out that all the elements of a group may be 
generated from a smaller number of elements of the group. In our 
O-group, one can show that successive operations of two elements 
C 4(#) and C4(jy) generate all of the twenty-four elements. The generation 
of Cz(xyz), C3(xyz), and C2(zx) from C4(#) and CA(y) has been already 
shown in (1.37), (1.38), and (1.39), respectively. The elements whose 
successive operations generate all the elements of a group are called 
generating elements. In general, there are many ways of choosing the 
generating elements. 

1.2.2 IRREDUCIBLE REPRESENTATIONS 

Let us first consider the transformation of function/(r) by symmetry 
operation R. The function may be considered to represent an electron 
distribution. Therefore, the transformation of a function may be inter­
preted as that of an electron distribution. For example, for /(r) = χ 
the electron distribution may be illustrated as in Fig. 1.5. When 

(l 1 2 3 4 5 6 
6 2 1 3 5 4, (1.42) 

f ( f )=x 

FIG. 1.5. Transformation of function 
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operation C4(z) is applied, the electron distribution is transformed to 
that indicated by the broken curve which is represented by g(r) = y. 
Therefore, we express this transformation as C4(#) χ = y. Similarly 
Ci{z)y = — x and C4(#) ζ = z. With respect to the transformation of 
functions x, y, and zy therefore, rotation C4(#) may be represented as 

C4(*) 
y ' 

—X 

ζ 
(1.43) 

J FUNCT 

The subscript "funct' ' indicates that the symmetry operation in this 
case operates on the functions xy y, and ζ instead of the coordinates. 
If we regard the transformation in (1.43) as the point transformation 
such as (1.35), the representation is just that of C^z)"1. This relationship 
is not accidental, and the reason is explained as follows: Let the electron 
distribution corresponding t o / ( r ) be indicated by the solid contour and 
the transformed one by the broken contour as indicated in Fig. 1.6. 

Rf if) 

FIG. 1.6. Transformation of function/(r). 
f(r) 

Point Ρ on the solid contour is transformed to point P' on the broken 
one by the transformation. From Fig. 1.6, it is immediately seen that 

W ) = / ( r ) . (1.44) 

Since r ' = Rr, (1.44) is reexpressed as 

Rf(r) = / ( i?" 1 r ) , (1.45) 

which explains the relation between the representations (1.43) and 

As seen in (1.31a), ψξ is proportional to y ζ which may be considered 
to be the product of functions y and z. Therefore, 

Q ( * K = -{l5l4wYPzxRUr)lf* (1.46a) 
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Similarly, 

2 3 

c4(*)9>« = — Ψν · 

(1.46b) 

Considering vector φ(φ€, ψν , ψζ, ψη > Ψν) m a five-dimensional space, 
we may express these transformation in the following compact form: 

where 
C4(*)<p = [ψξψνψζψηΨν] ' D(C4(*)), (1.47) 

" 0 1 0 · 
- 1 0 0 : 0 

D(C4(*)) = 0 0 - 1 \ (1.48) 

0 1 0 
0 - 1 . 

With respect to functions x> y, and z, rotation C 4( y) is represented as 

~x —*• —z-
c 4 W = y y • (1.49) 

-Ζ funct 
Therefore, 

c*(yyp* = <Pc > 
cé(yypv = —ψν > 
c4Îy)<Pi = — ? f > 

M ywu = — + ~Y~ φ* 1 

C*(yyPv =^γΨη+^Ψν, 

(1.50a) 
(1.50b) 
(1.50c) 

(1.50d) 

(1.50e) 
which gives 

Dic«Cy)) 

- o 0 - 1 — 

0 - 1 0 0 
1 0 0 

1 
2 2 

0 
V3 1 
2 2 _ 

(1.51) 
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It is straightforward to derive the relation, 

D(C«(y)C4(*)) = D(C3(xyz)) 

r o 0 1 
1 0 0 
0 1 0 

1 
2 

V3 
2 

V3 
2 

1 
2 _ 

= D(C4(>-)) · D(C4(*)). (1.52) 

In general, for any elements R1 and R2 of the O-group, we can show 

D ( * A ) = D ( i y · D(R2). (1.53) 

In this case the aggregate of matrices D(i?) ,s is called representation D 
of the O-group. The representation has a concrete form, namely 
matrices in the present case, in contrast to the rather abstract nature 
of the group. Equations (1.35), (1.36), and (1.43) are also some represen­
tations of the O-group. In representation Ζ), ψξ, φν , φζ, φη , and φν are 
called the bases of the representation. 

It is noticed in (1.48) and (1.51) that D(C 4(#)) and D ( C 4 ( j ) ) have a 
characteristic form, 

• χ 

X 

X 

X 

X 

X 

X 

X 

X 

0 

X 

X 

X 

(1.54) 

where the matrix elements indicated by X are not zero in general. More 
generally, D(R) for any element R of the O-group can be shown 
to have the form (1.54), as C^(z) and CA(y) are the generating elements 
of the O-group and D(R) for any R may be obtained from (1.48) and 
(1.51) by using (1.53). In this case, representation D may be reduced to 
two representations of smaller dimensions, 

D = D(T2) + D<*)9 (1.55) 
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by taking φ ξ , φ ν , and φ ζ as the bases of D{T^ and ç?w and ψ ν as those of 
J)(E) These two sets of the bases are never admixed by the symmetry 
operations of the O-group. It is obvious that both D{T^ and D{E) are 
the representations of the O-group. The representation which may be 
reduced to the representations of smaller dimensions is called a 
reducible representation. 

However, it should be noted that, even if representation matrices with 
some bases do not have forms like (1.54), the representation could be 
a reducible one. In order to see this, we have to introduce the concept 
of equivalent representations. Let Τ be an arbitrary matrix with the 
same dimension as that of representation D of a group. We assume 
det Τ Φ 0. Then, we can show that the aggregate of matrices D'(i?) 
given for all the elements R of the group by 

D\R) = T D ^ T - 1 (1.56) 

is also a representation of the group, as 

D'(^)D'(/? 2 ) = T D ^ T - i T D ^ T - i 

= T D ^ D ^ T - i 

= T D ( W 

= D ' ( 1 W (1.57) 

Representations D and D' are called equivalent representations. Trans­
formation (1.56) is called a similarity transformation. If a representa­
tion matrix can be brought into a form like (1.54) by a similarity 
transformation, the representation is a reducible one. The represen­
tations which are not reducible are called irreducible representations. 
Representations DiT2) and D{E) can be shown to be irreducible repre­
sentations. 

Problem 1.4. Construct the five-dimensional representation of the 
O-group with bases <pzdm (m = 2, 1, 0, — 1, —2) and reduce it. Ο 

In this subsection, we have shown that the t2g and eg wavefunctions are 
the bases of irreducible representations D(Ti) and DiE), respectively. In 
general, the wavefunctions of a state can be the bases of an irreducible 
representation of the group whose symmetry operations leave the system 
invariant. In order to show this, let us consider the Schrôdinger equation 
for a system 

= <Wfc · (1-58) 
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If the system is invariant to symmetry operations R of group G, the 
Hamiltonian operator is invariant when it is transformed by R; 

RjfR-1 = J F \ (1.59) 

Operating R on (1.58) from the left, we obtain 

Ratify^ = RarifRr^Rtpfc 
= JTR<pk = ekR<pk. (1.60) 

Equation (1.60) means that, if cpk is an eigenfunction with energy 
eigenvalue ek , then R<pk is also the eigenfunction with the same eigen­
value ek . When state k is degenerate in £-fold, R<pkj should, in general, 
be given by a linear combination of the wavefunctions (pki(i = 1,2,..., g) 
of the degenerate state: 

R<Pv = Σ 9MD%\R), (1.61) 
i=l 

where the D{y\Rys are numerical coefficients. Equation (1.61) immedi­
ately means that matrix D(k)(R), appearing in (1.61), is the representation 
for R with bases <pki (i = 1, 2,..., #). Besides the case of accidental 
degeneracy in state A, there is no reason to restrict the summation in (1.6) 
to particular <pki

fs among the g wavefunctions of the degenerate state, so 
that D{k) is an irreducible representation of group G. 

Problem 1.5. Derive the irreducible representations for C4(#) and 
C4(j>) of the O-group with bases φχ , ψυ , and <pz of the^>-state. Ο 

Problem 1.6. Confirm the irreducible representations given in the 
tabulation. Ο 

Ε CM C 4

2(*) 

π L:I Π 

C3(xyz) 

1 

~ 2 

2 

2 
1 

~ 2 

C2(xy) 

1 0 Ο- • 0 1 Ο- -1 0 Ο- Ο 0 Ί­ - 0 -1 

Ψ ξ > Ψτ) y Ψζ 0 1 0 -1 0 0 0 -1 0 1 0 Ο -1 0 
-0 0 1. . 0 0 - 1 . . 0 0 1- .0 1 0. . 0 0 

1 0 Ο- Ό -1 Ο- - 1 0 Ο- Ό 0 Ί­ 0 1 

ψχ> Ψν} ΨΖ 0 1 0 1 0 0 0 -1 0 1 0 Ο 1 0 
.0 0 1. -0 0 1. . 0 0 Ι­ .0 1 0. .0 0 
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1.2.3 CHARACTERS OF REPRESENTATIONS 

In the previous subsection, it was shown that the wavefuntions of an 
eigenstate were the bases of an irreducible representation of the symmetry 
group whose symmetry operations leave the system invariant. Con­
versely speaking, the eigenstate may be characterized by the irreducible 
representations whose bases are the wavefunction of the state. Then, 
questions arise, concerning how many kinds of irreducible represen­
tations we can have for a group and how each kind of irreducible 
representations is characterized. The latter question arises because there 
are many equivalent irreducible representations. We have to seek a 
quantity which is invariant to a similarity transformation ( 1 . 5 6 ) . This 
quantity can be shown to be the diagonal sum (trace) of the representation 
matrix, as 

Σ DUR) = Σ TmlDln{R){T-%m 

m mnl 

= Σ Α η ( * ) Σ ( ΐ " 1 Χ Λ 
ni m 

= Σ 8.1 = Σ (1-62) 
ni η 

Hereafter, the diagonal sum of the kth irreducible representation 
Dik)(R) will be written as 

χ

ω(Ρ)=Ση%1(Κ)> (1.63) 
m 

and will be called the character of the kih irreducible representation 
Dik) for operation R. Since symmetry operations belonging to the same 
class are related to each other by transformation ( 1 . 41 ) , the character of 
the irreducible representation is the same for all the symmetry operations 
in the same class. Therefore, the character would better be considered 
to be given for a class rather than for each element. 

Now returning to the first question, let us consider the number of the 
inequivalent irreducible representations appearing in a group. For this 
purpose, we first give the orthogonality relation for the matrix elements 
of irreducible representations Dia) and Dm\ 

£ D%(R) D™(R-i) = A SaB SPS SQr, (1.64) 
R N* 

which may be proved by use of Shur's lemmas. The proof of ( 1 . 6 4 ) will 
be left to any standard textbook of the group theory. In ( 1 . 6 4 ) h is the 
number of elements in the group (called order of the group), and na is the 
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dimension of irreducible representation Di<x) (called degree of the kth. 
irreducible representation). Putting p = q and r = s and summing over 
p and r in (1.64), we obtain 

Σχ{Μχ(β)(Κ-1)=»Κβ· (1.65a) 
R 

Since for finite groups every representation is equivalent to a unitary 
representation, in our problem of the finite group 

Z)<?(#-i) = D<*\R)*. (1.66) 

Therefore, in this case (1.65a) may be written as 

Yx(a\R)x(B\R)* =h8aS. (1.65b) 
R 

Equations (1.65a, b) are called the orthogonality relation of the first kind 
for characters. By denoting the class to which R belongs as R and remem­
bering that x{k){R)'s for all R in class R take the same value xik)(R), 
then (1.65b) may be reexpressed as 

Z W a W W = ^ , (1.67) 
ê 

where h$ is the number of elements in class R. Equation (1.67) tells 
us that vectors X ( f c ) , s in the m-dimensional space whose components are 
fe,)1^"1^ (^ 8) 1 / 2X ( f c )(A).-. (hsJ^X^KAm) are mutually ortho-
gonal. Here m is the number of classes in the group of interest. Since the 
number of mutually orthogonal vectors can not exceed the dimension of 
the vector space, it may be concluded that the number of vectors Xik)'s, 
in other words, the number of nonequivalent irreducible representations 
q is equal to or smaller than m: 

q < (1.68) 

In order to show another inequality which together with (1.68) finally 
determines q, we have to give the orthogonality relation of the second kind 
for characters, which is expressed as follows: 

Σ χω(Α) X(kW) = «(ΛΑ) (1.69a) 

or for unitary representations 

Σ Xik)(Ri) X(k\Rr = ΤΓ
 δ(Α4). (1.69b) 

k n*i 
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Readers will find the derivation of (1.69) in any textbook of the group 
theory (for example, see Hamermesh, p. 110). Equation (1.69) shows 
that the dimensional vectors x(R)ys whose components are xikl)(R), 
X ( A : 2 )(i?),..., xik*\R) are mutually orthogonal. Since the number of 
mutually orthogonal vectors cannot exceed the dimension of the space, 
we have an inequality, 

m < q. (1.70) 

Equations (1.68) and (1.70) lead us to the conclusion that the number of 
inequivalent irreducible representations is equal to the number of classes. 
In our O-group, therefore, five inequivalent irreducible representations 
are predicted. 

Equation (1.69) also gives us a useful relation which determines 
dimension nk of irreducible representation Dik). Assuming Rx = R2 = Ê 
in (1.69) and noting xik)(Ê) = nk , we obtain 

Σ nk

2 = h (nk : nonvanishing integers). (1-71) 
k 

In the O-group, h = 24 and k runs from 1 through 5. Therefore, nks 
are uniquely determined as follows: 

l 2 + l 2 + 2 2 + 3 2 + 3 2 = 24. (1.72) 

Now let us obtain all the values of xik)(R) in the O-group. One-
dimensional irreducible representations are given by numbers, among 
which the simplest one has the value unity for all the elements of the 
group. This representation certainly satisfies the requirement for the 
representation of the group as given in (1.53) and is clearly irreducible. 
The irreducible representation like this is called an identity representation, 
and always exists for any group. Furthermore, in Problem 1.6 we have 
already obtained the irreducible representations with the sets of bases 
(<Pu y Ψν)> {ψξ y Ψν y Ψ^y a n d (ψχ y Ψν y Ψζ) f ° r a n element in each class, 
which will be labeled as Ε, T2, and 7\ irreducible representations, 
respectively. That T2 and Tx are inequivalent may be seen from the 
difference in the characters of these representations for classes CA and C2 . 
Therefore, the characters of two- and two three-dimensional inequiv­
alent irreducible representations are in our hands. The characters of 
the remaining one-dimensional irreducible representation can be 
determined by using the orthogonality relations (1.67) and (1.69b). The 
character table of the O-group thus completed is given in Table 1.3. 

Character tables of thirty-two point-groups have already been 
obtained; they are given in Appendix I. 
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T A B L E 1.3 

CHARACTER TABLE OF THE O-GROUP 

Irreducible representations Characters 

Mulliken Bethe BSW* Ê δ6<?4 3(? 4

2 8C% 6C2 

A1 A A 1 1 1 1 1 
A2 A A 1 —1 1 1 —1 
Ε A At 2 0 2 —1 0 

A A As 3 1 —1 0 —1 

A A As 3 —1 —1 0 1 

° Notations by L. P. Bouckaert, R. Smoluchowski, and E. P. Wigner. 
b The number of elements in a class. 

1.2.4 SPLITTING OF ENERGY LEVELS 

As an example of how to use the character tables, we shall discuss the 
splitting of energy levels when the symmetry of a system is lowered. 
In Section 1.1, using a simple model, we calculated the splitting of the 
3rf-level of a hydrogen atom when it was placed in a cubic field. In this 
subsection, however, we will show that the qualitative nature of the 
splitting may easily be derived from a more general point of view by the 
use of characters. 

In a free hydrogen atom an electron is exposed to a spherically sym­
metric potential field of the nucleus, so that the electron Hamiltonian 
is invariant to the rotations around the nucleus by arbitrary angles. 
An aggregate of the rotations around the axis of arbitrary directions by 
arbitrary angles clearly forms a group, which is called a continuous 
rotation group. In this group the number of elements is infinite and 
uncountable. Since the rotations by the same angle belong to the same 
class irrespective of the direction of the rotation axes, the number of 
classes in this group is also infinite and uncountable. 

According to the result in Section 1.2.2, the hydrogen wavefunctions 
of the «/-state, 

9 W ( r ) = Rnl(r) Υ1ηι{θψ) (m = 1,1- 1,..., - / ) 

should be the bases of (21 + l)-dimensional irreducible representation 
D i l ) of the continuous rotation group. In order to obtain the characters in 
this group, let us consider the irreducible representation for rotation R a 
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around the #-axis by angle A. The choice of this particular rotation axis 
is sufficient for our purpose, as the characters do not depend upon the 
direction of the rotational axis. From (1.61) representation matrix D{1) 

is given by 
-i 

Rot<Pnlm — Σ (Pnlm'Dm'm . 

By using the relation, 

we obtain Dil)(oc) from (1.73) as follows: 

'e-ilcc 

e-i(l-l)<x Q 

D<»(a) = 

0 eila 

from which character xil)(oc) is calculated as 

(1.73) 

(1.74) 

(1.75) 

Λ ) = Σ ^ — 0 - 7 6 ) 
M=Z B 1 1 1 2 A 

When a hydrogen atom is placed in the system of cubic symmetry, 
the electron Hamiltonian is no longer invariant under rotations around 
arbitrary rotational axes by arbitrary angles, but is only invariant under 
the rotations around specific rotational axes by specific angles, i.e., under 
the symmetry operations in the O-group which form only a small part of 
the symmetry operations in the continuous rotation group (in this case 
the O-group is called a subgroup of the continuous rotation group). 
In what follows, it will be shown that in the O-group representation D{1) 

is reducible, in general. 
Let us assume that D{ l) may be reduced to irreducible representations 

Dik)ys of the O-group as follows: 

Z)»> =£*(#)/)<*>, (1.77) 
k 

where c(kl) indicates the number of the same Dik) that appear. By using 
characters, (1.77) may be expressed as 

Χ« ) (Λ )=Σ«(*0χ ( * ) (Λ) , (1-78) 
k 
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or, by using (1.67) further, 

c(ki) = Whx<l\R)xik\R)*- (1.79) 
n Â 

In (1.79) xil)(R) is calculated by inserting for α in (1.76) a particular 
value characteristic to the rotation angle of R in class R. Then xil)(R) 
for each class of the O-group is obtained as follows: 

X (Ê) = X^(ol = 0) = 21 + 1, (1.80a) 

Χ X [* j / j(-l)*<i-i), for / - 2m + 1 
j ( - l )* 1 , for l = 2m 

(m: integers) 
(1.80b) 

XW)(<V) = X{1)(^) = X{l\oc = π) = ( -1) ' , (1.80c) 

( 1, for / = 3m 
X«)(C3) = x«> (« = ? π) = j 0, for / = 3m + 1 (1.80d) 

' — 1 , for / = 3m + 2 (w: integers). 

Since χ ( Λ ) ( $ ) ' 8 for all i? have already been obtained in Table 1.1, 
c(k 1=2) can now be calculated from (1.79) and (1.80) as follows: 

c{Ax2) = 0, c(A22) = 0, 

c{E2) = l9 c(T12)=0, (1.81) 

c(T22) = 1, 
which means 

D<2> = DiE) + DiT*\ (1.82) 

Bearing in mind that the states of the system are characterized by the 
irreducible representations of the group to which the symmetry of the 
system belongs, we notice from (1.82) that the rf-level of a hydrogen atom 
splits into a doubly degenerate level and a triply degenerate level in a cubic 
field in agreement with the result of the previous calculation by the use 
of a specific model. However, by the symmetry arguments alone, as 
given in this subsection, the magnitude of the energy separation between 
the split levels, eg and t2g , cannot be predicted. 

In this way (1.79) predicts the splittings of the energy levels with 
various / in a cubic field. The result is given in Table 1.4. 

In concluding this subsection let us consider one more example of the 
splitting of the eg and t2g levels in a tetragonal field. A simple system 
having the field of this symmetry is obtained by changing in Fig. 1.1 the 
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/ Splitting in a cubic field 

0 S A1 

1 Ρ Ά 
2 D E+T2 

3 F A2+ 7 \ + T2 

4 G Ax + E+ Tx + T2 

5 H E + 2 7 \ + T 2 

6 I ^ + A2 + £ + Tx + 2 T 2 

distances between the central atom and the point-charges 3 and 6 to 
b(b Φ a) while keeping the other point-charges unmoved. This system 

3 t 

FIG. 1.7. Hydrogen atom surrounded by six 
point-charges; Dih symmetry. 

is illustrated in Fig. 1.7. This system is invariant under the symmetry 
operations shown in the accompanying tabulation. 

Class Symmetry operations 

Ê Ε 
2C, CM, C4«(*) 
<?42 Ct\z) 

2C2 C2(xy), C2{xy) 
2CV C2(*), C2(y). 

The group having these eight symmetry operations is called Z)4-group. 
It is evident that the Z)4-group is a subgroup of the O-group. There are 
five classes in the Z)4-group. Therefore, (1.71) in the present case can 
be written as 

l 2 + l 2 + l 2 + l 2 + 2 2 = 8, (1.83) 

T A B L E 1.4 
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which indicates that we have four one-dimensional and one two-dimen­
sional irreducible representations in the Z)4-group. The character table 
of this group has been obtained as shown in Table 1.5. 

T A B L E 1.5 

CHARACTER TABLE OF THE Z) 4 -GROUP 

Bases 

<Pu 

Ψζ 

Ψν 

ψζ 
(ψχ y Ψν) 
(ψξ > Ψν) 

Irred. 
repres. 

A, 
A2 

B1 

B2 

2C* 

1 

1 

— 1 

— 1 

0 

2C2 

1 

— 1 

— 1 

1 

2 6 V 

1 

— 1 

1 

— 1 

0 

Using Table 1.3 and Table 1.5, we obtain 

DŒ) = Dux) + 

D(T2) = D(B2) + D(E)9 

(1.84) 

from a relation similar to (1.79). Therefore, by symmetry arguments 
only, one can predict that the ^-level splits into two nondegenerate 
levels, and the t2gAevel into a nondegenerate level and doubly degenerate 
levels. This situation is visualized in Fig. 1.8. The reason why suffix g 
is attached to the irreducible representations of the Z)4-group as well as 
for those for the O-group will be explained in the next subsection. 

Problem 1.7. Let the distances between the hydrogen atom and point-
charges 1, 2, and 3 in Fig. 1.1 be β, and those between the hydrogen atom 
and point-charges 4, 5, and 6 be b (α Φ b). Examine the splittings of the 
e0 and t2g levels in this system. Ο 

b . 9 

aie 

b, 
FIG. 1.8. Splitting of the <i-level in a field of 

£f Z>4A symmetry. 

'2q 
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1.2.5 INVERSION SYMMETRY 

So far, for simplicity, we have confined ourselves to simple rotations. 
However, as mentioned in Section 1.2.1, the system illustrated in Fig. 1.1 
is invariant under the other kinds of symmetry operations involving 
inversion / with respect to the center of the system. Inversion / may be 
represented as 

so that clearly 
Ρ - Ε. (1.86) 

Thus, two symmetry operations / and Ε form a group called Q-group. 
It can further be shown that / commutes with all the operations of the 
O-group. For example, from (1.36) and (1.85) 

(1.87a) 

and 

„ , , /l 2 3 4 5 6\/l 2 3 4 5 6\ 
lc*W-[4 5 6 1 2 3Λ2 4 3 5 1 6) 

= /l 2 3 4 5 6\ 
\5 1 6 2 4 3/ 

C ^ 7 = ( 5 Î 6 2 4 % ( L 8 7 b > 

which show 
IClz) = C^z)!. (1.88) 

In general, if two groups G± and G 2 have no common element besides 
the identity element and any element gu of Gx commutes with any 
element g2j of G 2 , all the products gug2j can be shown to form a group. 
This group G is called the direct product of groups G x and G 2 , and is 
expressed as 

G == Gx Χ G 2 . (1.89) 

Problem 1.8. Prove that all the products gng2j form a group. <0> 

For the direct product one can show that, if glu a n d ^ are the elements 
of the same class in G1 connected by the transformation 

glu = gliglvgu* (1.90) 

and g2li> and g2v' are the elements of the same class in G 2 related as 

£ V =g2jg*'gv> (1.91) 
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J W W a n < i givgzv' are the elements of the same class in G because of the 
relation 

(gligii) glvg2viglig2Ù~1 = gl»g2»' - (1.92) 

Therefore, the number of classes in G is the product m1m2 of the number 
of classes in G x , m1, and that in G2, m2 . 

The matrix whose elements are given by 

D%&gug«) = D%\gu) X (1-93) 

is obviously a representation of G and has dimension q = q1 χ q2 if 
the dimensions of Z) ( / C l ) and Dik2) are ^ and q2, respectively. And 
J D ^ ^ ^ a n d Dik*}(g2j) are the matrix elements of the kx and &2 irreducible 
representations of Gx and G2, respectively. Furthermore, D{k^ is 
irreducible, as the number of inequivalent irreducible representations 
of G exceeds the number of classes in G, m1m2, if D(klk2) is reducible. 

Now, returning to our problem, since the O- and C^-groups have no 
common element besides Ε and any element of the O-group commutes 
with that of the C^-group, we can make a direct product, 

Oh = Ο χ Q . (1.94) 

Then, the O^-group involves forty-eight elements and ten classes. By 
using the character table for the C^-group which is easily obtained as 
shown in Table 1.6, the character table of the O^-group is obtained as 
shown in Table 1.7. 

In Table 1.6, the base of the irreducible representation g belongs to 
even parity, or the parity of this base is even, and the parity of the u base 
is odd. The parity of the bases of Alg , A2g , Eg , Tlg , and T2g is even and 
that of Alu , A2u , Eu , Tlu , and T2u is odd. The parity of the rf-wave-
function is clearly even. Therefore, the bases (cpu , φυ) and (φξ, φν , φζ) 
are the bases of the Eg and T2g irreducible representations of the Oh-
group. This is the reason why we have used notation eg and t2g for the 
split components of the rf-level. The p wavefunctions belong to the odd 
parity, so that (φχ , ψυ , φΖ) are the bases of Tlu in the O^-group. The 

T A B L E 1.6 

CHARACTER TABLE OF THE CVGROUP 

Irred. repres. Ê / 

ê 1 1 
u 1 —1 
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T A B L E 1.7 

CHARACTER TABLE OF THE C V G R O U P 0 

Irred. repres. Ê 6C4 3(?4

2 8C3 6C2 

/ \ / \ / S / \ 
/ 6/C4 3/C4 2 8/C3 6/C 2 

Alg 

A 2a 
E, Τ Γ 
Tu 

T2g 

A\u 

A2u 

Eu 
Τ —Τ 

TM 

T2u 

a Here Τ is the character table given in Table 1.3, and — Τ means that all the signs 
in Table 1.3 should be inverted. 

system illustrated in Fig. 1.7 is also invariant under the inversion, and 
we can make a direct product, 

D é h =Déx Q . (1.95) 

We have attached suffix g to the irreducible representations of the Z)4-
group in illustrating Fig. 1.8, as their parity is even. 

One of the important results obtained in this section is that the wave-
functions of the eg and t2g states are the bases of the irreducible represen­
tations Eg and T2g of the O^-group, respectively. This conclusion has 
been obtained without using any approximation. However, the result 
obtained in Section 1.1, that these wavefunctions are constructed from 
only the ^/-functions, is based on an approximate treatment, i.e., the 
perturbation method. Therefore, it may be mentioned that the eg and 
t2g wavefunctions could be some admixture of various atomic functions, 
for example, those with / = 2, 4, 6, etc., as long as they are the bases of 
the irreducible representations Eg and T2g . In what follows we will use 
the notations of the wavefunctions eg and t2g merely to indicate that they 
are the bases of the irreducible representations. 

In this section we have not explained all the topics of the group 
theory that is necessary for later discussions. For example, we have not 
mentioned double groups, Kronecker products, reflection symmetry, 
and so on. These topics will be discussed in the following chapters as 
they become necessary. 



Chapter II T W O ELECTRONS 

IN A CUBIC FIELD 

2.1 Formulation of the Two-Electron Problem 

2.1.1 THE HAMILTONIAN A N D SLATER DETERMINANT 

In this chapter we shall be concerned with the problem of obtaining 
the eigenstates and the energy eigenvalues of the two-electron systems, 
in which two electrons are accomodated in the t2g and eg shells in various 
ways. Here the t2g and eg shells mean the aggregates of the degenerate 
one-electron orbitals denoted by t2g and eg , respectively, in the previous 
chapter. There are six and four ways of accommodating an electron in 
the t2g and eg shells, respectively. 

The reason why these two shells are particularly dealt with is that they 
are in many cases the outermost shells in the systems of the iron group 
elements in a cubic field in which we are interested. In these systems the 
inner shells of the iron group ions are completely filled and neighboring 
atoms, ions, or molecules which are called ligands also have closed-shell 
configurations with energies lower than those of the t2g and eg shells. 
We call the electrons in both the inner shells of the central metal ion 
and the closed shells of the ligands simply the inner-shell electrons. In 
the following treatments we assume a picture of the electrons in the t2g 

and eg shells (valence electrons) moving and interacting with each other 
in a field coming from both the inner-shell electrons and the nuclei 
of the metal ion and the ligands. The potential energy of a valence 
electron due to this field is denoted by V(r)> without expressing the 
38 
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detailed form of V(r). One point we know exactly about V(r) is that it 
has cubic symmetry. 

With this picture, the electron Hamiltonian of the system is given by 

Jr=fi+f*+gi2, (2.1) 
where 

U = -iAt+ V(rt) (i = 1,2) (2.2) 

is a one-electron operator acting on electron i, and 

gi2 = Ψ12 (2.3) 

is a two-electron operator representing the Coulomb interaction between 
electrons 1 and 2. In these expressions the atomic units are employed. 
With the Hamiltonian in (2.1) the Schrôdinger equation is given as 

^ ( Γ Λ , R 2 A 2 ) = Κ Ρ ( Ρ Λ , R 2 A 2 ) , (2.4) 

where σί (i = 1, 2) is the spin-coordinate of electron i and takes two 
values \ and —\. In order to solve this Schrodinger equation, we use the 
perturbation method in which g12 is assumed to be a small perturbation 
on the noninteracting electron system. This method is more than a mere 
approximation. It provides us not only with a good insight into the 
essence of the many-electron problem but also with an exact information 
of the solution concerning symmetry properties. In the perturbation 
treatment we split the Hamiltonian as 

Ji? = -f- J4?i, (2·5) 

where 

· * ο = Λ + Λ and jr1=g1*. 
Then, we first solve the equation 

W L ' L >
 r2°2) = W V L > R 2 < * 2 ) . (2.6) 

The solution of (2.6) is easily obtained if the solution of the following 
equation for a single electron is known: 

ίφ^τσ) = e A ( R A ) , ek = < ^ | / 1 φ,}. (2.7) 

Since operator / involves no spin-coordinate, </>k(ro) is given by the 
product of orbital function φ μ ( τ ) and spin function α(σ) or β ( σ ) , and is 
called a spin-orbital. Here φ μ ( τ ) is the eigenfunction of operator / which 
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involves electron space-coordinate only, and spin functions α(σ) and β(σ) 
are defined as follows: 

<*? = Ϊ) = h <4? = - i ) = 0, (2.8a) 

β(σ = i ) = 0, β(σ = - J ) = 1. (2.8b) 

By using the solution of (2.7), the eigenfunction and eigenvalue of (2.6) 
are given as 

? t t M > R 2 < * 2 ) = <f>i(r2°2), (2.9a) 

E0M = e f c + € , . (2.9b) 

According to the Pauli principle, wavefunctions for electrons should 
be antisymmetric with respect to the exchange of electrons. By using the 
mathematical properties of determinants, the antisymmetric wave-
function of (2.9) can be written as 

<f>k(r2a2)<f>l(r2a2) 

= l ^ i I- (2.10) 

This determinant is called Slater determinant. Factor 1/λ/2 is normali­
zation factor. Hereafter, we leave out superscript A of the wavefunction 
for simplicity and often use the abbreviation given in the last expression 
of (2.10). This abbreviation includes the normalization factor. Of course, 
one finds 

\Φώι\ = -\ΦιΦ*\· (2.11) 

2.1.2 TERMS 

Let us first consider the states obtained by accommodating two electrons 
in the t2g shell. It has already been known that the orbital-functions 
associated with this shell are ^ ( r ) , ^ ( r ) , and φ ζ(ι·), which will simply be 
written as £(r), ^(r), and ζ(ι·), respectively. Since two spin-functions 
α(σ) and β(σ) are available, we have six spin-orbitals available in this 
shell; £(r) α(σ), £(r) β(σ)> v(r) α(σ),... . Therefore, there are six ways of 
placing the first electron in the shell. However, according to Pauli 
principle, the second electron cannot be placed in the spin-orbital where 
the first one is already accommodated, so that the number of ways of 
accommodating two electrons is given by 6 C 2 = 6Î/4Î2! = 15. Abbre­
viating spin-orbitals, for example, ξα and ξβ as ξ and f, respectively, 
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the Slater determinants corresponding to these fifteen states are given as 

I ft I, \ξη\, h C I . 1 ^ 1 , I « I. I δ I, (2.12a) 

l £ H i f H l ^ î l , K f l , ! Κ I, (2.12b) 

I f f I, I w l , (2.12c) 

These states are visualized in Fig. 2.1. 

•C 

(a) 

FIG. 2.1. Visualized Slater determinants. I £171 I ζ η I 
(b) 

— Ι — * - E 

ζ 
IF FL­

IC) 

Since the ξ, η , and ζ orbitals are degenerate, one has 

< f l / l i > = < i j | / h > = < i l / l i > . (2.13) 

By using (2.13) one can show that, as long as the Coulomb interaction 
between the two electrons is neglected, the fifteen states in (2.12a, b, c) 
have the same energy. Therefore, in this case we have one energy level 
with fifteenfold degeneracy. In what follows, this high degeneracy will 
be shown to be partially removed by the effect of the Coulomb inter­
action. 

According to the perturbation theory, the perturbed energy levels and 
the wavefunctions associated with them are obtained by diagonalizing 
the 1 5 x 1 5 matrix of Jfi whose base functions are those Slater deter­
minants given in (2.12). This procedure is quite similar to that used in 
Section 1.1 for calculating the splitting of the rf-level and the wave-
functions, and it is greatly simplified with the aid of the group theory as 
discussed in Section 1.2. 

Let us first note that the total Hamiltonian Jf^ + is invariant under 
the transformation by R of the O^-group. According to the group theory, 
the eigenfunctions associated with a certain energy level of this system 
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are the bases of an irreducible representation, say Γ, of the O^-group, 
and the energy level may be labeled as Γ. The nondiagonal matrix 
elements of the Hamiltonian between the states with different R " s are 
all vanishing. Therefore, if we find the linear combinations of the Slater 
determinants given in (2.12) which are the bases of irreducible represen­
tations, the matrix with these bases would already be partially diagonal. 
The remaining task is to diagonalize the matrix of a smaller dimension 
which is given between the states with the same Γ. 

So far we have considered the orbital part only. Now we will consider 
the spin part. Since the Hamiltonian involves no spin operator, it com­
mutes with S, consequently S2, where S is the resultant spin angular 
momentum S = s x + s 2 . This means that S2 is a constant of motion 
and has a definite value S(S + 1) in the eigenstate. 

As a whole the energy levels are characterized by ST and have 
(2S + 1) X (-T)-fold degeneracy. Here, (Γ) represents the dimension 
of irreducible representation Γ. Degeneracy (2S + 1 ) occurs because 
the eigenvalues Ms of Sz in the state with S2 = S(S + 1 ) are S, S — 1,..., 
— 5 + 1 , —S and the energy eigenvalues are independent of these values 
of Ms . The energy levels characterized by ST are called terms and are 
denoted by 2 5 + 1 Γ. The (2S + 1)(Γ) wavefunctions of the 2 s + l r term are 
expressed as Ψ(οί8ΓΜγ), in which M is the abbreviation of Ms , γ denotes 
one of the bases of irreducible representation Γ, for example γ = η, 
and ζ for Γ = T2g , and α is some quantum number which distinguishes 
the states with the same ST. 

Once one finds a suitable linear combination of Slater determinants 
to express Ψ(α8ΓΜγ), the matrix of JTX calculated with these wave-
functions is partially diagonalized: All the matrix elements between 
the states with different ST are zero. Therefore, in the next section we 
will discuss the method of constructing Ψ(α8ΓΜγ) from Slater deter­
minants, which satisfies the following requirements: First, for an 
arbitrary operation R of the O^-group, it must be transformed in the same 
way as the bases of irreducible representation Dir): 

RW(aSrMy) = £ W(ocSrMy) DKV(R). (2.14) 

Second, it must satisfy the equations 

SW(ocSrMY) = S(S + 1) W(*SrMy), (2.15) 

SzW(aSrMy) = MW(ocSrMy). (2.16) 

Finally, it must be antisymmetric with respect to electron exchanges. 
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2.2 Two-Electron Wavefunctions 

As preliminaries for constructing Ψ(α8ΓΜγ) from Slater determinants, 
the first few subsections will be devoted to deriving the bases of an 
irreducible representation by linear combinations of the products of 
orbital functions, and also to obtaining the eigenfunction of S2 and Sz 

by linear combinations of the products of spin functions. 

2.2.1 PRODUCT REPRESENTATIONS 

Let φ(ΓΊ>Ί) a n d φ^ζΎζ) be the bases of irreducible representations Γχ 

and Γ2, respectively. By operation R of a group, they are transformed to 

(2.17) 

V2 

Then, how are the (Γ χ) χ (Γ 2) products of ^ ( / W ) and φ(Γ2γ2) trans­
formed by operation R ? In this case variables in Φ(-ΓΙ>Ί) and φ(Γ2γ2) may 
be different from each other, but operation R is applied to both variables 
at the same time. From (2.17) it is clear that 

tf[?(Ayi>(Ay2')] = W W ) W W ) 
= Σ ? ( Γ ι 7 ^ Α 7 2 ) ^ (2.18a) 

VlV 2 

For simplicity, we will use the following abbreviations: 

Φ(") = <p(An)<KAy2)> (2.19a) 

D„iR) = ^ . ( Λ ) , (2.19b) 

where ν represents various combinations of γχ and y2 . By using (2.19), 
(2.18a) is simplified to 

W)=ZW0A,'(*), (2.18b) 
V 

which indicates that DVV(R) are matrix elements of a representation of 
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the group. Actually, for the elements satisfying QR = T, one can show 
that 

= Diri\(QR) D(r*\(QR) 
v l v l v 2 y 2 V / C 7 

= Ζ> (Γι),(Γ) D{r*\(T) 
Y^l V t v 2 v 2

 v 7 

= DW-(T). (2.20) 

This representation is called the product representation or Kronecker pro­
duct of Γχ and Γ 2 and is often expressed simply as Γλ Χ Γ2 . The dimen­
sion of this representation is given by (Γ^) χ (i^). It is important to 
note that, in general, the product representation is reducible. This may 
be seen in the following example: Let both Γ± and Γ2 be Tlu of the 
( \ -group and their bases be (x1, yx, ζτ) and (x2, y2, z2)> respectively. 
One may think that these bases are the coordinates of electrons 1 and 2. 
From nine bases of the product representation, xxx2, x x y 2 z 1 z 2 , one 
can make a linear combination, 

( 1 / V 3 ) ( ^ 2 +y^2 + *i* 2) = ( l / V 3 X r ! · r 2). 

Since this is a scalar, it is not changed by any operation of the O^-group. 
Therefore, this linear combination is the base of the Alg representation. 
One can also make linear combinations, (llV2)(y1z2 — zxy2), 
( 1 / A / 2 ) ( ^ 2 — χλζ2), ( 1 / V 2 ) ( ^ i j 2 — yix2)' Since these are the compo­
nents of vector (1/Λ/2)(Γ1 X r2), they are obviously the bases of 
the Tlg representation. The remaining linear combinations, 

[(1/V2)( y i z 2 + ziy2), (1/V2)(*i*a + * Λ ) , (1/V2X*i j a + » ) ] 

and 
[ (1 /V6 ) (3^ 2 - r! · r 2), (llV2)(xlX2-y1y2)] 

may be seen as the bases of T2g and Eg , respectively, by comparing them 
with the t2g and eg wavefunctions given in (1.31) and (1.32). Of course, 
one may confirm this by applying the symmetry operations of the 
O^-group and calculating the characters. After all, we have seen that 
the product representation Tlu X Tlu can be reduced to four irreducible 
representations: Alg , Eg , Tlg , and T2g . 

The reduction prodcedure of product representation Tlu X Tlu 

file:///-group
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may be summarized as follows: We apply unitary transformation U to 
nine bases φ{ν)'$ of the product representation, and obtain 

Φ{Γγ) = Σ 000 υ„.Γν 
(2.21) 

which are classified into the sets of the bases of irreducible representations 
Γ(Γ = Alg , Eg , Tlg , T2g). When φ{Γγ)^ are used as the new bases of 
the product representation, the matrix of the product representation 
is given by 

U ^ D ^ U = 

DUl'\R) 0 0 0 

0 D(E«\R) 0 0 

0 0 D(T»\R) 0 

ο ! 0 0 D(T*>\R). 

(2.22) 

where four matrices of the irreducible representations are located on the 
diagonal. In our example, the unitary transformation was found 
intuitively. 

For merely finding which irreducible representations are obtained 
by reducing a product representation, it is unnecessary to know the 
unitary transformation: Instead, we use the relation for characters, 

X(R) = Σ DJR) = Σ D!£{R) DW(R) 

(2.23) 

In our example of Tlu X Tlu , the characters for the product represen­
tation are given from Table 1.7 as shown in the tabulation. By using 

î 6 / C 4 3 / C 4 2 8 / C 3 6 / C 2 

Ê 6 C \ 3 C V 86% 6C% 

X(R) 9 1 1 0 1 

(1.79) in which xil)(R) are replaced by these %(i?), one can show that 
irreducible representations Alg , Eg , Tlg , and T2g appear when 
Tlu X Tlu is reduced. This reduction is simply expressed as 

Tlu χ Tlu = Alg + Eg + Tlg + T2g. (2.24) 
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Table 2.1 shows how all the product representations of the O-group are 
reduced. For the O^-group, suffices g and u should be attached to the 
irreducible representations in Table 2.1 according to the rules 

g Xg = g> g x u = uy u x u = g. (2.25) 

TABLE 2.1 
Γ1 Χ Γ2 = ΣΓι FOR THE O-GROUP 

Αχ Α2 Ε Τι τ2 

Λ Αχ Α2 Ε Ά τ2 

A, Λ Ε τ2 
τ, 

Ε Ai + Α + Ε Ά + Τ 2 Tt + Τ 2 

ΤΙ Λ + Ε+ Γ , + Τ 2 
Α2 + Ε+ Τ Χ + Ά 

τ2 Λ + Ε + Γ , + τ% 

Problem 2.1. Derive Table 2.1. Ο 

2.2.2 CLEBSCH-GORDAN COEFFICIENTS 

To obtain the wavefunctions and the energy matrix in the two-
electron system, we have to find the unitary transformation in (2.21). 
Matrix elements Uvry

ys are usually denoted by 

Uv,rv = <ΓιΎιΓ2γ21 Γγ\ (2.26) 

and are called Clebsch-Gordan coefficients. Since U is unitary, 
Clebsch-Gordan (C-G) coefficients must satisfy the following relations: 

( t / - 1 ) ^ , = <ΓΓ I RLYLR2Y2y 

= <ΓιγιΓ2γ21 / » * , (2.27) 

Σ <ΓΎ I ΓΙΓΙΓ2Γ2ΧΓΙΓΙΓ2Υ2 I Γ'Γ'> = δ(ΓΓ') Δ(ΓΓ'), (2.28) 
ΝΧΝ2 

Σ <ΓΙΓΙΓ2Γ2 \ ΓΓΧΓΓ | ΓΙΓΙΤ2Γ2'> = 8(YLYL') 8(Γ2Γ2'). (2.29) 
ΓΝ 

In the example of Tlu X Tlu a unitary transformation was introduced 
in order to satisfy (2.22), which in terms of C-G coefficients is expressed 
for Γχ χ Γ2 as 

Σ <rr I AyiAy2> D™.(R) ^ (^,(^)<γ ι 7 ιτ 2 7 2 ' | R Y > = D$(R) 8(ΓΓ). 

(2.30) 
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u 
£><*>(C4(*)) = 

V 

1 VT 
2 2 

V3 1 
2 2 

(2.33b) 

For R = C 4(#), (2.31) shows that nonvanishing C-G coefficients are 
only (EuEu J Eu}, (EvEv \ Ev}, (JEuEv \ Ev), and (EvEu \ Ev}: for 
instance, for R = C 4(#), γχ = γ2 = u, and y' — ν, (2.31) gives 

(EuEu I Εν} = -{EuEu \ Εν). (2.34) 

For R = C4(#) and γ1 = γ2 = y' = by using the result just 
mentioned, (2.31) is written as 

(- 5) I + ( - ^y) <EVEV I Eu) 

= <EuEu\Eu}(-±), (2.35) 

Furthermore, by using (2.29), (2.30) can be reexpressed as 

Σ ( * ) < i W < A n T 2 y 2 ' Ι jy> = χ <r i y ir 2y 21 ry> ζ>#(Λ) . (2.31) 
y\'y2 ν 

This equation may be compared with (2.21) which in terms of C-G 
coefficients is given as 

Σ <Ρ(Α7ι) φ(Γ2γ2)<ΓιγιΓ2γ21 / » = # J » . (2.32) 

Since matrix elements of the irreducible representations appearing in 
(2.31) are known from symmetry arguments, coupled equations (2.31) 
with various operations R determine C-G coefficients. In this case it is 
sufficient to set the equations for only generating elements. The reason 
is explained in Problem 2.2. 

Problem 2.2. Show that, if (2.31) is satisfied for R1 and R2, it is also 
satisfied for R = RXR2. <> 

As an example of calculating C-G coefficients from (2.31) let us 
consider the case of J \ = Γ2 = Γ = Ε of the O-group. We use 
generating elements C4(#) and C4(#) whose representation matrices 
D(E) are 

», r1 Λ-. 
(2.33a) 
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^Γ,Γ,Γ) = - 1 for T t = and Γ = ^ 2 > 

Λ = Γ ι and Γ = 7 \ , and 

A = Γ 2 
and Γ = Γ ι , 

< W ) = Ι otherwise. 

When Γχ Φ Γ2 y we use the phase conventions 

OW^yi I rr> = <AriAy21 *V>, (2.42) 

so that only half the C-G coefficients for Γχ Φ Γ2 are listed in the 
appendix. For the O^-group it is sufficient to attach suffices g and u to Γ 
according to the rules given in (2.25). By using these C-G coefficients the 
base functions of irreducible representations can be constructed from 

from which the following relation is obtained: 

{EuEu I Eu) = -{EvEv | Eu). (2.36) 

For R = C4(#), yx = u, and y 2 = γ = ν, (2.31) is 

(- \)(\) {EuEv I Ev) + (- ^)(- ^ ) {EvEu F 

= {EuEv I ( i ) , (2.37) 

from which 

{EuEv I Ev) = {EvEu \ Ev). (2.38) 

Furthermore, for R = C4(#), y x = y 2 = and y' = z>, (2.31) gives 

{EuEv I £z;> + {EvEu \ Ev) = -2{EuEu \ Eu). (2.39) 

Results in (2.36), (2.38), and (2.39) are summarized as follows: 

-{EuEu I Eu) = {EvEv \ Eu) 
= {EuEv I Ev) = {EvEu \ Ev). (2.40) 

From (2.40) and the requirements for a unitary matrix, C-G coefficients 
are obtained as shown in Appendix II, where all the C-G coefficients for 
the O-group are listed. In the Appendix the bases of 7\ are denoted 
by a , j8, and y. As seen in this appendix, when Γχ — Γ2^ we have the 
relations 

< Γ ι 7 ι Γ ι 7 2 1 7 » = ^Γ,Γ,ΓΚΓ,γ,Γ,γ, 1 1 » , ( 2 . 4 1 ) 

where 
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linear combinations of the products of two base functions of irreducible 
representations as shown in (2.32). 

In concluding this subsection, it is worth pointing out that sometimes 
one may calculate C - G coefficients in a simple fashion without using 
(2.31). The previously mentioned arguments on reducing Tlu X Tlu is 
one of the cases. One of the other cases is seen in the derivation (see 
Problem 2.3) of C - G coefficients for Tx X T2 from those for Tt X Tx 

by using the fact that the bases of T2 are given by the products of the 
bases of A2 and Tx as e2oc, β2β, and e2y. 

Problem 2.3. Derive C - G coefficients for Tx X T2 and T2 X T2 from 
those for Tx X Tx . Ο 

Problem 2.4. Using (2.31) calculate C - G coefficients for A2 χ Ε 
and Ε Χ Tx . Ο 

2.2.3 W I G N E R C O E F F I C I E N T S 

In this subsection, we simply give the well-known formula for con­
structing the eigenfunctions of S2 and Sz in terms of the products of two 
spin functions ^{s^m^ and 6{s2m2). Here, S = s1 + s2 and 9(s1m1) and 
0(s2m2) are the eigenfunctions of s^, s^ , and s2

2, s2z , respectively. 
The eigenfunctions @(SM) of S2 with S = ί χ + s2, s x + *2 ~ !> · · ·> 

I si — s 2 I y a n d Sz with its eigenvalue M are given in terms of the pro­
duct of two spin functions as follows: 

@(SM) = X flfowi) e{s2m2){s1m1s2m2 \ SM}, (2.43) 

in which coefficients of the linear combination, (s1m1s2m2 \ SM}, are 
called Wigner coefficients* The transformation given in (2.43) is unitary 
so that Wigner coefficients satisfy the following relations: 

(SM I s^s^y = (s^s^ I SM}*, (2.44) 

Σ (SM I Î ^ V ^ X ^ I V ^ I S'M'y = 8(SS') δ ( Μ Μ ' ) , (2.45) 

£ (s1tn1s2m21 SM}(SM | ^w/^m^) ^ δ^ ί /^ ' ) 8(m2m2). (2.46) 

Wigner coefficients are nonvanishing only when M = mx-\- m2 and 
I ^i — *2 I ^ $ < ^ + s2 are satisfied. A general formula for calculating 

* Sometimes these coefficients are also called Clebsch-Gordan coefficients or vector-
coupling coefficients. 
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Wigner coefficients with arbitrary values of parameters involved is 
given in Appendix III. Further, simplified formulas for calculating the 
Wigner coefficients with s2 = ^, 1, f, 2 are also given in Appendix III. 
From the general formula, we see the relation 

(sjn^ni! I SM} = (-ly^-^s^s^ \ SM}. (2.47) 

In the present two-electron problem, $x = s2 = \ and the @(SM)'s 
are given as 

0(S=lf M=l) = 0 ^ ) α (σ 2 ) , 

0 ( 5 = 1 , M=0) = [ α(σ0 β(σ2) + β(σ1) α(σ2)], (2.48a) 

Θ{3=\ίΜ=~1)=β(σ1)β(σ2)7 

0(S=O, M=0) = [α(σ0 β(σ2) - β(σ1) α (σ 2 )], (2.48b) 

where α(σ) = θ{\ \) and β(σ) = θ{\ — \) according to the definition in 
(2.8). 

2.2.4 W A V E F U N C T I O N S 

Now we are in a position to construct the two-electron wavefunctions 
by using the results obtained in the previous subsections. There are two 
methods of constructing many-electron wavefunctions. One of them is 
to start from the products of one-electron spin-orbitals and make their 
linear combination to be the base of irreducible representation Γ and the 
eigenfunction of S2 and Sz. However, since the linear combination is 
not always antisymmetric with respect to the electron exchange, we make 
it antisymmetric afterward in order to obtain the two-electron wave-
function. This method will be used in the next chapter to obtain many-
electron wavefunctions. Another method is to start from Slater deter­
minants which are already antisymmetric. Since they are neither bases 
of irreducible representations nor the eigenfunctions of S2, we have to 
find a suitable linear combination of Slater determinants to make it 
satisfy requirements of (2.14), (2.15), and (2.16). We use this method 
in this subsection. 

In order to use the latter method, it is necessary to know how Slater 
determinants behave when the rotation and spin operators are operated 
on them. Let us denote one-electron spin-orbital φ(ί2γ) 0(^m) in the 
t2g shell as φ{ί2τηγ). For simplicity, hereafter subscript g of t2g and eg 
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will be left out when no confusion occurs. By using properties of deter­
minants, it is easy to show that, if we have 

Rj,(t2mY') = Yj<f>(t2mY)D™(R), (2.49) 

we obtain 

Κ\Φ(**»ιΥι)Φν*η#2')\ = Σ I <^(^iri) ^ ( ^ 2 y 2 ) L ^ v

( ^ ( ^ ) ^ ^ ( ^ ) , (2.50) 

and also that, if we have 

s<£(i2m'y) = ΣΦΨζηιγ)<™\ s I m'>, 
m 

we obtain 

^\Φ{^ιΎι)Φ^2Ύυ\ 

= s 1 | ^ ( i 2 w 1 V 1 ) ^ ( i 2 w 2 V 2 ) L + s 2 | ^ ( i 2 m 1 V 1 ) ^ ( i 2 w 2 V 2 ) L 

(2.51) 

1 
V2 

J _ 

V2 

+ 
1 

V2 

S ^ ^ M / V I I L ) S ^ I 2 M 2 ' V 2 ( L ) 

^< 2M 1 'V 1(2) Φί2τη2\(2) 

S ^ I 2 M I ' V L ( L ) <£I 2 M 2 'Y 2 (L) 

S^I 2M 1

,V 1(2) <£F2M2'Y2(2) 

= Σ I Φ{^ΐΎΐ)Φ{^2Ύ2)\<^ΐ\ s I * < > 

+ Σ I Φ(ί2^ΐΎΐ)Φ(^2Ύ2)\<^2\ S I ™ 2 ' > 

^ ^ M / V ^ L ) ^ < 2 W 2 V 2 ( L ) 

^ Ί , Η Ι / Ν ! ^ ) ^t2m2'y2{2) 

Φ^τηχνβ) S ^ < 2 M 2 ' V 2 ( L ) 

<^*2M1V1(2) *l>t2m2'V2(Z) 

(2.52) 

Equations (2.50) and (2.52) show that Slater determinant |^(^ 2^ι7ι) 
<£(£2m2y2)| behaves just like the simple product of one-electron spin-orbitals 
^(*2miyi) Φ^27η2Ύ2) when the rotation and spin operators are operated. 
This fact leads us to the conclusion that the linear combination of Slater 
determinants, 

Σ I Φ^ιΥι) fl*«*«Y.)L<M4*21 SM><r 2 r ir 2y 21 7 » , (2.53) 

is base y of irreducible representation Γ of the O^-group and at the same 
time the eigenfunction of S2 and Sz with eigenvalues S(S + 1 ) and M, 
respectively. 

So far we have used a similarity between the Slater determinant and 
the simple product of one-electron spin-orbitals. However, there are two 
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important differences between them. The first difference is that because 
of the property in (2.11) the linear combination of Slater determinants 
as (2.53) vanishes identically for certain sets of ST while the corre­
sponding linear combination of the simple product of one-electron 
spin-orbitals is always nonvanishing. The possible sets of ST in our 
problem of two t2 electrons are all the possible combinations of S = 0, 1, 
and Γ = A1, Ey 7 \ , T2 . For example, when S = 0 and Γ = Tx , 
(2.53) with y = γ is 

' Μ ^ ) + ' Μ - ^ ) + ' ^ ) ( - 7 Ϊ ) 
+ i ' f l ( - ^ ) ( - 7 2 ) = 0 - <2·54> 

This result can be shown to be independent of y. In this way, among 
eight possible sets of ST, the wavefunctions of SA1, 3£, 1T1, and *T2 can 
be shown to be identically zero. Therefore, only four terms 1A1, 1E, 
3 7 1

1 , and 1T2 are allowed. The number of states in the allowed terms is 
1 + 2 + 9 + 3 — 15, which agrees with the number of possible states 
predicted by using Pauli principle, 6 C 2 = 1 5 . 

The second difference between the linear combination of Slater 
determinants and that of simple products of one-electron spin-orbitals 
is that the former linear combination is not normalized, in general, even 
for the allowed terms while the latter is always normalized. This difference 
also comes from the property of Slater determinants given in (2.11). For 
example, for XAX (2.53) is given as 

+ * ' ( - ^ ) + i « i t ^ S ) + ' « ' ( - ^ 
(9\ l /2 
5) + + (2-55) 

which is not normalized. 
Now it is clear that two-electron wavefunctions associated with terms 

zs+ip a r e obtained by normalizing (2.53). In the present problem they 
are denoted by Ψ(ί2

2 Sr My), and are listed in Table 2.2. 

Problem 2.5. Derive W(t2

2 3 Τ Χ MOL) from (2.53), and confirm the foot­
notes of Table 2.2. Ο 
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TABLE 2.2" 

WAVEFUNCTIONS W(t2

2STMy) 

W(t2

2 XAX) = [1 i i \ + + 1 £ ? | ] / V 3 

W(t2

2 *Eu) = [ - I T F Ι - Ι * Η + 2 | £ £ | ] / \ / Δ 

WW xEv) = [1 ti\ - \ηη \]IV2 

W(t2

2ST1M=l γ) = I {η\ 

W(t2

2 3T1M=0y)b = 1\{η\~\ηΙ ai VI 

W(t2

2zT1M=-l y ) b = 1 iv\ 
χτ2ζ) = + \ viQI VI 

a The unlisted components of the wavefunctions are obtained 
from the listed one by an appropriate cyclic permutation of 
η, and ζ. 

*Here, W(t2

2 3 7 \ M=0 γ) and W(t2

2 3 T X M=—1 γ) may be 
derived from W(t2

2 ZT± M= 1 γ) by successive operations of *S_ 
on W(t2

2*T1M=l γ). 

Similarly W(e2ST Μγ) can be obtained as shown in Table 2.3. In this 
case allowed terms are 1A1, SA2, and XE. The number of states in these 
terms is 1 + 3 + 2 = 6 which agrees with 4 C 2 = 6. 

TABLE 2 .3 
WAVEFUNCTIONS W(e2STMy) 

W(e2 M O = [\uû\ + \vv \]IV2 

W(e2*A2M=\) = 1 uv 1 

W(e23A2M=0) = \\uv\-\vû WIV1 

W(e2*A2M=-l) = 1 ûv 1 

W(e2 lE u) = [-\uû \ + | w | ] / V 2 

W(e21Ev) = [\uv\ + \ vû | ] /V2 

Finally, let us consider the wavefunctions of the t2e configuration. 
In this case all the Slater determinants appearing in (2.53) are linearly 
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independent, so that all the terms are allowed and (2.53) is normalized. 
Thus, wavefunctions W(t2eS My) are given as 

W(t2eSrMy) = £ \φ(ί2Μ1γ1)φ(βτη2γ2)\ (\mx\m2 \ SMy(T2YlEy2 | Ty>. (2.56) 
m1m2 

VlV 2 

The terms are given by all the possible combinations of S = 0, 1 and 
Γ = 7 \ , T2 : They are 3 7 \ , ZT2, 1 T 1 , and 1T2 . The number of states 
in these terms is 9 + 9 + 3 + 3 = 24 which agrees with 6 X 4 = 24. 
Wavefunctions W{t2eSr My) calculated from (2.56) are given in 
Table 2.4. 

Problem 2.6. Derive W{t2e λΤι(χ) and W(t2e χΤ2ξ) from (2.56) and 
confirm the footnote of Table 2.4. ζ} 

TABLE 2.4° 
WAVEFUNCTIONS W(t2eSrMy) 

W{t2e*TxM=\ γ) = \b>\ 

Ψ^β^Μ^Ογ) = [I ζϋ \ + \ζν ai VI 

*F(tte*T1M=-l γ) = I ζϋ\ 

W(t2e*T2M= \ £) = I ζη\ 

Ψ(ΐ2β*Τ2Μ=0ζ) = [I £* I + I lu | ] /V2 

Ψ(ί2β*Τ2Μ=-1 ζ) = I & | 

Ψ(ΐ2β^Τιγ) = [I & \ - \ l v I1/V2 

Ψ{ί2β^Τ2ζ) = [\iû \ - \ l u ai vi 

a The unlisted components of the wavefunctions are 
obtained from the listed ones by appropriate cyclic 
changes of (£, η, ζ), (ux , uy , u2), and (υχ , vy , a z). Here, 
vx = —( V3/2)w — \vy vy = ( V3/2)M — ^v, v z = ν as 
shown in (1.33) by using notations vx , νυ , vz for <p<*\ <p&\ 
Ψ [ Ζ \ and ux = —\u + (V3/2)U, % = — — (V3/2)U, 
and « z = u. 

2.3 Term Energies 

In the previous section we derived the wavefunctions of the t2

2, e2, 
and t2e electron configuration. At the same time we learned what kinds 
of terms appear in these electron configurations. In the case of the t2

2 

file:///-/lv
file:///-/lu
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configuration, a single unperturbed level with fifteen-fold degeneracy 
splits into four terms by the Coulomb interaction. They are non-
degenerate 1A1, doubly degenerate 1E, triply degenerate 1 T 2 , and 3 7 \ 
with 9-fold degeneracy including the spin-degeneracy. Since all these 
terms are labeled with different sets of ST, the matrix of is completely 
diagonalized when it is calculated by the use of the wavefunctions 
obtained in the previous section. This makes the calculiation of term 
energies very simple. 

2.3.1 M A T R I X E L E M E N T S B E T W E E N S L A T E R D E T E R M I N A N T S 

In order to calculate the matrix of Jf^ by using the two-electron 
wavefunctions, we derive a formula to calculate the following integral: 

Σ \ d r i dT2 I Φ(\™ιΎι) <^ 2m 2y 2)| * g12 \ ^ (A/^ 'y / ) φ(λ2'τη2'γ2')\. (2.57) 
σ 1 σ 2 

Here, the λ/s represent t2 and/or e. Expanding the first Slater deter­
minant in (2.57) into two terms and exchangeing electron numbers in 
the second term, we obtain 

(2.57) = V2 Σ j άτχ Α ^ ^ σ Ο ^ ρ , σ , ) 

X g ^ 2 
v ( r l Q l ) & i ' m , v ( r l a l ) 

Φλ^ΎΑ**0*) ' v a ' ( r 2 Σ 2 ) 
(2.58) 

where factor V'2 comes from the normalization factor 1/Λ/2 of the 
Slater determinant multiplied by 2. Expanding again the Slater deter­
minant in (2.58), we obtain 

(2.57) = <X1mJy1, A2m2y2 | g | A/m^y/, A2'm2'y2'> 

— <λι^ιΎι y A2w2y2 I g I λ2πι2γ2\ A/w/y/) , (2.59) 
where 

<KmiYi y A2w2y2 I g I A/m/y/, A2'm2'y2'> 

= Σ \ dτldτ2Φλ1m1γJ<r1σ{)φt2m2γJ<r202)g12 

σ1σ2 
(2.60) 

Since g12 is independent of spin coordinates, (2.60) is expressed in terms of 
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orbital functions φ λ γ ( Γ ) i n place of spin-orbitalscf>A m y(ra) == φ λ ν ( Γ ) ^xm(o): 

<V*i7i > A2w2y2 I r - 1 | A/^Vi', A2'm2V2'> 
= h(minh!) Κ^^)<λιΎιλ2Ύ2 I *ϊ£ I V/ i 'Vy^X (2·61) 

where 

<λιΎιΚΎ2 I rïz I V y i ' V t t ' ) = J ^ T i rfT29p*1yl(ri) 9 V 2 ( r

2 ) 

= < λ ι7ι Λ 272 I I Vyi'Vy2'>- (2.62) 

For simplicity we shall often use the abbreviation in the last expression 
of (2.62). In particular, 

ΚΚΎ1ΚΎ2) = <λ\Ύιλ2Ύ21 I VAy2> (2.63) 

is called the Coulomb integral, and 

κ{ΚΎιλ2Ύ2) s < λ ι / Λ 7 2 I I Λ 2 7 2 λ ι 7 ι > (2.64) 

is called the exchange integral. It can be shown that 

/(W2y2) > *(W 2y 2) > 0. (2.65) 

From (2.59) one may obtain the following formula for a special case of 
(2.57): 

Σ / d T l d T 2 Ι ^ ( λ ΐ ^ ΐ 7 ΐ ) ^ ( Λ 2 ^ 2 7 2 ) Ι * ^ 1 2 \Φ(\^ϊ/ΐ)Φ(^2Ύ2)\ 
σ 1 σ 2 

= / ( λ ι 7 ι λ 2 7 2 ) - Kmim2) Κ{λιγιλ2γ2). (2.66) 

2.3.2 T H E t2

2 E L E C T R O N C O N F I G U R A T I O N 

By using the formulas obtained in the previous subsection, let us 
calculate the energies of the terms of the t2

2 electron configuration. We 
make the full use of the wavefunctions listed in Table 2.2. 

For 1A1, one obtains 

< ^ Μ χ ι ι * 2

2 i a > = * Σ Σ I d r i d r 2 ι F F R & 2 1 (ξ ι 

+ * Σ Σ / ^ Τ Ι ^ τ 2 1 # Ι*ΙΊ· I Ί £ I. (2-67) 
(ξνζ) oxa2 
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(2.70) 

which may be derived from the symmetry properties of the orbital 
functions, (2.67) is finally given as 

<ti 1Α11 I t? XAX} = ](ζζ) + 2Κ(ξη). (2.71) 

For 1 £ one may obtain the term energy by calculating the matrix 
of 3CX in the 1Eu state as follows: 

<ί2* i£« Ι * x 1 1 * *EU) = mm + Km) + m o 

+ 2Κ(ξη) - 4Κ(ζξ) - 4Κ(νζ)] 

= Μζ) - Κ(ξη). (2.72) 

The same result is also obtained by calculating the matrix element in 
the 1Ev state. 

Problem 2.7. Confirm that (t* xEu | ^ | t2

2 λΕυ} = 0. Ο 

For 3 7 \ , the simplest way of obtaining the term energy is to calculate 
the matrix element of Jf̂  in the *TXM — l γ state. However, for exer­
cise, we calculate it here in the 3 7 \ M = 0 γ state as follows: 

<ί 2

2 3 7 \ M=0 γ\ Jg[ I t* 3 T X M=0 y> 

= *[Σ / Α , ι * Γ £ ΐ ^ Ι * Λ 2 ΐ ^ Ι + Σ / ^ Τ 2 | ^ | * £ 1 2 | ^ | 

σχσ2

 σΐσ2 

- Σ \*τχάτΛ\ξη\*Βη\ηξ\- Σ jàTldra\vl\*gla\Î7J\] 
σ 1 σ 2 σ 1 σ 2 

= «/(£·») + MV) - Κ(ξη) - Κ(ξη)] 

= Κξη)-Κ((η). (2.73) 

where Σί^ί) means the summation over the terms obtained by cyclic 
permutations of ^, and ζ. Since f, η, and ζ are real functions, relations 
such as 

< « I I w> = *(£?), etc. (2.68) 

hold. Therefore, (2.67) can be rewritten as 

(2.67) = i Σ / ( # ) + f Σ (2.69) 

Furthermore by using relations, 

Km = άψι) = / « Ο , 
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Comparing the wavefunction of 1Τ2ζ with that of 3 7 \ Μ = Ογ, we see 
that the term energy of the 1T2 term is obtained by changing the sign 
of Κ(ξη) in (2.73): 

< * 2

2 I Λΐ I ti *Τ2ζ) = J(iv) + Κ{ξη). (2.74) 

In this way the term energies in t2

2 are given in terms of three integrals 
Κίζ)> Kè7})* a n < i Κ(ξη), which are mutually independent, i.e., none of 
them can be expressed in terms of the others. In order to predict the term 
locations it is necessary to know the values of these three integrals. 
However, by using qualitative arguments, one may predict the order of 
some terms as follows. Since Κ(ξη) > 0, the energy of the 1A1 term, 
EÇAJ, is higher than that of I E , EfE): EfAJ > E^E). Similarly 
E(*T2) > E^T,). By using the relation, /(££) = ]{ξζ) = J{m) > ]{ξη\ 
one may predict that Ε(λΕ) > Ε{^Ττ) and EÇA^ > Ε{λΤ2). However, it 
is impossible to predict the order of 1E and 1T2 with qualitative argu­
ments. After all the order of the terms is predicted as E^Aj) > E^E)y 

E(}T2) > E(zTj). Later, it will be shown that, if the t2g functions are 
d-îunctions, the 1E and 1T2 terms are accidentally degenerate. Such a 
situation is visualized in Fig. 2.2. 

; ^ 

/ , 1 FIG. 2.2. Energy levels arising from the t2

2 

t ? / fy ^ * ̂ 2 electron configuration. 
'/ 

N 3T, 

It is worth noting that in the present problem the 3 7 \ term having the 
highest spin multiplicity is lowest in energy. This is in accordance with 
the Hund rule for free atoms and ions. This rule is based on the fact 
that the electrons with parallel spins are prevented from approaching 
each other because of the Pauli principle, resulting in the reduction of 
the repulsive Coulomb energy. This situation is also found in our 
problem as seen from the fact that 

3 7 \ M = l y) = ( 1 / V Î M r O V(r2) - , ( Γ ι ) f(r 2)] « ( a j α(σ 2) 

vanishes when r x = r 2 . 

Problem 2.8. Prove that ]{ξξ) = ]{ψ])> J(iv).<> 
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' A , 

2.3.4 T H E t2e E L E C T R O N C O N F I G U R A T I O N 

By using the wavefunctions listed in Table 2.4, we obtain 

(t2e 3 7 \ M=0 γ\*ί\ t2e »7\ M=0 y> = /(£*) - Κ(ζυ), (2.81) 
<V iTlY I I t2e = Mv) + Κ(ζν), (2.82) 
(t2e *T2 M=0 ζ\*ί\ t2e ΆΤ2 M=0 ζ} = /(Ce) - Κ(ξ»), (2.83) 
(t2e *Τ2ζ I *ί I t2e χΤ2ζ) = /(£«) + *(£«). (2.84) 

2.3.3 T H E e2 E L E C T R O N C O N F I G U R A T I O N 

By using the wavefunctions listed in Table 2.3, we obtain 

Ο 2 ^ I ^ I e2 ι ^ > = M / M + + K(uv)9 (2.75) 
<e2 M 2 M=0 \3tfx\e2 *A2 M-=0) == /(no) - ^(iw), (2.76) 
<e2 *Eu \^\e2 ^Eu) = i[/(m<) + / M ] - tf(iw). (2.77) 

On the other hand, one has 

(e2 *Ev \^\e2 !Ev} = J(uv) + i ^ ) , (2.78) 

which has to be equal to (2.77). Therefore, the following relation should 
hold: 

è [ / M + / M l = / M + (2.79) 

By using (2.79), (2.75) can be reexpressed as 

O2 iA± \^\e2 Mj) = J(uv) + 3K(uv). (2.80) 

Problem 2.9. Show that /(ww) = / ( w ) . Ο 

Thus, the term energies for the e2 configuration are given in terms of 
two integrals, J(uv) and K(uv), which are mutually independent. It is 
clear that E^AJ > EQ-E) > E(3A2) and all the term separations are 
given by 2K{uv). This situation is visualized in Fig. 2.3. Again the term 
with the highest spin multiplicity is lowest in energy. 

/ ' A i 

FIG. 2.3. Energy levels arising from the e2 electron / / 

configuration. e 2 j / 
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Thus, these term energies are given in terms of four integrals, 
]{ζν), Κ(ζιι), and Κ(ζν) which are mutually independent. It is imme­
diately seen that E^TJ > £ ( 3 7 \ ) and E^TJ > £ ( 3 T 2 ) . However, it is 
hard to predict, for example, the order of 3 T2 and 3 7 \ without knowing 
the magnitudes of the integrals. The order of the terms illustrated in 
Fig. 2.4 is determined by assuming that the t2 and e wavefunctions are 
the rf-functions as discussed later. 

I ' τ , 

// 'Τζ 

t2e j/ FIG. 2.4. Energy levels arising from the t2e electron 
\ \ 3 t configuration. 

2.3.5 C O N F I G U R A T I O N M I X I N G 

So far we have calculated term energies within a single electron con­
figuration: t2

2, e2, or t2e. The states of t2

2, e2, and t2e have, respectively, 
energies of 2<ζ \f | 0 , 2<v1/1 »>, and <£ | / 1 Ο + <» 1 / 1 *> in addition 
to the Coulomb interaction energies, and, as long as (v \f \ ν} — <ζ \f \ ζ> 
is much larger than the Coulomb interaction energies, it is a good 
approximation to calculate term energies within a single electron con­
figuration. Here, (v \f \ ν} — <ζ \f \ ζ> corresponds to lODq in (1.26). 
However, if (v \ f\ Vs) — <ζ | / | ζ) is not so large, we can no longer 
neglect the nondiagonal matrix elements of Jf^ between the same ST 
states of different electron configurations. For example, there are two 
3 T j states arising from t2

2 and t2e, and these states are admixed due to the 
Coulomb interaction resulting in shifts of their energies. 

Let us first calculate the nondiagonal element of for 3ΤΧ . It is 
given as 

<t2

2 3 T 1 M=0 γ I ^ I t2e*TiM=0Yy = <fij | | ζν> - ζξη \ \ νζ> 

= 2<ξη I I ζν\ (2.85) 
in which the relation 

<ξη \\ζυ> = -(ξη I I υζ> (2.86) 

is used. Relation (2.86) can be proved as follows: Since the Coulomb 
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interaction operator l / r 1 2 is invariant to any rotation of the O^-group, 
one obtains 

<ξη \\ζν>= < C 4 ( S ) | C 4 ( * > , I I C 4 ( S ) £ C , (* )F>> 

= <-v( 1 1 -ζ - vy 

= I I νζ>. (2.87) 

There are two 1 7 ' 2 states arising from t2

2 and t2e. The nondiagonal 
element for 1!T 2 is calculated as 

<ί22 ΐΓ2ζ I ^ I t2e χΤ2ζ) = <ίη | | £u> + <£, | | «D 
= 2<£? I I i«>, (2.88) 

in which we have used the relation 

<ξη I I ill) = <ξη I I « £ > . (2.89) 

Relation (2.89) can be proved in just the same way as (2.86) was proved. 

Problem 2.10. Derive (ξη \\ ζν} = Λ / 3 <ξη \\ ζί*}. Ο 
For 1A1 there are two states arising from t2

2 and e2. The nondiagonal 
element is given as 

(t2
 I Λ* I e2 M x > = Σ I I W M > 

V 6 (ξηζ) 
(uv) 

= 7 7 7 Σ * W (2-90a) 
(uv) 

Among the six terms in (2.90a), only Κ(ζη) and Κ(ζν) may be taken to 
be independent: 

Κ(ξη) = Κ{ηη) = i ^ ( { u ) + \Κ{ζν), 

Κ(ξν) = Κ{ψ>) = ΙΚ(ζη) + ( 2 ' 9 1 ) 

Then, (2.90a) is reexpressed as 

<ί 2

2 *AX I I e2 *A> = (3/2)ν2[^(ζΜ) + ( 2 . 9 0 b ) 

Finally for *E, one obtains 

<i 2

2
 I 3iex I e 2 1 £ « > = -(3/2)!/2[i<:(ÇM) - (2.92) 

Problem 2.11. Derive (2.91). Note that Κ(ξιιχ) = £Γ(φΐ„) = Κ(ζη). Ο 
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Now we have obtained all the necessary nondiagonal matrix elements 
of Jf̂  . Term energies of 3 7 \ , 1T2, 1A1, and 1E are obtained by diago-
nalizing the two-dimensional matrix of Jif0 + . For instance, term 
energies of two 3 7 \ states are calculated by solving the secular equation, 

h* I 2<X\ f I £ > + Mv) - Κ(ξη) - Ε 2<ξν | | ζν> 
2{ξη I I ζν} <ζ + <v \f\v} + Mv) - Κ(ζν) - Ε 

l 2 0. 
(2.93) 

(2.94) 

The eigenfunctions are given as 

Ψ(α 3 T 1 M = 0 y) = cos ΘΨ(ΐ2* ^ M=0 γ) - sin ΘΨ(ί2β *TX M = 0 y), 

Ψφ *ΤΧ M=0 γ) = sin θΨ(ΐ2* 3 7 \ M=0 γ) + cos ΘΨ{ΐ2β *TX Μ=0 y), 

where β is determined by 

T Î M ™ =

 4 < £ ? 1 I fo) 

10% + /(£«) - *(£») - Mv) + Κ(ξη) ' 
and 

10Z>̂  = L / L U> — < £ L / L Ο- (2.96) 

In this section we have shown that term energies of the system having 
two electrons in the t2g and eg shells are given in terms of ten two-
electron integrals / (&) , J(Çq), Κ(ξη); J(uv), K(uv); /(£«), Κ(ζιή; /(£*), 
Κ(ζν)\ (ξη II ζζ/>, in addition to lODq representing the splitting of one-
electron levels, t2g and eg . In many cases it is very difficult to know the 
accurate wavefunctions of t2g and eg and consequently to evaluate these 
integrals. Therefore, these integrals are left as parameters to be deter­
mined by experiments. However, in doing so, we immediately meet a 
difficulty: The number of parameters is too big to be determined from 
the limited experimental information. In the next subsection a reasonable 
approximation will be made to reduce the number of these parameters. 

Problem 2.12. Calculate the term energies and the wevefunctions for 
1T2 by taking into account the configuration mixing, ζ} 

2.3.6 S L A T E R I N T E G R A L S 

One of the ways of reducing the number of two-electron integrals 
introduced in the previous subsections is to assume a simple angular 
dependence for the t2g and eg wavefunctions. If rf-electrons in crystals 
are relatively localized around the iron-group metal ions and deformation 
of atomic rf-orbitals is not drastic, it is reasonable to assume as the first 
approximation that the t2g and eg wavefunctions have pure J-character 
and are given in the forms of (1.31) and (1.32). However, this approxi-
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mation does not necessarily mean that radial part R3d(r) in (1.31) and 
(1.32) is that of a free atom or ion. In this sense, we will write Rd(r) 
for R3d(r). This point will be discussed in more detail in the chapters 
on optical spectra and molecular orbitals. In this subsection we will use 
this approximation to show how ten parameters are expressed in terms 
of fewer parameters. 

Since the t2g and eg wavefunctions are now assumed to be linear com­
bination of <pdm(r) = Rd{r) Υ2ΐη(θφ) (m = 2, 1, 0, — 1, - 2 , ) , the two 
electron integrals derived in the previous subsection are given in terms 
of those involving <pdm(r). For example, one has 

Μζ) = <κ 1 1 « > 

= j drx dr2 [ Φ * ( Γ Ι ) - Φ Ϊ _ 2 ( Γ ι ) ] ( ^ ) fo&(ra) - 9>L 2 (r 2 )] 

= i[<22 I I 22> + < - 2 - 2 I I - 2 - 2> + <2 - 2 I I 2 - 2> 

+ < - 2 2 I I - 2 2 > + <2 - 2 I I - 2 2 > + < - 2 2 | | 2 - 2>], (2.97) 
where 

<™ι™2 I I « > = f Λ"ι άτ2 φ ^ ι ) <PamJir*) 9 W ( r i ) ^ M 2 ' ( r 2 ) . (2.98) 
J r12 

In deriving (2.97) we have used the fact that (2.98) is nonvanishing only 
when m1 + m2 = m{ + rn2'. Expanding l / r 1 2 in terms of Legendre 
polynomials and using (1.5) and (1.8), we obtain 

7 " = E ^ Z ( - ^ < f c W i ) ^ ( ^ 2 ) , (2.99) 

where r< is the lesser and r > is the greater of rx and r 2 . By using (2.99) 
and (1.15), (2.98) can be expressed as 

(mxm2 I I m^m2y == £ ( — 1 ) ^ ( 2 ^ , 2m{) c\2m2 , 2m2) 
kq 

Χ δ(# + ηιλ\ mi) δ ( — ? + ^2'» rn2)Fk(dd) 

= + m 2 , < + m 2 ' ) ( - l ) m i - m i / Σ ck{2m1, 2m/) 
X c f c(2m 2, 2m2') Fk(dd)9 (2.100) 

where 

F\dd) = Γ r2 dH Γ r2 dr2 Rd\rx) Rd\r2) r (2.101) 
J ο ·Ό 
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<22 I I 22> = < - 2 - 2 I I - 2 - 2> = <2 - 2 I 12 - 2> = < -22 | | -22> 

49 ^ 4 4 1 
= i r o + 4 F 2 + 1 n ( 2 > 1 0 2 ) 

<2 - 2 I I -22> = < -22 | | 2 - 2> = ~ F \ (2.103) 

where the Fk's are the abbreviation of the Fk(dd)'s. To simplify the 
results, t h e m ' s are often used in place of t h e m ' s : 

F0=F°, F*=^F\ ^ 4 = ^ * · (2.104) 

Integrals Fk or Fk are called the Slater integrals or Slater-Condon param­
eters. Now ]{ζζ) is given in terms of the Slater integrals as 

MQ=F0+4Ft + 36Fé. (2.105) 

It is also convenient to use the following parameters introduced by 
Racah: 

A=F0-49F^ B=F2-5F^ C == 35F 4 , (2.106) 

which are called the Racah parameters. In terms of the Racah parameters, 

]{ζζ)=Α+4Β + 30. (2.107) 

Similarly all the ten two-electron integrals can be expressed by using 
the three Racah parameters as shown in Table 2.5. 

T A B L E 2 .5 

TEN TWO-ELECTRON INTEGRALS IN TERMS OF THE RACAH PARAMETERS 

MO = A + 4B + 3C Kuv) = A — 4B + C 

KM = A — IB + C K(uv) = 4B + C 
Κ(ξη) = 3B + C 

Mu) = A — 4B + C j m = A + 4B + C 
Κ{ζη) = 4B + C Κ(ζν) - C 

<iv I 1 ί«> = VÏB 

By using the table of ck(lm, I'm') in Table 1.2, <m1m21| m^m^y appearing 
in (2.97) are given as 
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Problem 2.13. By assuming (ζ \f \ ζ) = ζν \f \ and t2g and eg with 
rf-character, diagonalize two-dimensional energy matrices for 3 T X , 
1 Γ 2 , M x , and 1E9 and show that the terms in each of the following sets 
are degenerate: 

Set I: a3Tlf t2e*T2f e2 *A2. 
Set II: axEy αχΤ2. 
Set III: axAly b X T 2 , *2e ̂ , b XE. 

Here, £ ( i 2 5 > + 1 Γ) > E(a 23+1Γ). Ο 



Chapter III MANY ELECTRONS 

IN A CUBIC FIELD 

3.1 Many-Electron Wavefunctions 

3.1.1 W A V E F U N C T I O N S OF T H E i 2

3 C O N F I G U R A T I O N S 

The method of obtaining the wavefunctions of the t2

s electron con­
figuration we are describing here is easily extended to the general cases of 
/z-electrons (n > 3) in a shell. Later we will show that, once the wave-
functions of the t2

n and em configurations are known, those of the t2

nem 

configurations are easily obtained. 
We start from a system of one t2 electron added to the system of the 

t2

2 configuration. Here, t2 means that it has the same symmetry as that 
of t2 , but it is different from the t2 orbital: One may imagine the case 
in which t2 is the split component of the atomic 3rf-orbital and t2 that 
of the 5^-orbital both of which belong to irreducible representation T2g 

of the O^-group. To obtain the wavefunctions of this system, one may 
use a method similar to that employed in obtaining the wavefunctions 
of the t2e configuration. Since there are four terms, 1A1, 1E, 1 T 2 , and 
3 7 \ of t2

2, we obtain fifteen terms by adding t2 to t2

2 as shown in Table 3.1. 
In order to obtain the wavefunctions of these terms, let us first study 

the function, 

^ 2 W o ) h'Sr) = Σ η^Γ,Μ,γ,)φ{ί2'ηι,γζ) 

X <S 0M 0|™ 31 SMXroYoT2Y31 JV>, (3.1) 
66 
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T A B L E 3.1 

THE ALLOWED TERMS OF t2

2(Sor0)t2Sr 

3οΓο sr 

2T2 

2τλ, 2T2 

*τ2 

2 A , 2E, 2TX, 
2A2, 2E, 2 7 \ , , 2 Τ 2 

*ΑΛ, 4 £ , 4 7 \ , , 4 Τ 2 

where Ψ(ί2

2Ξ0Γ0Μ0γ0) is the wavefunction of t2

2 involving electrons 1 
and 2, and </>(t2'm3ys) the spin-orbital of the added t2 electron, electron 3. 
The function given by (3.1) is base γ of irreducible representation Γ of 
the O^-group and also the eigenfunction of S2 and Sz with eigenvalues 
S(S + 1 ) and M, respectively. Here, S = S0 + s 3 (s3 = ^) . However, 
this function is not antisymmetric with respect to the exchange of 
electrons 1 and 3, and electrons 2 and 3, although it is antisymmetric 
to the exchange of electrons 1 and 2. Therefore, the next task to do 
is to make function (3.1) totally antisymmetric without destroying its 
two characters: (1) It is the base γ of irreducible representation Γ; 
(2) It is the eigenfunction of S2 and Sz. 

In terms of Slater determinants, (3.1) can be expressed as 

ψ' = Σ C * i * A I < M * 2 LD.2> χ ΦΦ), (3-2) 

where ^ represents sets of quantum numbers ( £ 2 f r a ^ ) for / = 1,2, kz 

represents {t2m3y3). Subscript (1, 2) of the Slater determinant indicates 
that it involves electron coordinates r 1 a 1 and r 2 a 2 . The Ck k k ' s are the 
numerical coefficients determined from (3.1). For making (3.2) totally 
antisymmetric, it is sufficient to make the following linear combination: 

—7T Σ CkLk2k3[\ Φ^2 1(1,2) X ^fc3(3) — I Φ^2 1(1.3) 
&1&2^3 

χ < M 2 ) + I < M * 2 1 < 2 , 3 > X & » ( ! ) ] , (3-3) 

which, according to the property of determinants, can be reexpressed as 

V(t2*(S0r0)t2'SrMY)= X C W 3 | ^ ^ J . (3.4) 
k-yk^k^ 

This function clearly keeps the two characteristics which function Ψ' 
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had, and in addition to this it is totally antisymmetric. Factor 1/V3 
in (3.3) was introduced to let (3.4) be normalized. Therefore, 

W e ) h'SrMy) 

is the wavefunction of the t2H2 electron configuration. 
Now, in order to pbtain the wavefunctions of the t2

3 configuration, 
we replace t2' in (3.4) by t2 . Then, the Slater determinants appearing in 
(3.4) are no longer mutually independent, and (3.4) vanishes identically 
for some particular sets of ST in Table 3.1 as was seen in the case of t2

2. 
In other words, terms with these sets of ST are not allowed. In the 
allowed cases, however, wavefunctions (3.4) with a given ST become 
essentially identical to each other even if they are constructed from 
different sets of Soro . Therefore, the number of the allowed terms of 
t2

3 is greatly reduced from fifteen in Table 3.1. Nonvanishing functions 
obtained by the replacement t2 —• t2 are usually not normalized, so that 
we have to normalize them to obtain wavefunctions W(t2

3SrMy). 
As a nonvanishing case of (3.4), let us calculate Ψ(ΐ2

3 *A2 M = f ), 
which can be constructed from Soro = 3 7 \ as seen in Table 3.1. From 
Table 2.2 we know that 

ν ( ί 2 » 8 Γ ι Μ = 1 α ) = \ηζ\9 (3.5a) 

Ψ(ί2

23ΤλΜ=\β) = \ζξ\, (3.5b) 

W{tf*TxM=\y) = \ξη\. (3.5c) 

By using the C-G coefficients for ^Τ1γ1Τ2γ2 \ A2e2} in Appendix II 
and the Wigner coefficients < 1 M 0 ^ 3 | §§> = δ(Μ 01) 8(m3%)> (3.2) is 
given as 

Ψ' (t^TJ t2' *A2 M = | ) = - ^ [| νζ | ( 1 , 2 ) X f (3) a(3) 

+ \ζξ\(ι.2) X V(3)«(3) 
+ L ^ L ( i . 2 ) ΧΓ(3)α(3)]. (3.6) 

Antisymmetrizing (3.6), we obtain 

Ψ t2' *A2 M = 5 ) = —~[\ ηζξ I + I ζξη' I + I ξηζ' I ] , (3.7) 

which corresponds to (3.4). By performing the replacement, ξ' —> ξ> 
η' -+η, ζ' ζ, and noting that | ξηζ | = | ζξη \ = | ηζξ |, the nor­
malized wavefunction is obtained as 

^ 2

3 4 Λ Μ = 3 / 2 ) = -\ίηζ\. (3.8) 
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As a vanishing case of (3.4), Ψ{ί2 *E M—\u) is calculated from 
Soro — 3 7 \ as follows: (3.2) in this case is 

^'(*2 2 ( 3 7\) t2' *EM=^u) 

= ~ ^ \ηζ 1(1,2) X f (3) *(3) + ^ I ζξ | ( 1 > 2 ) X V(3) «(3), (3.9) 

so that (3.4) is proportional to | ηζξ' \ — | ζξη' | which is vanishing by 
the replacement, ξ —> ξ, η' -> ^. Thus, the 42? term of t2

z is not allowed 
to appear. 

As an example of obtaining the nonvanishing identical wavefunctions 
from different sets of Soro , let us calculate W(t2

32E M=\u) from 
Soro = *Τλ and XT2 . For Soro = 3 7 \ , (3.2) is given as 

Ψ' fem t2' 2E M=l- u) = - ^ = [ - 1 ηζ | ( 1 > 2 ) Χ ξ(3) A(3) 

- I ̂  ld.2) X f (3) «(3) + I ft | ( 1 , 2 ) X V(3) «(3) 

+ I £ l l ( i , 2 ) x V ( 3 M 3 ) ] + ^ [ - h £ ld.2) 

Χ ί #(3)fl3) + I | ( 1 . 2 ) X V(3) )8(3)]f (3.10) 

so that the normalized wavefunction of t2

z is 

V (*2

3 2 £ M=- u) = - i= [| ξηζ I - I | ] . (3.11) 

On the other hand, for Soro = XT2 , (3.2) is given as 

Ψ' ( t i m t2' *E M=\ u) = ^ [2| £j | ( 1 , 2 ) Χ Γ(3) «(3) 

+ 2| I J É | ( 1, 2) Χ ζ'(3) Α(3) - I # | ( 1 , 2 ) Χ ,'(3) «(3) 

- I (ζ ld .2) X V(3) «(3) - I ηζ | ( 1 . 2 ) Χ ξ'(3) «(3) 

- l ^ l d . 2 ) Χ Γ(3)«(3)]. (3.12) 

From (3.12) it is clear that the normalized wavefunction thus obtained 
is identical to (3.11). 

In this way nonvanishing wavefunctions are obtained only for terms 
M 2 , *E, 2 7 \ , and 2 T 2 . The wavefunctions for 2E, 2 7 \ , or 2 Γ 2 constructed 
from various sets of Soro are identical to each other. Thus, we know 
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that among fifteen terms of t2H2 only four terms are allowed for the £ 2

3 

electron configuration. The number of states with M = \ in these 
allowed terms is 1 + 2 + 3 + 3 = 9 which agrees with the number of 
independent Slater determinants with M = | as follows: 

ι h i ι» \ m \ > \ H \ > i f w i . ι. 

H I U I I F F I, ICRRÔL-

All the wavefunctions of t2

3 are given in Table 3.2. 

TABLE 3.2 

W(t\gSrMy) 

sr M y 

3 

2 
* 2 - 1 fi£ 1 

2E 1 

2 
w ^ [ I f i C I - l f*£L] 

- 4 P I f ç £ | - 1 f?£L - I &£ 0 
v 6 

2 T i 

1 

2 
α 

y 

•^2 TL 1 - 1 « £ H 

^ 2 [1 ijtf 1 - 1 i f* 11 

^ [I £ Ί Ί 1 - 1 £TFJ 1] 

1 2 
1 

2 f ^ j - [I f-râ 1 + I i f f I] 

^ 2 [1 vlt\ + 1] 

^ [1 « I 1 + 1 Ivv I] 

The method described in this subsection can easily be extended and 
applied to obtaining the wavefunctions of t2

n (n > 3) and em (m > 2). 
However, we will show in the next chapter that the allowed terms of 
t\~n are just those of t2

n, and that the allowed terms of e*-m are just 
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those of em. Furthermore, there is a simple correlation between the 
wavefunctions for the terms of t\~n and t2

n and also between those for 
the terms of e*~m and em. Therefore, it is unnecessary to calculate the 
wavefunctions of i 2

4 , £2

5, and e3 by using the method described here. 

Problem 3.1. Derive wavefunctions for 2 7 1

1 and 2 T 2 of t2

z and confirm 
that the wavefunctions for 2 7 \ or 2 T2 derived from different sets of Ξ0Γ0 

are identical to each other. Ο 

3.1.2 W A V E F U N C T I O N S OF t2

nem 

In order to obtain the wavefunctions of the t2

nem electron configuration 
we use the wavefunctions of t2

n and those of em, which are assumed to be 
known already. 

As a simple example, let us consider the case of t2

2e. Since the allowed 
terms of t2

2 are 1A1, 1Ey

 1T2 , and 3 7 \ , the allowed terms of t2

2e are 
those ten listed in Table 3.3. The wavefunctions are obtained from (3.4) 

T A B L E 3.3 

THE ALLOWED TERMS OF t2

2(S0ro)eSr 

^0^0 sr 

2AX , 2A2, 2E 
I T 

1 2 
2 T X , 2T2 

3 T i 
2TX , 2 T 2 , 4Τχ , 4 T 2 

in which t2 is replaced by e, and k3 by the sets of quantum numbers 
(em3y3). 

Several examples will be shown below. Ψ(ί2

2(*Τ^) e *T2 M=\ζ) is 
obtained as follows: since one has 

*T2 M=\ C) = - I (η Ι(ι,2) X *(3) «(3), (3.14) 

Eq. (3.4) gives 
W{t2

2{*Tx)e *T2 M = f ζ) = - I ξην |. (3.15) 

As an example of obtaining the wavefunctions with the same set of ST 
but with different sets of Soro , let us construct 

W{t^Ax)e 2E M=\ u) and W{t2

2^E)e 2E M=\ u). 
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Since one has 

Ψ' [t^AJe 2EM=-u) 

= ^ [I fè L(i,2) + I Ψϊ LD,2) + I i l L(i,2)] «(3) *(3), (3.16) 

Eq. (3.4) gives 

Ψ (t2^i)e 2E MJ- U) = - L [| ξξη | + | ̂ u | + | Ζ Ζ „ | ] . ( 3 . 1 7 ) 

Similarly, since one has 

Ψ' (t£ÇE)e 2EM=^uj 

= - 2 ^ 3 P l ^ l ( l ' 2 ) ~ ' ̂  l ( l * 2 ) ~ ' ™ l ( 1 ' 2 ) ] W ( 3 ) a ( 3 ) 

+ \[\ ξξ L(i,2) - I m L(i,2)] K3) «(3), (3.18) 

Eq. (3.4) gives 

Ψ (t2?E)e 2E M=X- U) = I J - ~= [2 | ζζη \ - \ ξξη \ - | ^« |] 

+ | ^ | - | ^ | J . (3.19) 

Contrary to the case of t2

3, the wavefunctions (3.17) and (3.19) are 
entirely different. All the wavefunctions of t2

2e thus calculated are listed 
in Table 3.4. 

Problem 3.2. Construct the wavefunctions of the t2e2 electron con­
figuration. Ο 

Now we will construct the wavefunctions of t2

2e2. Since the allowed 
terms are , xEy

 λΤ2, and *TX for t2

2 and *AX, YE, 3A2 for e2

y eighteen 
terms are expected for t2

2e2 as shown in Table 3.5. By denoting the wave-
functions of t2

2 and e2 by W^S^M^znà Ψ(β282Γ2Μ2γ2\ respectively, 
the wavefunction of the £ 2

2 ( * $ Ί Α ) e\^2r2) STMy state is obtained by 
antisymmetrizing 

¥"(' · W i ) e2(S*r2) SrMy) = £ W A Y 2 ) 
M X M 2 

Χ <5 X M 1 5 2 M 2 1 5 Μ > < Γ ι 7 ι Γ 2 7 2 1 Γγ}. 
(3.20) 
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1 j-L [2 I £f« I - I Îfti I - I rjrju |] + | {ξν | - | ηήν | J 

2 A 2 *E l- e2 i j - L [ 2 | { f c | - | f i u | - | ^ f , | ] - | f 6 i | + |^ii|J 

2E ^! l- u [| ξ lu I + ! ηήη I + I £ & |] 

v 3 

2 £ Ή ^ « ^ j - ^ | [ 2 | £ C W | - | ^ | - | ^ w | ] + | ^ I - | ^ | j 

2 T X IT , 1 α _ _ 1 _ { V 3 [ | ^ M | - |ή{ιι|] + Ι ^ Ι - | ^ | } 

β { V L [ | £fti I - I « « I] - I Civ I + I ffr |} 

y F ^ I ~~ I ^ V Û 

2 7 \ 3 T X ί Α ^ { [ | ήζη I + | 17(11 |] - V 3 [ | ^ | + | ηζυ |] 

+ 2[| ηζυ I — Λ/3 I ηζυ I B 

Ρ {[I Cf* I + I £fr 11 + V3[\ Uv I + I £ & |] 

+ 2[| £ffi | + V3 I | ] } 

y 4 z W 1 ^ 1 + 1 f t * I] + 2 | fijiîi} 

2 T 2 i T , ^ f - 1 - { _ [ | , £ U J _ J ηζΜ |] + V3[| ηζυ I - | tft> |]} 

V - ^ { [ 1 £fr I - I Cfti I] + V3[| £ & , I - I ζίν |]} 

ζ ^ 2 [I f ^ L - I 1 ^ 1 ] 

TABLE 3.4 
ΨΜ(30Γ0)β8Γ Μ γ) 

Sr Soro Μ γ Ψ 
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TABLE 3.4 (continued) 

ST Soro Μ γ Ψ 

1 Ι 2T2 2 F ^ | { - V 3 [ | « { « I + I | ] - [| ήζν 1 + 1 | ] 

+ 2 [ V 3 | ij?A | + | | ] } 

^ 7 = { V 3 [ | &u 1 + 1 & I] — [| ? £ » 1 + 1 I F F | ] 

+ 2 [ - V 3 | « f l | + LIFTIL]} 

- 4 ? [ 1 1 ^ 1 + 1 £ J » 1 - 2 I | ] 

V6 

3 Τ ι 

3 
2 

Α J [ - U T « L + V ^ N I E L ] 

Ι» - ^ [1 ttu 1 + V 3 I ζξν |] 

R LFV«L 

4 Τ 2 

3 
2 Ί Ί [Λ /3 I Î & I I + I Ι?{Ν |] 

| [ - V 3 | I I » L + I £ I R | ] 

ζ — I έψ>\ 

In terms of Slater determinants, (3.20) can be expressed as 

Ψ' = Σ C*i*a*3*4L ^ 1 ^ 2 1(1.2) X I Φ^Φ^ 1(3,4) > (3.21) k^k^k^k^ 
where 

*< = (hmiYi) for ί = 1, 2 
= (eniiYi) for t = 3, 4. 

Therefore, the antisymmetrization is achieved by making the following 
linear combination: 

—7= Σ CkfawSl Φ^Φ^ 1(1,2) X l^*a^*J<3,4) 

— I Φ^2 1(3,2) Χ I Φ^Φ^ 1(1,4) — I Φ^2 1(4,2) X I ^fc3̂ fc4 1(3,1) 

— \Φ^2 1(1,3) Χ \Φ^Φ^ 1(2,4) — l^fc^fca 1(1,4) X \Φ^Φ^ 1(3,2) 

+ I Φ^2 1(3,4) Χ I Φ^Φ^ 1(1,2)]· Ρ·22) 
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T A B L E 3.5 

THE ALLOWED TERMS OF ί 2

2(.δΊΓ 1)β 2(.5 2Γ 2)5 ,Γ 

Sxrx S2r2 ST 

XAX *AX 

XAX 

λΤ2 I T , 

XAX *E 
XE l E

 χΑχ, *At, *E 

*T2 *TX, ^ 
ZTX 8 Γ ι , 3 Τ ζ 

M 2 

I E 3 £ 
3 A 

XTt
 2 3 7 \ 

3 ^ ι χτ2, 3 τ 2 , 5 r 2 

Since (1/λ/6)[···] in (3.22) is Laplace's expansion* of Slater determinant 

* Laplace's expansion of the w-dimensional determinant D in terms of the r-dimensional 
(r < ri) small determinants is given as 

r 

where 

a d j Z ) ( a ν * λ ) = (-1){α+θ+"·+λ)+10ί'+β'+'"+λΊ comp D (Ά β ' \ 
\ot β · · · A / \α'0' •••λ/ 

Here 
a j8 ··· λ < 

WB' · A 7 

is an r-dimensional small determinant constructed by picking up elements at the α-, 
Ath rows (or columns) and the α'-, j8'-,..., A'th columns (or rows) of D. In this 

case the order of a, j8,..., A and also that of α', j8',..., λ' are fixed as found in D. The sum­
mation runs over all possible sets of (α', β',..., λ'), so that the number of terms is given 
by nCr . Complementary minor, 

(OL β ··· λ \ 
comp D ( / n / I, 

is constructed by picking up elements at the remaining rows and columns with the order 
as found in D. 
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I Φυ^ΐϊιΦ^Φΐϋι I m terms of the two-dimensional small determinants, (3.22) 
can be expressed as 

W i ) « W 2 ) SrMy) = C W * I Φ^Φ+Φ+Φ* I, (3.23) 

which is the wavefunction of the i 2

2 (^ iA) * 2 ( 5

2 -Γ 2 ) δΓΜγ state. 

For example ^ ( ^ T ^ i ) e2(xE) 1Eu) is obtained as follows: Since one has 

ΨΧ^Α) e*?E) iEu) = ~=[\ξξ | ( 1 , 2 ) + I ηη | ( L , 2 ) + I ζζ |(l.2)] 

X \-\uu|(3,4) + | ^ | ( 3 , 4 ) ] , (3.24) 
Eq. (3.23) gives 

Ï W A ) e 2 ^ ) i £ « ) = ^ [ - 1 I + I ξξνϋ I 

- I i^tiû I + I ηψν I - I lluû I + I ζζνν |]. (3.25) 

The other xEu state of * 2

2 ( 1 £ l ) e 2 ( 1 E ) i s obtained from 

W'(ttfEV?E) *Eu) = ~ J - ~ [ - I f| | ( 1 > 2 ) - I w | ( l , 2 ) 

+ 2| | ( 1 , 2 ) ] [ - | WW 1(3,4) + I TO |(3,4)] 

+ [I 1(1.2) - I ψ) | ( 1, 2)][| fttf |(3,4) - I ÏÏV I ( 3 , 4 ) ] J (3.26) 

as 

W{t2?E)e2?E) ij&i) = ^ J - - L [Ι ^ Ι _ Ι ̂  I 

+ I 7777WM I — I ηψν I — 2| I + 2| |] 

+ I ξξην \ - I ξξΰν I - I i^iw I + | ηηΰν |J. (3.27) 

As expected (3.27) is entirely different from (3.25) with the same set of 
ΞΓΜγ. 

The method of obtaining the wavefunctions of t2

2e and t2

2e2 described 
here can easily be extended for obtaining those of t2

nem (n < 6, m < 4). 

file:///-/uu
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3.2 Formulas for Calculating Matrix Elements 

3.2 .1 M A T R I X E L E M E N T S OF O N E - E L E C T R O N O P E R A T O R S 

Let us denote operators acting on one electron such as the electric 
dipole moment —eri, the crystalline field potential energy Vc{r^) as fi. 
In the iV-electron system, a one-electron operator is given by 

F=tfi- (3·28) 

In this subsection we will give the formulas to reduce the integral, 

Σ / ^ 1 ΚΦη - Φ*Ν Φη'Φ** - -ν I. ( 3 · 2 9 ) 
Σ 

to one-electron integrals. In ( 3 . 2 9 ) Σ Σ * s t n e summation over the spin-
coordinates of Ν electrons and the integration is carried out with respect 
to the space coordinates of Ν electrons. Inserting ( 3 . 2 8 ) into ( 3 . 29 ) , we 
obtain 

(3.29) = Σ Σ ί <FRL<M*2 -Φ*„I*/* L < M v -Φ*» I 
i=l Σ J 

= JV£ f άτ\ φ ^ - φ , Ν |*/ι I Φ*Φ* -Φ*Ν> Ι- (3.30) 
Σ J 

In deriving the last expression of ( 3 .30 ) , we have used the fact that the 
integral involving fi does not change by renumbering i and 1 as 1 and i> 
respectively, as both the Slater determinants involved merely change 
their signs by this renumbering. 

In ( 3 . 2 9 ) and ( 3 . 3 0 ) spin-orbitals^. a n d ^ . , in the Slater determinants 
are arranged in such a way that, if i/>k and φ%' arc the same, they are 
located at the same positions from the extreme right in the Slater 
determinants. In other words, k{ Φ if i Φ j , kj = k/ for all j > * 
if kt = k/, and kj Φ k/ for ally < i if kt Φ kt'. This arrangement can 
always be achieved by changing the order of columns in the Slater 
determinant. For example, when the matrix element between | ηξζ | 
and I ηζΰ | is calculated, we first change the order of columns to give 
- I Vtt I = I I = I ^ I and ( - 1 ) · | ηζΰ I = = | φ^.φ^φ^ | = 
I urfc I, then calculate ( 3 . 2 9 ) and finally multiply the result by (— l ) 3 . 
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Now to simplify (3.30) further, we expand both the Slater determinants 
as 

\φ^-φ.ν\ = i v - i / 2 f (-i)i+i^a) 
i=l 

0£JV I (2,3,. . . , # ) 

= and A/), (3.31) 

which is nothing but a particular case of Laplace's expansion. In (3.31) 
factor TV - 1 / 2 comes from the normalization factors included in the 
Slater determinants. Inserting (3.31) into (3.30), one obtains 

(3.29) = Σ J ( - 1 ) * + ^ ι/ι v s{j, 

1=1 j=l 

(3.32) 
Si3 = Σ' d T ' \Φ^Φΐο2 "'Φ^Φ^ '"ΦΐοΝ I * 

σ J 

Χ \ΦηίΦκ%' "'Φ^Φ^ '"ΦκΝ' Ι> 

where Σ Σ J άτ' is carried out for electrons, 2, 3,..., Ν. Because of the 
orthogonality relation between Slater determinants, S y is nonvanishing 
and is unity only when the two Slater determinants in the integrand are 
identical. 

Case I kt = A/ for all i. In this case, Si:j is nonvanishing and is 
unity only when i = j \ and from (3.32) one obtains 

Σ ί άτ I φ ^ —4>kN\*F\φ^ -Φ*Ν\=Σ <Φ*< I / 1 Φ*> (3.33) 

Case II kx Φ Αχ', k{ = A/ (i φ I). In this case, is nonvanishing 
and unity only when i = j — 1. Thus, one obtains 

Σ f dr I φ ^ '"φ]οΝ 1 * ^ 1 "'ΦκΝ I = < ^ I / 1 (*i * V)· (3.34) 
Σ J 

CVw* ZZ7 Ax Φ A/, A2 Φ Α2'. In this case, Si:} is always zero, and one 
obtains 

Σ J 

{ΚΦΚ* Κ Φ Κ). (3.35) 
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(3.37) = £ Σ Ί dr I φΗφΗ •·· <j>kN I* g i i I ···φ„Ν. I 
j>i=l σ 

= L ) Σ / D T I Φ * Φ * · · · I * &. IΦ^ΦΙΗ- '"Φ*Ν Ι· (3·38> 

For the derivation of the last expression of ( 3 . 38 ) , we have used the fact 
that the integral involving g^ is invariant to the renumbering of electrons, 
i - > 1, 1 -> i, j 2 , and 2 - > / . Factor N(N — l ) / 2 is the number of 
terms, NC2, in ( 3 . 3 6 ) . 

By using the formula of Laplace's expansion, both the Slater deter­
minants in ( 3 . 3 8 ) are expanded in terms of two-dimensional Slater 
determinants as follows: 

Ι^Λ* -φαΝ I = [N(N - 2)/2]-i/* £ ( - l ) i + i + 3 Χ I ld,2) 

Χ Ι ^ Α ^ Α , " ' Φ α ^ Φ α ^ " ' Φ α ^ Φ ^ + χ ' ' ' Φ<χΝ 1(3.4 Ν) > (3.39) 

where factor [Ν(Ν — 1 ) / 2 ] _ 1 / 2 comes from the normalization factors 
in the Slater determinants. Inserting ( 3 . 3 9 ) into ( 3 . 3 8 ) , one obtains 

(3.37) = F Σ ( -0* + « + r + s [<<M* e ! g I Φκ'Φ*,'> 
q>p=l s>r=l 

- <Φ*,Φ* I g I SM,„ , (3.40) 

3 . 2 . 2 M A T R I X E L E M E N T S OF T W O - E L E C T R O N O P E R A T O R S 

Let us denote operators acting on two electrons, i and j , such as the 
Coulomb interaction 1 jr^ as gi}. In the iV-electron system, a two-electron 
operator is given by 

G= Σ Su- (3·36) 
3>i=l 

In this subsection, we will derive the formulas to reduce the iV-electron 
integral, 

Σ \ ά τ \ φ ^ 2 - φ ^ \ * 0 \ φ ^ φ ^ - φ , Ν > I, (3.37) 

to two-electron integrals. In ( 3 . 3 7 ) spin-orbitals in the Slater determinants 
are arranged in just the same way as that mentioned in the previous 
subsection. Inserting ( 3 . 3 6 ) into ( 3 . 3 7 ) , one obtains 
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where 

SPQ,rs = Σ" dT" I A B I ^ * A " ' ^ - Ι ^ + Ι "^kq__^kq+1 "·φκΝ I * 
Σ J 

Χ \Φΐο1'Φΐο2' "'Φκ^Φκ^ '"Φκ_λΦ^+1 " ' Φ ^ ' Ι· 

In factor Spqrs , Σ Σ J ^ T " * s carried out for electrons, 3, 4,..., iV, and 
5 p g r s i s nonvanishing and is unity only when the two Slater determinants 
in the integrand are identical. 

Case I = A/ for all i. In this case Spq r s is nonzero and unity 
only when p — r and q = s. Therefore, (3.40) gives 

Σ j dr
 I < M * 2 "·Φ*Ν I * G\ φ ^ -φ*Ν I 

= Σ K^^A,, I ^ I <^Λ:^Λ:,> — < ^ ^ A : , I ^ I ^A:^A: F >] - (3.41) 
3>i=l 

Case II kx Φ A/, k€ = A/ (i φ I). In this case, Spqrs is nonzero 
and unity only when p = r = 1 and q = s. Thus, one obtains 

Σ\ d T \ Φ*ιΦ*% '"Φ*Ν I * °\ Φ*{Φ*% ·~Φ*ν I 

= Σ κφ^φ^ Ι g Ι ΦΊ^ΦΗ^> — <φ^φ^ Ι g Ι φ^φ^'}] 
3=2,3,...,Ν 

(k, Φ Α/). (3.42) 

CaselII Αχ Φ A/, k2 Φ Α2', kt = A/ (i Φ 1, 2). In this c a s e , ^ ^ 
is nonzero and unity only when p = r = 1 and q = s = 2, and one 
obtains 

Σ J I φι^φ^φκ^ — </»fcN I * G| φ^'φ^'φ^ -'-φι^Ι 
Σ 

= <<^A 21 £ I Φ ^ Φ ^ > — < Φ ^ 2 1 £ I Φ ^ Φ ^ > ih Φ Κ, k2 φ k2'). 
(3.43) 

/ Γ Ax ^ V> * 2 ^ k 2 > h Φ h'- In t n i s c a s e > *Spfl,re i s always 
zero, leading to 

Σ / d T I Φ^Φ^Φκ* '"Φ*Ν I * ^ 1 Φ*ίΦ**'Φ*ζ' '"Φ*Ν' I = 0 

(Α^ Φ k± , k2 Φ k2, k3 Φ k3 ). (3.44) 
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Let us calculate one example using (3.42): 

Σ^άτ\νηζ\ G\ U-ηζ | = [<νβ η* | g\ ηβ ηα> 

— <ΥΒΗΟΙ\Ξ\ ΗΑΗΒ}] + [<ΝΒ Îfi\g\ ΗΒΖΒ) 

-<ΝΒΖΒ\§\ΖΒΗΒ}]. (3.45) 

Because of the orthogonality between spin functions, the second term, 
(νβ ηοί\ g I ηοί M/?>, in (3.45) is zero. 

3 3 Energy Matrices in the Three-Electron System 

3.3.1 T E R M E N E R G I E S I N t2

z 

As mentioned in Section 3.1, the allowed terms of the * 2

3 electron 
configuration are M 2 , 2E, 2 7 \ and 2T2 and we see that no term appears 
more than once in this configuration. Therefore, the matrix of 3fx is 
already diagonal if it is calculated by using the wavefunctions associated 
with these terms. Thus, the term energies within the t2

3 configuration are 
obtained directly by using the wavefunctions in Table 3.2 and the 
formulas (3.41-3.44). Note that the matrix elements of Jf?0 appearing 
in the diagonal are all the same within a fixed electron configuration. 
Since the term energies are independent of M and y, it is convenient to 
choose the wavefunction of the simplest form associated with a particular 
set of M and y. 

For M 2 , by using (3.41), one obtains 

which, in terms of the Coulomb and the exchange integrals defined in 
Section 2.3, can simply be expressed as 

<ί2* M 2 M = f I #ï I * 2

3 M 2 M=f> =Σ\ dT\ U I * G| (ηζ \ 

= <f« y* \g I f<* y<x> — <f« η<* I g I η<* 

+ <f α ζ* I g I (oc ζα> — <£α ζ(χ J g\ ζ<χ ξοί} 

+ <*7« I g I V<* — (η<χ ζ(χ \ g \ ζ(χ τ;α>, 

(3.46) 

<t2**AJf = \\œx\t2^A2M=%) 

= 3[Κξη) - Κ(ξη)]. (3.47) 
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W 4 ) = 3A - 15B, (3.52a) 
E(t2* 2£) = 3A -6B + 3C, (3.52b) 

= 3 A -6B + 3C, (3.52c) 
WT2) = 3 A + 5C. (3.52d) 

The relative positions of the terms with t2

3 are visualized in Fig. 3.1 by 
using the result in (3.52). 

2(3B + C) 
2 E. 2 T, 

FIG. 3.1. Energy levels arising from the f2

3 electron 
configuration. 

3(3B+C) 

For 2E> by using the wavefunction of the t2* 2EM=\u state, one 
obtains 

<ί 2

3 *E M=\ ι ι | ^ I * 2

3 2E M=\ u> 

= i Σ f * [ l ^ I* G l fit I + I I* G l I - 21 ^ I* <?l I] 
σ J 

= 3/fo). (3.48) 

Similarly, one obtains 
<ί 2

3 2 7 \ I I ί 2

3 27\> = + /(££) - 2Κ(£η)9 (3.49) 
and 

<i 2

3 2 Γ 2 1 ^ I *2

3 2Γ 2> = 2 / ( ^ ) + / (« ) . (3.50) 
Now, considering the relations Κ(ξη) > 0 and ]{ζζ) > ]{ζη) men­

tioned in Section 2.3, the order of the terms is found as 

E{2E) > E(*A2), E(*T2) > £( 27\), 

E{2TX) > E(*A2), E(*T2) > E?E), ( 3 ' 5 1 ) 

which shows that the *A2 term is lowest in energy in agreement with 
the Hund rule. From (3.51) it is impossible to determine which is higher, 
2 7 \ or 2E. However, if the t2 orbital is assumed to be the d-iunction, one 
sees that the 2TX and 2Ε levels are accidentally degenerate, as the term 
energies are given to this approximation as follows: 
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3 . 3 . 2 E N E R G Y M A T R I X F O R 2E 

Two 2E with tfÇ-A-ùe and ί2ψΕ)β are allowed, besides the t2* 2Ε term, 
as was shown in Section 3 . 1 . In addition to these three 2E terms, it will 
be shown in the next chapter that another 2E term arises from the ez 

configuration. As in the case of the two-electron system, there are 
nondiagonal matrix elements of M\ among these four 2E terms. Con­
sequently, the exact term energies of 2E are calculated by diagonalizing 
the energy matrix of ^ Q + ^ . Such calculation taking into account 
the configuration mixing is particularly important when the cubic field 
splitting parameter lODq is not much greater than the Coulomb inter­
action. 

Before calculating the nondiagonal elements, let us first calculate the 
diagonal elements for t2

2{^A^)e 2E and t2

2(1E)e 2E. Since the wavefunctions 
of these states were obtained in ( 3 . 1 7 ) and ( 3 . 1 9 ) , one may calculate the 
diagonal elements of by using the formulas given in ( 3 . 4 1 ) - ( 3 . 4 4 ) as 
follows: 

(t^AJe 2E\^\t2

2^e2Ey 
= Μζ) + Mu) + Mv) + 2Κ((η) - \[Κ{ζη) + Κ(ζν)] 

(= 3A + SB + 6C) . (3.53) 
In deriving ( 3 . 5 3 ) , the relation 

Mu) = / M = \Mu) + (3.54) 

was used. The last expression of (3.53) in brackets is the result obtained 
with the approximation where tz and e are the rf-functions. Furthermore, 
one obtains 

<&ΎΕ)β*Ε\Χί\^Ε)β»Ε> 

= Mi) + M») + - κοη) - mm + Km] 
(=3A-B + 3C), (3.55) 

in which new relations 
<f« 11 ξν> = -<VU 11 ην} = ^ [Mv) - M«)1 

(ξη I I υξ> = -<ψι I | vv> = ^ [Κ(ζν) - Κ(ζα)] 
(3.56) 

are used in addition to those already given. For example, the first relation 
in (3.56) can be proved by showing 

< 6 ι I I fc» = < C 4 ( ^ C 4 ( 3 > ) « I I Q ( γ ) ξ ϋ & ) ν ) 

= ^ [<£» I K»> — <£« I I £«>] H- 1 <C» I I ζν>, (3.57) 
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(3.61) <νζ \\fr> = <C4(*>,C4(*)C I I C4(*)£C4(*)«> = <« I I ηη>, 

<ηζ I I «Ο = <« I I Ui), 

< « I h « > = <C4(*)£C4(*)£ I I C4(*>,C4(*)u> 

= - *γ<£η\\ζν>-±<ξη\\ζ»> 

= -2<ξη I I ζη), (3.62) 

<« I I uvy = - ^ <£, I I υζ> - \ <ξη I I «ζ> 

= <*·? I I î«>, (3.63) 
one obtains 

<«,» 2 £ M= i « I ^ I t^AJe *E M= \ «> 

= ^ [2<̂ ζ II £«> + 2(ξζ \\ηιί>- <« I I wj> 

-<ηζ\\ UO -<ξη\\ «Ο - <^ I I ί«>] 

= -2\ /6<£? I I ζ«> ( = -6 \ /2Β) . (3.64) 

in which the last term vanishes as follows: 

(ζη I I £*> = <C4(*)£C4(*)a | | C4(*)£C4(*)t;> 

= - φ ι I \ζν> = 0. (3.58) 

The remaining diagonal element is for e3 2E. In the next chapter we 
will show that the wavefunctions of this term are given immediately as 

W(ez 2E M=\ u) = \uvv\y 

(3.59) 
Ψ(#*ΕΜ=\ν) = \vuû\y 

which may also be obtained from the wavefunction for e2 XAX by using 
the method described in Section 3.1. By using (3.59) the diagonal element 
of ^ is calculated as 

<^2E\^\ê 2E} = 3 J(uv) + K(uv) ( = 3A-SB + 4C), (3.60) 

in which the relation, J(uu) = J(vv), is used. 
Now we calculate the nondiagonal elements of ^ . By using the 

following relations in addition to those already given, 
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Also by using the relations 

{•ηζ I I £>> = -<ξζ I I Vv}, (3.65a) 
<ηζ \\νξ> = -<ξζ I I νη}, (3.65b) 

(ξζ I I ψ} = l- (ξη I I ζν} -ψ(ξη\\ ζη} = 0, (3.66) 

< Κ I I «,> = - V % I I £«>, (3.67) 

one obtains 
<*,» M = i « | ^ | ttfE)e *Ε Μ=\ «> = - V6<6? | | ζ«> 

( = - 3 V 2 5 ) . (3.68) 
The nondiagonal element of between i 2

3 2 # and e3 2E states is zero 
from (3.44). The remaining nondiagonal elements are 

(t^AJe*EM=X-u\œx\ t*Ç-E)e*EM= \«> 

= 2 V 7 ! î ~ 71 [ ~ 4 M U ) + 2 K { i u ) + m u ) ~ 2 K ( C u ) ] 

+ 4C(u \\ξν>- 2<Çu I I » £ > j 

= -Klu) + /(ζ©) + i[AT(C«) - Κ(ζν)1 ( = 10B), (3.69) 

(t^AJe *E Μ = ι M I I e 3 2 £ M = £ «> 

= ^ + Κ(ζν)] ( = V3(2B + C)), (3.70) 

and 
( ^ ( ^ e 2 £ M = i u\jei\e3iE M=\ «> 

= ^ [Κ(ζύ) - «-(ζ©)] ( = 2V35). (3.71) 

The diagonal elements of ^ = _/j + / 2 + f3 are calculated by using 
(3.33) as follows: 

<νΕ\*Ό\ν*Ε> = χζ\/\ζ>, 
(<?*E\œ0\é*E} = Xv\f\v}, 

<.ttfAj)e *Ε\34?ϋ\ ttfAJe 2E} = <.t2^E)e 2E\3f0\ t2*?E)e *E} 
= 2 < Π / Ι Ο +<v\f\v}. 

Now we have obtained all the necessary matrix elements. The term 
energies of 2E are obtained by solving the four-dimensional secular 
equation expressed in terms of these matrix elements. The corresponding 
secular matrix can be found in Appendix IV. 



Chapter IV ELECTRONS A N D HOLES 

4.1 Complementary States 

In principle it is possible to calculate term energies of any iV-electron 
system by using the method described in the previous chapter. However, 
the calculation becomes laborious as the number of electrons increases. 
In this chapter we will show that there is a simple relation between the 
matrix elements of operators in the states of t2

nem (n + m — Ν) con­
figurations and those in the states of tl~ne*~m. Consequently it is un­
necessary to calculate energy matrices for Ν = 6, 7, 8, and 9 once those 
for Ν = 4, 3, 2, and 1 are calculated. The tt^S^e^S^Sr-My 
state is called complementary to the f 2

η (£ ι A ) e T n ( S 2 A ) Sr Μ γ state in 
the sense that these two states are complementary in constructing the 
closed shells £2

6£4, as shown later. For calculating energy matrices in the 
complementary states, it is not always necessary to obtain their wave-
functions, but we first construct the wavefunctions according to the 
prescription adopted so far. 

4.1.1 C O M P L E M E N T A R Y S T A T E S I N T H E t2 S H E L L 

To consider the complementary states in the t2 shell, we start from the 
t2

6 1A1 state of a closed-shell configuration, which is expressed by a 
single Slater determinant. By using the formula of Laplace's expansion, 
this determinant may be expanded in terms of w-dimensional (n < 6) 

86 
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small determinants Dt

n including the normalization factor (n ! ) - 1 / 2 

(Slater determinant) as follows: 

= r (4.1) 

where D/1 involves electrons 1, 2,..., η and D*~n those η + 1, w + 2,..., 6. 
Here, Z)f_r i is the adjunct (or cofactor) of D/1 also including the normali­
zation factor [(6 — w)!] - 1 / 2 . Factor q is equal to 6Cn = 6!/n!(6 — n)\ 
which comes from normalization factors in the Slater determinants. 
For example, in the case of η — 2, and Z)?~~2 are given as 

i 1 2 3 4 5 

A 2 I I L I 1 ^ I \ζζ\ \ξη\ H I I 
I w i f l I f f t f l I f frôl - Ι M I - I ^ 

(4.2) 

By introducing a row vector Dn of components and a column vector 
of q components defined as follows, 

D" = [Df, Df,..., Da% 

Eq. (4.1) can be expressed simply as 

f ( < 2

6 ^ j ) = ç - i / A D ^ Ô 6 - " . 

(4.3) 

(4.4) 

As mentioned in Chapters II and III, there are q states of t2

n. Denoting 
wavefunctions W{t2

nSr Μ γ) as Ψ/1 and defining a row vector Ψ 7 1 of q 
components as 

one can express in terms of a unitary matrix U and D N as follows: 

Ψ Η = Qn{J (4.6) 

For example, by arranging Ψ> for # = 2 as 

= ^ i ) , ^ 2

2 = m 2 ^ ^ 3

2 = ^ ) , . . . , (4.7) 
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the unitary matrix U is found from Table 2.2 as follows: 

- 1 1 
V3 V6 
1 1 

Λ /3 Λ /6 
υ = 1 2 

V3 V6 

0 

1 
Λ /2 

1 
V2 

^ = ο 
(4.8) 

12-dimensional 
matrix 

As seen in (4.8), U in our problem is real, so it is an orthogonal transfor­
mation matrix. However, to make possible a more general application of 
our argument, we will hereafter deal with U as if it were complex. 

Now let the hermitian conjugate of U be U + which is the complex 
conjugate of transposed matrix 0 , i.e., (£/%· = (U)y = Ufa. Then, 
one obtains U + U = U U + = Ε as U is unitary. Therefore, (4.4) can 
be reexpressed as 

= £-ι/2ψ"υ+06-". (4.9) 

In (4.9) U + Ô 6 _ r i is a column vector of q components whose elements are 
the antisymmetric functions of electrons, η + 1, η + 2,..., 6. We express 

j n ^ f o r m 

. lire 
9 * 9 . (4.10) 

where the c^s are numerical constants. For a moment we assume that 
for / = ( STMy), ci is given as 

ci = oc (SMS -M I ΟΟχΓγΓγ I A&X (4.11) 

where in general α is a constant depending upon 5, Γ, M, and y. By 
denoting Ψΐ~η as Ψ(4~η8Γ —My), (4.9) is now written as 

W(t2* iAJ = q-1'2 Σ <* <SMS -Μ \ ΟΟχΓγΓγ \ 
sr 
My 

χ Ψ(ΐ2

η3ΓΜγ)Ψ(4-η8Γ -My) , (4.12) 
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which tells us that, if α is a constant o c s r , independent of My, 
Ψ{ί\~η8Γ —My) may be the y base of irreducible representation Γ 
of the Ofc-group as well as the eigenfunction of S2 and Sz with eigenvalues 
5 ( 5 + 1) and —M, respectively. In fact, if Ψ(4~η8Γ —My) has the 
above-mentioned properties, then 

Σ <SMS -M I 00><ryry I Axexy W{t2

nSrMy) % ? " Λ 5 Γ -My) 
MY 

is the base of Ατ of the O^-group with 5 = 0 irrespective of 5 and Γ, 
so that the right-hand side of (4.12) with α = <xsr also has the property 
of . 

Considering that Ψ(ί\~η5Γ —My) is the antisymmetric function of 
electrons, η + 1, η + 2,..., 6, we now see that Ψ(ί2~η3Γ —My) can be 
the wavefunction associated with the 5JT —My state of the t2~n electron 
configuration if a = ocsr. The constant ocsr is determined so that 
Ψ(4~η3Γ -My) is normalized; 

I ocsr (SMS -M I 00}(ΓγΓγ | Α^\* = 1. (4.13) 

Since the Wigner coefficient and the C-G coefficient appearing in (4.12) 
are given as 

(SMS -M I 00> = ( - 1 ) 5 " M ( 2 5 + l)" 1 / 2 , (4.14a) 
and 

<,ΓγΓγ\Α^={Γ)-^Γ, (4.14b) 
with 

Eq. (4.13) is satisfied if ocsr is given as 

ocsr = *r[(2S + l)(r)]V2. (4.15) 

Of course (4.13) does not determine ocsr uniquely as (4.15), but the 
choice of the phase of ocSr as given in (4.15) is necessary for later discus­
sions concerning the complementary states of a half-filled shell. Replacing 
α in (4.12) by ocsr in (4.15), we finally obtain 

W(t2* M x ) = q-V* £ (-\)s-MW(t2

nSTMy) Ψ(ί«-η3Γ -My), (4.16) 
sr 
My 

which is the expression connecting Ψ{ί\-η8Γ —My) with W(t2

nSrMy). 
As seen in (4.16) they are complementary in constructing the 1A1 state 
of the t2

6 closed shell. It is interesting to note that Ψ(ί2

6 1A1) is totally 
antisymmetric while each term in (4.16) is antisymmetric only with 
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respect to the electron exchange within each set of electrons (1, 2,..., n) 
and (n + 1, η + 2,..., 6). The wavefunction W(t2

nSrMy) with η < 3 
directly calculated by using the methods described in the previous 
chapters is called the wavefunction of the L-state and denoted by WL, 
and Ψ(4~η8Γ -My) with η < 3 connected with W{t2

nSrMy) by (4.16) 
is called the wavefunction of the i?-state WR . This labeling is important 
when the state has a half-filled configuration (n = 3), as shown later. The 
labeling may be extended to the cases of W{t2

nSrMy) and Ψ(ΐ2~η8ΓΜγ) 
with η > 3 by introducing WL(t2

nSrMy) with η > 3 and WR{t2

nSrMy) 
with η < 3 which satisfy the relation, 

WL(t2"SrMy) = WR{t2-SrMY) (n > 3), 

WR(t2"SrMy) = WL{t2-SrMy) (n < 3). ( 4 ' Π ) 

As seen from (4.10), (4.11), and (4.15), Ψ(4~η8Γ -My) appearing 
in (4.16) can simply be obtained from W{t2

nSrMy) by using the following 
procedures: (1) Change the coefficients of D/1 in W(t2

nSrMy) into their 
complex conjugates*; (2) Replace the Slater determinants D/1 in 
W{t2

nSrMy) by their adjunct Dtn; (3) Multiply the factor ( - 1 ) ^ . 
For example, from (4.2) and (4.8) one obtains 

Ψ&' M A ) = ±= [| ηηζζ I + I ζζξξ \ + \ξξηη |], (4.18a) 

V(tf *EU) = ~= [-1 ηηζζ I - I ζζξξ I + 2| ξξηη |], (4.18b) 

W{t2* *Ev) = ~ [| ηηζζ I - I ζζξξ |]. (4.18c) 

In deriving (4.18), procedures (1) and (3) give no effect on the results. 

Problem 4.1. Derive Ψψ2

4 *ΤχΜγ). Ο 

When Ν = 3, the phases of WL{t2*SrMy) and WR(t2

zSrMy) are not 
necessarily the same. For example, from Table 3.2 one can derive 

WL(t**A2M-

WL ( ί 2

3 2 T 2 M 

= -|«.) = -\ξηζ\, 
(4.19) 

* In the present problem this procedure is unnecessary, as the coefficients are real. 
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from which one obtains 

I ξηζ I. 

ΨΜ *T2 M=l- ζ) = * [| ζξξ I + I I]. 
(4.20) 

Thus, comparing (4.20) with Table 3.2, one sees that 

• W 2 ^ ) = ^ ( Ί 2

3 2 Γ 2 ) . 
(4.21) 

Similarly, for all the remaining terms, 2E and 2 7 \ , we can show that WL 

has the phase opposite to that of WR . All the results may be summarized 
as follows: 

where μ ι = —1 for n = 3 and Sr = *A2, 2E, 2 7 \ , and μ ι = 1 for 
all the other cases including n = 3 and *ST = 2T2. 

The above-mentioned arguments can be applied as well to the wave-
functions of emy and the results may be summarized as 

where μ2 = —l îor m =2 and ST = 1E, 3A2, and μ2 = 1 for all the 
other cases including m = 2 and S F = Μ χ . 

Relations (4.22) and (4.23) will conveniently be used in calculating 
matrix elements of various operators in the states of the half-filled shell, 
electron configurations. 

4.1.2 C O M P L E M E N T A R Y S T A T E S I N T H E (t2, e) S H E L L 

Starting from the t2

Qe* 1A1 state, one can derive complementary states 
in the (t2, e) shell in a similar way to that mentioned in the previous 
subsection. Expanding a ten-dimensional Slater determinant of the 
t2

ee* XAX state in terms of n -\- m = Ν dimensional small determinants, 
and using a similar procedure to that mentioned in the previous sub­
section, one obtains the expression corresponding to (4.16) as follows: 

= i o Q 1 / 2 Σ ( - L ^ - ^ I W I A ) em(S2r2) STMy) 

wR(t2«sr) = ^ Y L ( * A » S R ) , (4.22) 

(4.23) 

n,w(n+w>=N) 

χ Y . (4.24) 
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in which 10CN = 10!/iV!(10 — N)\ is the number of all the allowed states 
of t2

nem (n + m = N) and Ψ ^ δ ^ ) em(S2r2) SrMy) is the wave-
function of the t2

n(Siri) em(S2r2) ΞΓΜγ state involving electrons, 
1,2,..., N. And Ws^rjA'^^Sr -My) is the normalized wave-
function of the S Γ —My state of the t\~ne^~m electron configuration 
involving electrons, Ν + 1, Ν + 2,..., 10, but we cannot conclude, 
from the previously mentioned argument, that it is the wavefunction of 
the 4" n (^ iA) e*~m(S2r,

2) S Γ — My state. Since there are several 
S Γ —My states of t\~ne^~m^ it is, in general, given by linear combination 
of the wavefunctions of the S Γ —My states of the t%^ne^~m electron con­
figuration, for example, ΨR{t\~n{S{r{) e*-™(S2T2') 5 Γ -My\ as 

^sMrit\-ne^ST-My) 

— Σ A N W » ( ' V I > $2^2
 1 Γι, S2T2) 

X ^ ( ^ O S x ' J Y ) e*~™(S2T2

f) Sr -My), (4.25) 

where y ^ H V i ) * 4 _ m ( S 2 A ) STMy) is defined by 

« ^ ( ^ ( « Λ ) e*~m(S2r2) SrMy) 
= (-l)nm ^ ^ ( ^ ^ Μ ^ ^ Ί ^ δ , Γ , Μ ^ ) 

M 1 M 2 

VlV 2 

X (S^SM I SM}<rlYir2y21 J » , (4.26) 

with the inclusion of the phase factor ( — l ) n m in the wavefunction of the 
i?-state. In (4.26), si is an operator which makes the right-hand side of 
(4.26) antisymmetric with respect to the exchange of electrons in each 
of the t2 and e shells. However, after a somewhat complicated manipula­
tion, one can prove that 

«nm(^iA > S2r2 : .ΐχΤΥΑΤΥ) = SfàSi)S(S2S2) 
χδ ίΛΤΥΪδί ΐγ /γ ) . (4.27) 

The proof of (4.27) will be given in Appendix V. 
Then, one obtains 

^ U 4 ) = 1 0 Q 1 / 2 Σ ( - 1 ) * - " 

SrMy 
n,m(n+m=N) 

x y ^ A ) « * - " W I ) ^ (4-28) 
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where KQ is the operator which acting on an orbital part changes a 

which should be compared with (4.16). The phase relation between the 
wavefunctions of the R and L states is given by 

Ψκ{^1Γ1)β™{82Γ2)8ΓΜγ) = ( - i r w * 2 

X em{S2r2) SrMy), (4.29) 

in which μχ and μ2

 a r e already defined in (4.22) and (4.23). This phase 
relation can be obtained by inserting first (4.27) into (4.25), then using 
(4.26), and finally applying the phase relations (4.22) and (4.23). 

Equation (4.28) tells us that, quite similarly to the case of complemen­
tary states in the t2 shell, ^ ( ^ " " ( ^ Ι Λ ) e * ~ m { S 2 r è s r —My) is obtained 
from ^ ( ^ ( ^ Ι Α ) em(S2r2) SrMy) by using the following procedures: 
(1) Change the coefficients of Slater determinants in 

into their complex conjugates; (2) Replace the Slater determinants by 
their adjuncts; (3) multiply the factor (—\) S ~ M . 

Problem 4.2. Derive Ψ^^ψΑ^) c 2 (M 2 ) 6At M = f ) and 

Ψ^Λ^β^Α^^Μ^Ι) 

by using the methods described here. Then confirm the phase relation 
in (4.29). Ο 

4*2 Matrix Elements in Complementary States 

4.2.1 C O N N E C T I O N B E T W E E N W{ocSr —My) A N D W{ocSrMy) 

In the previous section, we discussed the relation between the wave-
functions of the * 2

η ( 5 ι Γ ι ) e m ( S 2 r 2 ) SrMy and 

* 6

2 - n (SiA) e*-m(S2r2) Sr -My 

states. However, in order to discuss the relation between the matrix 
elements in the * 2

Η ( ^ Ι Λ ) em(S2r2) SrMy and tl-^S^e^S^SrMy 
states, it is convenient to derive a simple method of obtaining the wave-
function of the * 2

N ( S I A ) e m ( S 2 r 2 ) SrMy state from that of the 
* 2 η ( ^ ι Γ ι ) em(S2r2) Sr -My state. 

For this purpose let us introduce an operator, 

Κ = KSK0 , (4.30) 
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function into its complex conjugate and Ks the operator acting on a spin 
part defined by 

KAh m) = ( - 1 ) ( 1 / 2 ) - ^ ( έ , -m). (4.31) 

Operator Κ is called the time reversal operator. At present it is sufficient 
merely to know its definition. The physical implication of this operator 
will be fully discussed in a later chapter. 

From (4.30) one can derive 

K\ a±a2 "' aniani+1aUl+2 ··· ani+n2 I 

= (—\f2 I à\à\ ··· âniani+1ani+2 ··· ani+Tl2 |, (4.32) 

where the orbital functions α/s are assumed to be real as in the present 
case. By using (4.32) one can prove the relation 

Ψ^ΞΓΜγ) = (-ly+MRfiocSr -My) , (4.33) 

in which the coefficients of Slater determinants are assumed to be real. 
The proof of (4.33) is given in Problem 4.3. By using (4.33) and (4.32), 
it is now easy to derive Ψ(ουΞΓΜγ) from Ψ(α8Γ —My). 

Problem 4.3. First prove a special case of (4.33), 

W(ocSr M= -S y) = ΚΨ((χ8Γ M=S y), 

by using (4.31), and the relations 

SJF(cxSrMy) = [S(S + 1) - M (M - l ) ] V 2¥ / ( a srM - l y) 
and 

S_ I axa2 an | = £ | axa2 · · · a , · · · an \. 
i 

Then, assuming (4.33) to be valid, prove 

W(aSrM+1 y) = ( - 1 )Ξ+Μ+1ΚΨ((χ8Γ - M - 1 y). Ο 

4.2.2 M A T R I X E L E M E N T S OF O N E - E L E C T R O N O P E R A T O R S 

In order to derive the relation between the matrix elements of one-
electron operator in the * 2

Λ ( 5 ι Λ ) ^ M ( 5 2 A ) SrMy and 

* 6

2 - n (SiA) e*~m(S2r2) SrMy 

states, we first examine the matrix elements between Dk

N and those 
between (-l)s-M(-l)s+MKÔl°-N = ( — 1 ) " ! ^ ° - " : Here it should be 
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borne in mind that W^S^) em(S2r2) SrMy) is given by a linear 
combination of Dk

N and Ψ(4-η(31Γ1) e*~™{S2r2) SrMy) by that of 
(-l)s-M(-iy+MKÔl°-N

f where ûk°~N is the adjunct of Dk

N. 
By assuming that 

Dk

N = \ o c l 0 c 2 - o c N \ , (4.34) 

where the α / s are the abbreviation of spin-orbitals, the diagonal element 
of operator F between Dk

N is given from (3.33) as 

σ J 

= Σ < « * ! / ! « * > · ( 4 · 3 5 ) 

On the other hand, since one has 

Dl°~N = I ocN+1ocN+2 ··· «ίο I, (4·36) 

the diagonal element of F between (—l)NKUk°~N is given as 

F$TN = Σ F <* T [(-l)NKD\°-^F[(-irKD^-N] 
σ J 

= Σ I d T i K I a t f + L « N + 2 «10 I «tf+L«AH-2 — «10 I] 
<X J 

10 
= Σ (Κ«>\/\Κ«(}. (4.37) 

i=JV+l 

If operator / is independent of spin as in the case of the ligand-field 
potential energy, (4.37) can be simplified as 

10 

F%*= Σ <<**! /1 <**>· (4-38) 
I<=N+L 

Introducing a quantity F0 , 

F 0 = Σ \ dT\ α 1 Α 2 · · * «10 \ * F \ « 1 « 2 " · «10 I 
σ J 

10 

= Σ < α . Ί / Ι ^ > . (4·39) 

which is independent of state k we are considering, one obtains from 
(4.35) and (4.38) 

Fi™ =F0-F»k. (4.40) 
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The nondiagonal element between Dk

N and D%>, the latter of which 
is assumed to be 

D*> = ] 0Lxa2 · * · < — a f r l = c%+<7), (4.41) 

is calculated from (3.34) as 

σ ^ 

= < « p | / I O = <«,!/1 (4.42) 

On the other hand, the nondiagonal element between (—ΐγκί)™"** 
and {-i)NKÛfrN, in which ôfrN is given as 

£ i o - * = _ | Α ^ + Ι Ί % + 2 . . . A ^ + < ? . . . A I Q Ι (a'N+q = A ^ (443) 

is calculated as 

= ς j [ ( - D ^ R " ] * ^ - ! ) ^ 1 ^ ] 

σ 

= — Σ / d T i K I <%+1<%+2 — <*N+Q a 1 0 1 ] * ^ 

X [K\ <%+l<%+2 <*N+Q — α 1 0 I] 

= - < ^ + J / | ^ > . (4.44) 

The minus sign of (4.43) comes from the relation, 

adj I o^og · · · oLp^otp+x ocn^n+q I 

= ( — 1 I <v%+i<%+2 — Α Ν + β - ι Α Ν + α + ι * " α ι ο LÎ (4.45) 

consequently 

adj I — α ρ ' · · · ( % I 

= (-l)^+<r-i»(-l)N-p I α ρ α ^ + 1 α ^ + 2 - ocN+q_l0cN+q+1 · · · Α 1 0 | 

= ( _ ι ) Ν + α - ΐ > ( _ ΐ ) Ν - ΐ , ( _ 1 ) , - ι Ι Α ^ + Ι ( % + 2 . . . ^ . . . A I Q | . ( 4 .4 6 ) 

If operator/ is independent of spin, (4.44) can be simplified as 

Flk-N=-<ocN+Q\f\cc7)y. (4.47) 

Furthermore, if the matrix of / i s Hermitian, namely (i | / | / > = </ | / | 0*» 
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and is real as in the case of the ligand-field potential energy, one obtains 
from (4.42) and (4.47) 

F * s = - & . (4-48) 

Now we are ready to discuss the relation between the matrix element 
in the ί 2

Η ( £ Ι Λ )
 e7n{s%rù δΓΜγ states and that in the 

* 6

2 - Η ( 3 Λ ) e'-m(S2r2) SrMy 

states. From the results of the previous section, the wavefunctions of 
these states are given as 

ψ/* = Σ°*Νυ*> (4-49a) 
k 

ψ10-Κ = ( _ l ) N Σ {KÔ10-N} K o U * . 

k 

= (-irz(KôirN)uM, (4.49b) 
k 

where Ψ{

Ν and Ψ}°-Ν with i = t y O W ) em(S2r2) STMy are the abbrevia­
tions οΐΨ^^Γ^^,Γ^ΓΜγ) and Ψ^-^Γ^^,Γ^ΓΜγ), 
respectively. Therefore, one can show that the matrix elements, 

Σ f r f T f f F S V = Σ (4-50) 
σ kl 

and 
Σ f dr φ»**ρψρ* = £ *7*ί/Μί*Γ", (4.51) 
σ kl 

are related to each other as 

Σ / dr ψ*ο-Ν*ΓΨ}°-Ν = F0 δ,,· - Σ / dr ¥ f • ίΨ / ' , (4.52) 

if the matrix of / is spin-independent, hermitian and real. Eq. (4.52) 
shows that the system with 10 — Ν electrons in the (t2, e) shell behaves 
just like the system with Ν particles having positive charges with respect 
to the ligand field, except an energy shift as a whole due to the diagonal 
term F0 . These particles are called holes. 

4.2.3 M A T R I X E L E M E N T S OF T W O - E L E C T R O N O P E R A T O R S 

For the purpose of deriving the relation between the matrix elements 
of two-electron operators in the * 2

Η ( * $ Ί Λ ) * M ( £ 2 A ) δΓΜγ states and 
those in the ^ " " ( ^ Ι Λ ) e*-m(S2r2) ΞΓΜγ states, let us first consider the 
matrix elements between the Dk

N's and those between the (-l^KÔjf^'s. 
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By using the expression of Dk

N in (4.34), the diagonal element of G 
in Dk

N is given from (3.42) as 

(4.53) 

while, by using (4.36), the diagonal element of G in (—l)NKÔl°~N is 
calculated as 

G U T = Σ / RFT (κΰ}Τ')*ο(κΰρ-11) 

= Χ Κ / Δ Χ ^ Α , I £ I Κ^Κοί^ - (Κα{Κα} | g | #a 3 .Koi f >]. (4.54) 
i X « N + l 

If operator £ is independent of spin as in the case of the Coulomb 
interaction operator l/r12y operator Κ may be eliminated in (4.54), 
and one obtains 

GMN = Σ I £ I a f<*i > — < < w - 1 g I ¥ T > ] 
i x = j v + i 

, 1 0 10 Ν Ν χ 

( Σ - Σ Σ + Σ ) Ι £ I ° w > - < ° w Ι * I ° w > ] » (4.55) 
10 10 Ν Ν 
Σ - Σ Σ + Σ 

λ * Χ - 1 3=1 i=l ί Χ = ΐ ' 

in which the decomposition of the sum is explained in Fig. 4.1. Note that 

2 

•Ν N+l- •10 

Ν 
N+l 

10 

\ \ \ 
\ V \ V ' 
\ \ \ \ \ . 
\ \ \ \ \ \ 
\ \ W \ V V 

\ \ \ \ \ \ \ \ S 
10 

- Σ 

10 Ν 

- Σ Σ 
/ - ! / - I 

10 

- Σ 

j >/ · N+1 

Ν Ν 

- Σ = Σ 
/ > / / > / « î 

FIG. 4 .1 . Decomposition of the summation, 
10 10 10 Ν Ν 
Σ = Σ - Σ Σ + Σ · 

j>i=N+l i > i = l j=l i= l ί > Μ 

file:////w/vv
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(4.59) 

Furthermore, by using DiE)((Cs(xyz)) in ( 1 . 52 ) , it is easy to show the 
relation 

G(u) + G(Cz(xyz)u) + G(Cs

2(xyz)u) 
= G(U) + G(C3(xyz)v) + G{C*{xyz)v\ (4.60) 

which together with ( 4 . 5 9 ) leads to 

G(II) = G(») = G{e). (4.61) 

As a result of ( 4 . 5 8 ) and ( 4 . 61 ) , the second sum in the last expression of 
( 4 . 5 5 ) is given as 

nG(t2) + mG(e). (4.62) 

The physical implication of ( 4 . 5 8 ) and ( 4 . 6 1 ) is that the interaction 
energy of an electron in a shell with closed shells is independent of the 
state of the electron. In general, G(t2) Φ G(e) but, if the t2 and e func­
tions are the J-functions, one can show the relation 

G{t2) = G(e) = G1, (4.63) 

the expression in the square bracket in ( 4 . 5 5 ) is zero when i = j . The 
first sum in the last expression of ( 4 . 5 5 ) is equal to 

<20 = Σ / d r I α ι Α 2 " · αιο α ι Α 2 αιο l> ( 4 · 5 6 ) 
σ 

which is independent of state k. In the second sum one can show that 
the term 

10 

Ci = Σ [<α*α; Ig I « Λ > — Ig I α Λ > ] ( 4 · 5 7 ) 

is independent of i as long as a { is one of the spin-orbitals involving ξ, 
η, and ζ, and may be denoted as G(t2). The same statement is applied 
when is one of the spin-orbitals involving u and υ and term Gt may be 
denoted as G(e). The proof is as follows: Let us denote Gi as G(ai) when 

involves orbital function ai. Since operator g and Σ ί = 1 α;·*α;· are 
invariant to any symmetry operation of the O^-group, one obtains 

0(ξ) = G(C 4 (*)£) = G ( , ) 

= G(t2), (4.58) 
and similarly 

G ( A ) = G(Cz{xyz)u) = G(C3\xyz)u), 

G(v) = G ( C 3 ( « y 2 ) U ) = G ( C 3

2 ( « Y A R ) » ) . 
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and the second sum is equal to NG1. The relation (4.63) is under­
standable from the above-mentioned physical argument, as the (t2 , e) 
shells can be regarded as a single shell, rf-shell, to this approximation. 

Problem 4.4. If the t2 and e functions are the J-functions, Σί=ι «;*α^ 
as well as operator g is invariant to any symmetry operation of the 
continuous rotation group. Using this fact, prove (4.63). < 0 

The third term in the last expression of (4.55) is nothing but Gkk . 
Therefore, we finally obtain 

GJSTN = G0- [nG(t2) + mG(e)] + G»k . (4.64) 

The nondiagonal element of G between Dk

N and D$ , which are given 
in (4.34) and (4.41), is calculated from (3.42) as 

Gkk' = Σ \ d r 1 α ι Α 2 ·"· Α * · " aN \*G\ αι<χ2 α»' " · I 
σ J 

Ν 

= Σ Κ Α Λ IS I ° W * ; > — <<V** I g I (4.65) 
3=1 

in which the term with j = p is formally included as it is zero. On the 
other hand, the nondiagonal element of G between (—l)NKÔk°~N and 
(- l)NKÔl°-N, in which ôk°~N and ÙfrN are given in (4.36) and (4.43), 
is calculated as 

G\VN = — Σ j d T (K\ <%+1 Α Ν+2 — <*N+Q '""10 \ ) * G 

a 

X (K\ <%+l<%+2 — <*N+Q — Α 1 0 I) 

10 

= — Σ [ < < % + Α · I g I Α Λ · > — < Α Ν + Λ · I g I Α * Α * > > ] 

5=N+1 

10 

= — Σ [ < Α Λ ' I g I ° W * * > — < Α Λ ' I g I ( 4 · 6 6 ) 
3=Ν+1 

In (4.66) operator £ is assumed to be the Coulomb interaction operator 
and spin-orbitals to be real. Now let us examine the difference between 
(4.65) and (4.66), 

10 
G%k' — Gll~N = Σ [ < < * Λ · I g I < % + Λ > — < Α Λ I g I aj°fr-w>]- ( 4 · 6 7 ) 

i=i 

This difference can be shown to be zero, as operator g and Σ Ϊ Ϋ Ι
 ay* ay 

are invariant to any symmetry operation of the O^-group, and in addition 
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c%+r = and 0ÎX7 , - = Οί„ 

is calculated as 

^ 1 0 - N 
= Σ \ d T (K\ 0ίΝ+10ίΝ+2 ·" <*N+r <*N+s '"«10 \ ) * G 

a J 

Χ (Κ I ocN+1otN+2 — o ^ + r — o ^ + s — a 1 0 |) 

= <<%+R<%+S I g I <ν**> — <ocN+r(xN+s \ g \ oyxp> 

= ( V E I g I <*N+r*N+8> — ( ¥ f l I £ I < % + A + R > - (4.72) 

In (4.72) operator £ is assumed to be l / r 1 2 and the spin-orbitals to be real. 
Comparing (4.70) with (4.72), one obtains 

Gll~N= G&* . (4.73) 

All the other kinds of nondiagonal elements in Dk

N and Ôk°~N are zero 
because of the formula in (3.44). 

to this one can always find a symmetry operation which transforms 
(xp*<*N+q into — ocp*otN+q (ap Φ aN+q : a? s are orbital functions in spin-
orbitals of the α / s ) . For example, when ap = ξ and aN+q = v, one can 
show that the relation, Cf(y)f;C^{y)v = —ξν. Then one obtains 

G*N=(&'. (4-68) 

The nondiagonal element of G between Dk

N and Dk» , in which Dk* 
is given by 

D*' = I « ! « . · · · a^L (4.69) 
with 

Α Ρ ' = <%+R and a f f' == ocN+8, 

is calculated from (3.43) as 

G%k" = Σ \ d T I α ι Α 2 '· · αι> ··" α * — \*G 
σ J 

Χ I OLXOL2 · · · α ρ ' · · · α β ' · · · α Ν I 

= < Α Λ I g I <%+R<%+S> — < < V * E I £ I < % + S < % + R > . (4.70) 

On the other hand, the nondiagonal element of G between (— l)NKÛk°~N 

and ( - 1 ) KU$rN, in which ΰ$τΝ is given from (4.69) as 

= I <%+latf+2 " · <%+R · · ' <ΧΝ+3 — «10 I (4.71) 
with 
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By using (4.64), (4.68), and (4.73) and remembering that Wt

N and 
ψ1°~~Ν are given as in (4.49), we finally obtain 

£ f άτΨΪ°-Ν*ΟΨ}°-Ν 

σ J 

= {G0 - [nG{t2) + mG(e)]} δ,, + £ f dr Ψ»*ΟΨ?. (4.74) 
σ J 

In (4.74) operator G is assumed to be independent of spin and orbitals 
involved are to be real. If the t2 and e functions are the rf-functions, 
nG(t2) + mG{e) may be replaced by NG1 which is independent of the 
individual values of η and m. 

Except for an energy shift as a whole due to the diagonal term G0 - NG1 

(the t2 and e functions are assumed to be the d-functions), the result in 
(4.74) also suggests that the (10 — iV)-electron system can be regarded 
as the iV-hole system. 

Problem 4.5. Express G(t2) and G(e) in terms of the two-electron 
integrals given in Chap. II. Assuming the t2 and e functions to be the 
^-functions, express G(t2) and G(e) in terms of the Racah parameters 
and confirm (4.64). ζ} 

4 3 Energy Matrices 

By using (4.74) the matrix elements of Jf^ = 1 jr^ in the (10 - iV)-
electron system of t\-ne^~m (n + m = Ν; 10 — Ν = 6, 7, 8) are imme­
diately obtained from those in the iV-electron system of t2

nem (N — 
2, 3, 4,). In particular, if the t2 and e functions are assumed to be the 
rf-functions, the same matrix elements of can be used for both the 
(10 — N)- and TV-electron systems, as the additional common term, 
G 0 — NGj^, in the diagonal elements of the (10 — iV)-electron system 
only shifts the terms as a whole. 

The matrix elements of ^ in the systems with iV ^ 5 are obtained as 
follows. Those for Ν = 2 and 3 have already been obtained in Chaps. II 
and III, respectively. In the system with Ν — 4, we have states of 
*24> t2

3e, t2

2e2, t2e3

y and £4 electron configurations. The wavefunctions for 
£ 2

4 are obtained from those for t 2 by the use of the result in Section 4.1.1. 
The wavefunctions for t2e3 are obtained by calculating first those for ez 

from those for e, and then by combining the wavefunctions of t2 and es 

as mentioned in Section 3.1.2. The wavefunctions of the other con­
figurations are easily obtained. Then, it is straightforward to calculate 
the matrix elements of J>if?

1 by using formulas given in (3.41)-(3.44). 
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As in the case of Ν = 4, the wavefunctions of the Ν — 5 system are 
calculated from those with t2

n (η ^ 3) and em (m < 2) according to the 
methods described in Sections 4.1.1 and 3.1. Therefore, in principle, 
there is no difficulty in calculating the matrix elements of . However, 
the number of the matrix elements to be calculated can be greatly 
reduced if one uses the following facts: 

(i) As easily seen from (3.44), one has 

<fa W \ ) e™(S2r2) Sr\ G I ί ϊΛ^ιΤγ) e^\S2T2

f) Sr> = 0 (4.75) 

for \ k \ > 2. This fact can also be used in the case of Ν = 4. Examples 
are: 

^ " T X I G I ^ » ^ ) = 0 , 

(4.76) 

< Ί 2

5
 2T2\G\ ί2ψΤ2) e* 2 Γ 2 > = 0, ETC. 

(ii) In the case oî Ν = 5 the tf-^S^) e*~™(S2r2) Sr and 

VOSiA) e™(S2r2) Sr 
terms (η Φ 3, m Φ 2) are allowed as a pair. By using the results that 
^ ( Ί ΐ Λ ^ Ι Λ ) *4~"m(5

2A) STATy) is related to 
Ψ^Ι^,Γ,) e*~™{S2r2) SrMy) 

by (4.29) and the matrix elements of 2tfx are the same in the comple­
mentary states except the constant* G0 — NG1, appearing in diagonals, 
one can show 

M' = (-1)™(-ψ™'μ1μ2μ1'μ2'Μ, (4.77) 
where 

M = <faW\) em(S2r2) Sr\ G I i f f ^ T / ) *»'(S aT a ') £Γ>, (4.78) 

M ' = <ίΓη(^Α) E 4 —(5 2 Γ 2 ) 5Γ| G I ̂ ' ( W ) ^ ' ( S a T a ' ) 5Γ>. (4.79) 

In (4.77) μ,/ and μ2 are defined for τζ', m\ S^T^, and S2r2 just in 
the same way as μ1 and μ 2 for m> Siri and 5 2 .Γ 2 , i.e., 

μλ (OR /χ / ) = —1 FOR « (OR W') = 3 AND 

SJX (o r5 1 T 1 ' ) = M 2 , « £ , « T 1 , 

= 1 OTHERWISE, 

* The £2 and e are assumed to be the d-functions. 
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and 

μ2 (or μ2') — —1 for m (or m!) = 2 and 

S2r2 (or S2T2') = 1E,*A2l 

= 1 otherwise. 

In the η + m = 5 system, (— l ) n m (— \γ'™' is always plus unity. There­
fore, (4.77) can be expressed as 

Μ' = μιμ2μ^μ2'Μ. (4.80) 

In the present case of η Φ 3 and η' Φ 3 (accordingly m Φ 2 and m! Φ 2) 
(4.80) is 

Μ' = M (η φ 3, η' φ 3). (4.81) 

Because of (4.81), it is unnecessary to calculate M' if M is known. 
Examples are: 

<*2* 2 Γ 2 | G I t2\*Tx)e 2T 2> = <*2e* 2 T 2 | G \ t2\*Tx) ê 2Γ 2> 

= -3V6B, (4.82) 

<ί 2

5 2 Γ 2 I G Ι * 2

5 2Γ 2> - (t2e* 2T2\G\ t2e* 2T2> 

= - 2 0 5 + 10C, etc. (4.83) 

(iii) If η = 3 and η' Φ 3 (accordingly m = 2 and m' ^ 2), (4.80) 
is given as 

Μ' = Μ ι / χ 2 Μ, (4.84) 

which gives Μ' immediately from M. Examples are: 

<*2 3( 2Γι) βψΑ2) 2T2\G\ t2^T2)e 2Γ 2> 

= <*28(*Γι) ΛΖΑ2) *T2\G\ t2^T2) e* 2T 2> 
= - 3V6B/2, (4.85) 

(t2\2T2)e^E)2T2\G\t2^T2y 

= ~ <hz(2T2) #?E) 2T2\G\ t2e* 2T 2> 

= 25, etc. (4.86) 

(iv) If η = 3 and = 3, Μ' should be equal to M as they are the 
matrix elements in the complementary states. Therefore, one can 
conclude from (4.80) that 

Μ = Μ' = 0 if μ1μ2μχμ2' = ~1· (4.87) 



4.3 Energy Matrices 105 

An example is 

<tfTO e*(*A2) 2T21 G I ί2*(2Γ2) e 2 (i£) 2T 2> = 0. (4.88) 

AU the matrices of calculated in this way for Ν = 2, 3, 4, and 5 
are given in Appendix IV, in which the t2 and e functions ar eassumed to 
be the J-functions. To this approximation the matrices for Ν = 8, 7, 6 
are, respectively, just those for Ν = 2, 3,4 with the bases obtained by re­
placing t^S^) e™(S2r2) Sr for N= 2,3,4 by tl^S^) e*~™(S2r2) Sr. 
Common terms appearing in diagonals for a fixed value of iVare neglected. 
When these matrices are diagonalized, they have to give the energies of 
the terms of free atoms or ions indicated in brackets above the corre­
sponding matrices. 

To obtain energy matrices of + Ji^ of (2.5), we must add 

to the diagonal element in the state of t2

nem. For the state of t\~ne^~m^ 
(4.89) should be 

in agreement with the result in (4.52). This shows that the term energies 
for Ν = 6, 7, 8 are obtained, respectively, from those for Ν = 4, 3, 2 
by changing the sign of Dq. 

(—4n + 6m) Dq (4.89) 

[-4(6 — ii) + 6(4 - m)] Dq = -(-An + 6m) Dq, (4.90) 



Chapter V MULTIPLETS IN OPTICAL SPECTRA 

5.1 Energy Level Diagrams 

5.1.1 R A C A H P A R A M E T E R S Β A N D C 

In the previous chapter all the energy matrices for the systems of the 
tzgegm (n + m = Ν = 1, 2,..., 9) electron configurations were calculated 
in terms of Racah parameters Β and C and the cubic field splitting 
parameter 1 0 Dq. To apply the theory to the analysis of experiments, 
it is convenient to plot the energies of the states as a function of the 
parameters involved in the energy matrices. For this purpose let us 
first point out that the ratio CjB = y is almost independent of both the 
atomic number and the number of electrons in the iron-group ions, 
thus making it possible to reduce the number of parameters. 

This fact may be understood from the following arguments: If the 
radial part of the wavefunction Rd(r) is assumed to be that of a hydrogen­
like, or Slater-type wavefunction with an appropriate effective nuclear 
charge, that is, 

(5.2) 

(5.1) 

4/c(6 + k)\ 
(6!)2 2 1 3-"(7 + k - n)\ 

(12 - «)! •], (5.3) 
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which is always proportional to κ. Therefore, one easily sees that the 
ratio of Β to C, which is given in terms of Fk(dd) as in (2.104) and 
(2.106), is independent of κ. 

The values of Racah parameters in the free iron-group ions may be 
determined directly from the spectroscopic data,* or, if the data are 
not available, by interpolating or extrapolating from those experimentally 
determined. The values of Racah parameters and γ thus determined are 
listed in Table 5.1 for the divalent and trivalent positive ions. In Table 
5.1 one sees that the values of γ fall in a relatively narrow range of 
values 4 to 5. 

TABLE 5.1 
RACAH PARAMETERS FOR FREE IONS* 

M2+ Β C y M 3 + Β C y 

T i 2 + 695 cm" 1 2910 cm" 1 4.19 
V 2+ 755 3257 4.31 V 3+ 862 3815 4.43 
Cr2+ 810 3565 4.40 Cr3+ 918 4133 4.50 
Mn 2+ 860 3850 4.78 M n 3 + 965 4450 4.61 
Fe 2+ 917 4040 4.41 Fe 3+ 1015 4800 4.73 
Co2+ 971 4497 4.63 Co3+ 1065 5120 4.81 
Ni 2+ 1030 4850 4.71 Ni 3+ 1115 5450 4.89 

α These values are taken from Y. Tanabe and S. Sugano, / . Phys. Soc. Japan 9, 766 
(1954). 

As emphasized in Section 2.3.6, the radial functions Rd(r) in crystals 
and complex ions are not necessarily equal to the radial functions of the 
3rf-atomic orbitals. However, it seems reasonable to assume that the 
deviation from the atomic orbitals would not be large. In particular the 
deviation of γ in crystals from that in free ions would be small. Therefore, 
in what follows, we express the energy matrices in terms of two param­
eters, Β and lODq assuming the free-ion value for γ. 

5.1.2 I L L U S T R A T I O N OF T H E D I A G R A M S 

Now, dividing all the matrix elements in the energy matrices by B, one 
can calculate the energy eigenvalues in unit of β as a function of Dq/B. 
The important low-lying energy levels thus calculated are shown in 
Figs. 5.1-5.7. The values of γ used in the calculation are indicated in 

* "Atomic Energy Levels," National Bureau of Standards (1952). 
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obs(NILL) D Q / B 

FIG. 5 . 1 . The energy level diagram for the Ν = 2 system ( V I V : 3d4s 3X> — 1 1 1 ; 
Γ = 4 . 4 2 ; Β = 8 6 0 ) . 

FIG. 5 .2 . The energy level diagram for the Ν = 8 system (Ni I I I : 3d7(*F)4s 5F ~ 51 ; 
γ = 4 . 7 1 ; Β = 1030) . 
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0 1 2 3 4 
obs (Co III) D q / B 

FIG. 5 .3 . The energy level diagram for the Ν = 3 system (Cr I V : 3d2(zF)4s *F ~ 1 1 3 ; 
γ = 4 . 5 0 ; Β = 9 1 8 ) . 

FIG. 5 .4 . The energy level diagram for the Ν = 7 system (Co I I I : 3d*(sD)4s *D ~ 4 8 ; 
Γ = 4 . 6 3 ; Β = 9 7 1 ) . 
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0 1 2 3 4 
obs(MIV) Dq /B 

D q / B 

FIG. 5.5. The energy level diagram for the Ν = 4 system (Μη IV : 3d\lF)4sbF — 116; 
γ = 4.61; Β = 965). 

FIG. 5.6. The energy level diagram for the Ν = 6 system (Co IV : 3d5(*S) 4s 17S ~ ?; 
γ = 4.81; Β = 1065). 
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obs(Mnlll) D q / B 

FIG. 5.7. The energy level diagram for the Ν = 5 system (Μη III : 3i/4(5£>) 4s 
«D ~ ?; γ = 4.48; Β = 860). 

the figures. Notations, such as Cr IV and Ni III mean C r 3 + and Ni 2+, 
respectively. In each figure the energies are always measured from the 
lowest energy levels. 

As seen in the figures the curves representing energies of the terms of 
the same electron configuration* are almost parallel to each other in 
the range of large values of Dq/B. This is due to the fact that the effects 
of the configuration mixing are small when the cubic field splitting is 
large as compared with the Coulomb interaction. 

At the left of the vertical axes, the energy levels observed in the free 
ions are indicated by the horizontal lines, for which the values of Β 
shown in the figures are assumed. The positions of the energy levels at 
Dq/B = 0 should coincide with the horizontal lines of corresponding 
terms of the free ions, but because of the approximate nature of the 
theory for free ions, the coincidence is imperfect as seen in the figures. 
To show the fact that the energy of the lowest term of the dN~h con­
figuration is much higher than the energies of the terms of dN, it is 
indicated in the figures in unit of B. 

* In the figures the electron configurations are denoted by den dym instead of t"ge0

m. 
Notations de and dy are sometimes used in place of t2g and eg , respectively, when the t2g 

and eg orbitals are assumed to be the ^-functions. 
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5.1.3 B R E A K D O W N OF T H E H U N D R U L E 

As seen in Figs. 5.4-5.7, the interchange of the ground state occurs 
at a certain value of Dq/B = (Dq/B)0 in the 4, 5, 6, and 7-electron 
systems. In the range of Dq/B > (Dq/B)0 , therefore, the Hund rule 
with respect to spin which is valid for free atoms is no longer applicable 
to the ions in a cubic field. This is explained by the fact that maximum 
spin multiplicity is attained at the expense of excitation energies due 
to the cubic field splitting. This situation is clearly seen in Fig. 5.8. 
Figure 5.8a shows the spin arrangements in which the Hund rule with 
respect to spin is valid. Figure 5.8b shows the spin arrangements in 

-ι 

5E,(5D) 

4 = 

\<6s> 

Φ = 

5T2 e(5D) 

4 = 

4T l g( 4F) 

(a) 

FIG. 5.8. Spin arrangements in the ground states: (a) high-spin systems, (b) low-spin 
systems. 

which breakdown of the Hund rule occurs due to the large cubic 
field splitting between the t2g and eg levels. It is clear that in 2, 3, and 
8-electron systems the Hund rule is always valid. 

The systems in which the Hund rule with respect to spin is valid are 
sometimes called high-spin systems, and those in which it is no longer 
valid are called low-spin systems. 

2Vt2

5

fl) 

N = 4 

•N=5 

• N = 6 

eg -4-
>N = 7 

2E e(t 2

6

ge 9) 

(b) 
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5.2 Optical Transitions 

In order to prepare for the comparison between the present theory and 
optical experiments, qualitative discussions will be given in this section 
on the intensities and the line widths of optical transitions between the 
terms, i.e., of the multiplets in a cubic field. More detailed arguments 
on these subjects will be found in later chapters. 

5.2.1 INTENSITIES 

Let us first consider transitions between the terms of the same spin-
multiplicity which are called intrasystem combinations. Since all the terms 
we are considering belong to even-parity, the electric-dipole transitions 
which are proportional to the absolute square of the matrix elements of 
the electric-dipole moment, Ρ = — e Σ* Γ > , are forbidden as the parity of 
Ρ is odd. This selection rule is called the parity selection rule. The parity 
selection rule is slightly released if cubic symmetry of the system is 
slightly distorted either by the presence of a weak low-symmetry field 
of odd-parity or if it is instantaneously distorted by the presence of 
lattice vibrations of certain modes: in the latter case, the instantaneous 
distortion also brings in a weak low-symmetry field of odd-parity. The 
odd-parity field admixes even-parity states with odd-parity states, 
resulting in nonvanishing matrix elements of the electric dipole moment. 
Let us denote < Vodd) as the matrix element of the static or instantaneous 
odd-parity field, Vodd , between even- and odd-parity states. The degree 
of the admixture of an even-parity state with an odd-parity state is 
given as (Voddy/AEeo > where AEeo is the energy separation between the 
even-parity and odd-parity states. Therefore, the oscillator strength 

/ e i r b °f o u r P a r i t y forbidden transition is given approximately as 

/fori) /a l low ^ / < ^ o d d ) \ 2 /<- Λ \ 
/ E I ~ / E L Μ ^ Γ ) · ( 5· 4 ) 

where / l i ° w is the oscillator strength of the parity allowed transition 
given as 

fTw
 = ̂  ν (I P. I2 + IΡ „ I2 + I P. I2)· (5-5) 

In ( 5 . 5 ) pi (i = x, yy ζ) is the matrix element of the / component of the 
electric dipole moment Pi between the initial and final states of the 
transition. In many cases / | i l o w

 is of the order of unity. To obtain the 
magnitude of / e i r b it is necessary to estimate the magnitude of Vodd . 

Although a more detailed treatment will be given later, a rough 
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estimate of Vodd due to lattice vibrations may be made as follows: 
Since F o d d is caused by a small nuclear displacement Q from an equili­
brium position where only a cubic field Vc is present, one sees that 

^odd ~ Vc χ Q/R, (5.6) 

where R is the distance between the metal and ligand ions. The instanta­
neous nuclear displacement Q may be estimated from the zero-point 
amplitude of the vibration by equating the classical energy of a harmonic 
oscillator with amplitude Q> mass mQ , and frequency v0 to the quantum-
mechanical zero-point energy as follows: 

2 * a » W 0 a = \W (5.7) 

Assuming that v0 ~ 1 0 1 3 s e c - 1 and m0 ~ 1 0 ~ 2 3 g which is the mass of 
the ligand ion, we obtain from (5.7) the zero-point amplitude of the 
order of 10~ 9 cm. Then, assuming the values of R ~ 10~ 8 cm and 
Vc ~ 10 4 c m - 1 , one obtains from (5.6) Vodd ~ 10 3 c m - 1 . In view of 
experimental data on the absorption spectra in the ultraviolet region, 
it seems reasonable to assume AEeo ~ 10 5 c m - 1 . Then (5.4) gives 

/e°i r b - f f i ° w Χ ΙΟ"4 - 10- 4 . (5.8) 

The weak low-symmetry ligand fields of odd-parity also come from 
nuclear displacements, but in this case the displacements are static 
and associated with the goemetrical structure of a crystal or molecule. 
In many cases the magnitudes of the static displacements are of the same 
order of magnitude as that of the amplitudes of the zero-point vibrations. 
Therefore, the static low-symmetry fields of odd-parity are considered 
to be also of the order of 1000 c m - 1 , which leads us to the same result 
for/S?b as given in (5.8). 

For our intrasystem combinations, magnetic-dipole transitions are 
generally allowed, as the magnetic-dipole moment 

M = - ^ E ( l i + 2s f) 

is of even parity. The oscillator strength of the magnetic-dipole transi­
t i o n , / m l , is given by the formula, 

/mi = ν (I «. I2 + I «, I» + I mz I"), (5.9) 

in which mi (i = x, y, z) is the matrix element of the magnetic-dipole 
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moment MI between the initial and final states of the transition. Since 
is considered to be of the order of one Bohr magneton, (5.9) gives 

/mi - IO"6. (5.10) 

In deriving (5.10) ν is assumed to be 6 Χ 10 1 4 s e c - 1 as we are concerned 
with the transitions in the visible region. 

Besides magnetic-dipole transitions, electric-quadrupole transitions 
are allowed between the states with the same parity, although they are 
considered to be very weak. The oscillator strength of the electric-
quadrupole t ransi t ion/ e 2 is given by the formula, 

** i,j,=x,V,z 

in which q^ is the matrix element of the electric-quadrupole moment 

QiJ = —* Σ fa.n'j.n ~ W δ«) 
η .-electrons 

between the initial and final states of the transition. The magnitude of 
( ^ ? ) m a Y be estimated from the approximate relation, q ~ £<r)2> 

where <r> is the average of r. Then, assuming <r> ~ 10~8 cm, one 
obtains from (5.11) 

/ e 2 - ΙΟ"7· (5.12) 

Although these estimates of the order of the oscillator strengths 
are very crude and may contain an error of factor lO^ 1, it seems reason­
able to conclude from (5.8), (5.10), and (5.12) that for intrasystem 
combinations the electric-dipole transitions slightly allowed by the 
presence of the odd-parity field or the odd-parity nuclear vibration 
predominate over other kinds of transitions. 

One thing to be remarked here is that so far we have not considered 
selection rules other than the parity-selection rule. Transitions are 
sometimes forbidden by the rotational symmetries associated with both 
the initial and final states and also with the transition moment including 
the odd-parity perturbation. Such a selection rule will be discussed in 
later chapters. The above-mentioned arguments, of course, will be 
applicable only to the case in which the transitions are not forbidden by 
other selection rules. 

Now let us consider the transitions between the terms of different 
spin-multiplicities, which are called intersystem combinations. Since none 
of the electric-dipole, magnetic-dipole, and electric-quadrupole moments 
has matrix elements between the states of different spin-multiplicities, 
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the intersystem combinations are forbidden. This selection rule is 
called spin-selection rule. The spin-selection rule is slightly released if the 
spin-orbit interaction is taken into account. As explained in detail later, 
the spin-orbit interaction connects the terms with resultant spins S and 
S', where | S — S' \ = 0, 1. Therefore, the term with S may have small 
components of the terms with £ ± 1 if the spin-orbit interaction is 
taken into account, and the presence of these small components slightly 
allows the spin-forbidden transitions S <± S ± 1. The degree of the 
admixture of the S term with the 5 ± 1 terms is approximately given 
by (V8oy/AEee , where <J^S0> is the matrix element of the spin-orbit 
interaction between the S and S ± 1 terms and AEee is the energy 
separation between them. In our problem of iron-group ions in a cubic 
field, <Γ 8 0 > is of the order of 100 cm" 1 and AEee is of 3000 crti"1. 
Therefore, the oscillator strengths of intersystem combinations for the 
parity-forbidden electric-dipole, magnetic dipole, and electric-quadrupole 
transitions are, respectively, given as 

/ e l

f o r b - 10-7, (5.13) 

f'mi ~ ΙΟ"9, (5.14) 

f'e2 ~ 10- 1 0. (5.15) 

More detailed arguments on the intersystem combinations will be given 
after the spin-orbit interaction is fully discussed. 

For the comparison of the present theory with experiments it is also 
of some help to point out the fact that, if the terms are well specified by 
electron configuration t2geg

m, optical transitions are forbidden between 
the terms of t%eg

m and t^e™^ where | k | > 2. This selection rule is 
called configuration-selection rule, and is expressed by saying that 
k-electron jumps (| k | ^ 2 ) are forbidden. The explanation of this 
selection rule is as follows: Since the transition moments are one-electron 
operators, their matrix elements between the terms of t^geg

m and 
t\gke^k are zero from (3.35). Even in the case of the electric-dipole 
transitions slightly allowed by the odd-parity perturbation where two 
one-electron operators, the electric dipole moment and the odd-parity 
perturbation Vodd , are incorporated in the transition matrix elements, 
one can prove the validity of this selection rule. Clearly, the selection 
rule cannot be applied when the configuration mixing is appreciable. 

Problem 5.1. Assuming Vodd as a small perturbation, show that the 
configuration-selection rule may be applied to the electric-dipole transi­
tions slightly allowed by perturbation Vodd . Ο 
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5 .2 .2 LINE WIDTHS 

As pointed out in Section 5 .1 .2 , the separations of the energy levels 
of the same configuration are almost independent of the cubic field 
splitting parameter in the range of large Dq/B, while those of the levels 
belonging to different electron configurations are almost proportional 
to lODq. This fact tells us that the transition energies between the terms 
of the same electron configurations is independent of the fluctuation of 
the cubic field which is caused by the nuclear vibration, while those 
between the terms belonging to different configurations have a certain 
spread corresponding to the same fluctuation. The magnitude of this 
fluctuation may be considered to be of the same order of fOdd^lOOO c m - 1 

at Τ = 0°K, as one can apply the same method of the estimation to the 
present case as that used in estimating Vodd . Therefore, we expect that 
the spectral lines connecting the terms of different configurations should 
have the spectral widths of ~ 1 0 0 0 c m - 1 ; consequently they should be 
observed as broad bands even at Τ = 0°K. On the other hand, the 
spectral lines connecting the terms of the same configuration are expected 
to be observed as sharp lines. 

In the present arguments, we have considered only a single mode 
of the nuclear vibration which keeps the cubic symmetry of the system. 
This mode is sometimes called a breathing mode of the vibration. How­
ever, if one takes into account the effects of other vibrational modes, the 
spectral lines connecting the terms of the same electron configuration 
may be broadened due to the vibrational fluctuation of low-symmetry 
fields. This point will be discussed in the next chapter. 

In the next section, the qualitative arguments on the line widths as 
given here will be found very useful in assigning both the sharp and 
broad structures in the absorption spectra observed in the crystals and 
complex ions containing the iron-group ions. 

5.3 Comparison between Theory and Experiments 

In order to show how our theory may be compared with experimental 
data, we will mention two examples, the comparison with the absorption 
spectra of A1 2 0 3 containing C r 3 + impurity ions called ruby and of M n F 2 

crystals which have been studied in detail both experimentally and 
theoretically. 

5.3.1 MULTIPLETS I N RUBY 

To the first approximation C r 3 + ions are considered to be in a cubic 
field in ruby, although the actual symmetry at the Cr 3+ site is trigonal C 3 . 
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The effects of the trigonal field and the spin-orbit interaction will be 
discussed later. Here we completely neglect the fine structure of the 
multiplets. 

The observed absorption spectrum around the visible region is 
shown in Fig. 5.9. In the visible region there are two broad bands having 

Wavenumber (χ 103cm 1 ) 

FIG. 5.9. Absorption spectrum of ruby (by A. Misu, unpublished). , Ε JL C 3 (a); 
, El/C3 (TT) (0.28 wt % C r 2 0 3 ; room temperature). 

the widths of ~ 3000 c m - 1 which are called U and Y bands, and three 
groups of sharp lines called R, R\ and B. The spectral widths of these 
lines range from 0.1 to 10 c m - 1 . In addition to them, one relatively 
weak broad band is observed in the untraviolet region, which will be 
called Y'. The oscillator strengths of these absorption bands and lines 
are estimated from the observed absorption coefficients k(v) by using the 
relation* 

where Ν is the number of the absorption centers per cubic centimeter, 

* In solution the absorption intensity is given in terms of the extinction coefficient e(v) 
defined by the relation / = / 0 10~ € C o l , where / is the thickness of the solution in centimeters, 
c0 is the concentration of the absorption center in moles per liter, and I0 and / are the 
intensities of the incident and transmitted light, respectively. Then, the oscillator strength 
is given as 

2.3 x 10 3 mc Γ 
J = —— ~ J <v) dv, 

Avog 

where i V A v o g is the Avogadro number. 
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and ν the frequency measured per second. For a rough estimate of / , 
one can replace the integral in (5.16) by A m a x Δν assuming the gaussian 
shape for the absorption curve: here £ m a x is the absorption coefficient 
at the absorption peak and Δν the half-width. Then, one finds that the 
oscillator strengths of the broad absorption bands are of the order of 
10~4, and those of the sharp lines of the order of 10~6 to 10~7. From 
polarization measurements, the transitions responsible for the absorption 
are known to be of the electric-dipole type. The observed integrated 
intensities are almost independent of temperature. 

Considering these experimental facts, one may conclude that the 
absorption bands are due to the intrasystem combinations, and the sharp 
lines due to the intersystem combinations. Actually, looking at Fig. 5.3 
one can find three intrasystem combinations, 

l2g J12g ^ l2geg 1 2g > l2geg 1 lg > d I l u
 L2geg 1 lg > 

and three intersystem combinations, 

l2g ^2g ^ l2g ^g ·> l2g 1 lg » d I l u L2g 1 2g 

with EjB less than 30. Since these intrasystem combinations connect the 
terms of different electron configurations and the intersystem ones 
connect the terms of the same configuration, it is also reasonable, in 
view of spectral widths, to assign these intrasystem combinations to the 
broad bands and the intersystem combinations to the groups of the 
sharp lines. 

Actually, one can fit the observed spectrum with the calculated energy 
level diagram, if the assignments shown in the tabulation are made. 

Absorption Transitions 

R lines L2G S±2G ^ Hg ^g 

R' lines ^ Hg 1 lg 

t/band 2 4 T 

Β lines ^ Hg 1 2G 

y band —> t2geg Tlg 

Y'band *• i2geg J- ig 

To obtain a quantitative agreement, it is found that one has to choose 
the values of parameter, lOZty = 17,000 cm" 1 , Β = 700 cm" 1 , γ = C/B 
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= 4.0. The assignment of the Y' band indicates that it is due to a two-
electron jump. The weak, but observable, intensity of the Y' band may 
be explained by taking into account the configuration mixing of the 
t\geg *Tlg and t2geg

2 *Tlg terms. Temperature-independent intensities of 
these absorption bands and lines indicate that all the transitions are the 
electric-dipole transitions slightly allowed by a static odd-parity field. 
Actually, the C r 3 + site has no inversion symmetry so that the presence 
of a static odd-parity field may be expected. 

In ruby the t\g

 2Eg and t\g

 2Tlg excited states can be populated as 
much as in the ground state by using a strong optical excitation called 
optical pumping, and optical absorption from these excited states can be 
observed as shown in Figs. 5.10 and 5.11, in which the absorption curves 
for the light polarized perpendicular (σ) and parallel (π) to the crystal 
axis are given separately. 

The observed locations of the oc and β groups of relatively sharp lines 
shown in Fig. 5.10 suggest the assignments shown in the tabulation. 

Absorption Transitions 

α lines t\g

 2Eg -*• t\g

 2 T 2 

β lines 4 2Tlg -> 4 2 T 2 

These assignments have been confirmed by detailed studies of the fine 
structure and the temperature dependence of the intensities of these 
groups of lines. The sharpness of the lines also support the above 
assignments, as these transitions connect the terms of the same electron 
configuration t\g. Although these transitions are spin-allowed, the 
observed oscillator strengths are of the order of 10~6 which seems too 
small: The explanation has not yet been found. 

The oscillator strengths of the I, II, III, and IV bands in Fig. 5.11 are 
comparable to those of the U and Y bands. This suggests that these 
bands are due to the spin-allowed transitions mainly from the t\g

 2Eg 

term to the t\geg

 2Fg terms: they should be ascribed to the one-electron 
jumps as the band widths are broad. There are eight t\geg

 2Fg terms, 

ûg^Tlg) eg

 2Tlg , t\g(^Alg) eg

 2Eg , 

^2g(lf^2g) eg 2^ler > ^îgi^g) eg 2^g > 

t2g(?Tlg) eg

 2T2g , tlg^Eg) eg

 2Alg , 

t\g^T2g) eg

 2T2g , t\g{^Eg) eg

 2A2g , 



6 0 0 0 7 0 0 0 

Ι/λ (cm"1) 

8 0 0 0 

FIG. 5.10. Absorption spectrum of optically pumped ruby ( , σ, 86°K; 
86°K; , σ, 300°K; 
21, 1331 (1966).] 

• —, π, 300°K). [T. Kushida, / . Phys. Soc. Japan 

15,000 2 0 , 0 0 0 25 ,000 3 0 , 0 0 0 3 5 , 0 0 0 
Ι/λ (cm"1) 

FIG. 5.11. Absorption spectrum of optically pumped ruby ( , a\ 
Kushida, / . Phys. Soc. Japan 21, 1331 (1966).] 

- - - , " ) . [T. 
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but one can show that the transitions from the t\g

 2Eg term to the four 
2Eg , 2Eg , 2Alg , 2A2g terms are forbidden (see Problem 5.2). Therefore, 
the observed bands are expected to be due to the transitions to the four 
tlg eg

 2Γ0 (Γ0 = Tlg , T2g) terms. By using the same values of the 
parameters as those determined from the absorption spectrum of 
unpumped ruby, it has been found that, if one uses the assignments in 
the tabulation, the observed peak energies of these bands may reasonably 

Absorption Transitions 

I band tlg * Eg —• t\gCTlg) eg 
2T 

1 %g II band —• t2g( T2g) eg 

2T 1 lg 

III band -> t\gCTlg) eg 
1 lg 

IV band ~* Hgi T2g) eg 

1 2g 

be fitted to the calculated transition energies. In the absorption experiment 
of unpumped ruby, the transitions to these t\g eg

 2Fg terms are spin-
forbidden and correspond to the one-electron jumps. Therefore, these 
transitions are unobservable because of the weak intensities and the 
large spectral widths expected for these transitions. 

Problem 5.2. By using the wavefunctions of the t\g

 2Eg and t\geg

 2Pg 

(Tg = Eg , Alg , A2g) terms, show that the matrix elements of any one-
electron operator between the t\g

 2Eg and t\geg

 2Fg (Tg = Eg , Alg , A2g) 
terms are zero. Ο 

5.3.2 MULTIPLETS I N M n F 2 CRYSTALS 

A M n F 2 crystal has rutile structure, but to the first approximation 
M n 2 + ions are surrounded octahedrally by six F~ ions, which makes 
possible the application of our theory.* The observed absorption 
spectrum of M n F 2 is illustrated in Fig. 5.12. In M n 2 + ions we have only 
one S = 5/2 term which is the ground state as seen in Fig. 5.7. There­
fore, all the transitions from the ground state are expected to be spin-

* Since M n 2 + ions are placed periodically in MnF 2 , the exact wavefunctions should 
be the bases of the irreducible representations of a space-group involving translational 
symmetry and the energy levels in general have dispersion with respect to the wave-
vector forming energy bands. However, if the widths of the energy bands are much 
smaller than the term separations, it is possible to apply the ligand field theory without 
taking into consideration the periodicity in crystals. 
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forbidden. Actually, all the observed absorption intensities are very 
weak. As mentioned in the previous section, the spin-forbidden transi­
tions from the ground state to the S = 3/2 terms are slightly allowed by 
the spin-orbit interaction. Therefore, one expects that the final states 
of the observed transitions are spin-quartets. As seen from a relatively 
small value of lODq determined later, the effects of the configuration 
mixing are appreciable in this case, so that to specify the terms it is 
convenient to indicate, in addition to the main electron configurations 
^2gegmy t n e f r e e i ° n terms 2 5 + 1 L from which the terms 2 s + 1 J n arise. 

It has been found that, if one uses the values of parameters, Β = 
675 cm- 1 , C = 3750 cm" 1 , and lODq = 7000 cm" 1 , the observed 
absorption peaks are nicely explained by the theory as shown in the 
tabulation. In Fig. 5.12 the final states of the transitions are indicated 
above the corresponding absorption peaks. 

Transitions Observed peak energies Calculated 

~> Tlg(t2geg : 19.4 Χ 10 3 cm" 1 21.1 X 1 0 3 c m - 1 

-> T2g(t2geg : 4 G) 23.5 23.9 

—** Alg(t2geg 

*Eg(tlgeg

2 : 
: 4 G ) 

4G) 

25.2 
25.3 
25.5 

25.5 

-* 12a{t2geg :'D) 
28.1 
28.4 

28.7 

_^ *π (*z

 0

 2 . 

~~* r>g\l2geg · 
*D) 30.2 30.2 

> Tlg{t2geg = 4 P ) 33.1 34.6 

—> A.2g{t2geg : 4 F ) 39.0 41.1 

-> l\g\t2geg 41.4 a 41.9 

a Observed by H. J. Hrostowski. 

5.3.3 EMPIRICAL VALUES OF Β A N D lODq 

As seen in the examples given in the previous subsection, a suitable 
choice of the parameter values B, C, and lODq in our theory explains the 
observed optical spectra in many insulating crystals and complex ions 
involving metal ions with rf-electrons. The values of Β and Dq chosen 
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FIG. 5.12. Absorption spectrum of MnF 2 at room temperature (molar extinction 

coefficient, liter cm" 1 mole- 1). [J. W. Stout, / . Chem. Phys. 31, 709 (1959).] 
for iron-group metal complexes with H 2 0 ligands are summarized in 
Table 5.2. T A B L E 5.2 

EXPERIMENTAL VALUES 0 OF Dq AND Β 

T i 3 + V 3 + Cr3+ Mn 3+ F e 3 + Co3+ 

Dq (cm"1) 2030 1860 1720 2100 1350 1920 
Β (cm"1) 642 

(862) 
765 

(918) 
820 

(1015) 

C r 2 + Mn 2+ F e 2 + Co2+ Ni 2+ Cu2+ 

Dq 1390 1230 1030 840 820 1220 
Β 810 

(810) 
860 

(860) 
917 

(917) 
971 

(971) 
1030 

(1030) 

α Y. Tanabe and S. Sugano, / . Phys. Soc. Japan 9 , 766 (1954). Values in the parentheses 
are those of Β of free ions. 

As for the cubic field splitting parameter lODq, the following empir­
ical rules have been found: Irrespective of the ligand and the central 
metal ions, lODq in the systems with divalent metal ions is around 
10,000 c m - 1 and in those with tri valent metal ions around 20,000 c m - 1 . 
The change of the ligand elements gives the variation of lODq which 
is of the order of 1000 c m - 1 . It has been found that, when the metal 
element is fixed and the ligand is varied, the magnitudes of lODq may 
be arranged in the following order: 

I < B r < C l < S < F < 0 < N < C , 

"-i ι Η 1 
4A1g(4Gj 

—1 1 1 
4Eg(4G) 

4T,g(4P)%(4D) 

-JMJ 1 4T2g(4G) 
ι ι ' 

4T1g(«G) 
ι 1 · 
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where the elements are those in ligands attached directly to the metal 
ion. This order is called Tsuchida's spectrochemical series. On the 
other hand, Jorgensen* has pointed out that, when the ligand is fixed and 
the metal ion is varied, the magnitudes of lODq may be arranged in the 
following order: 

M n 2 + < N i 2 + < C o 2 + < F e 2 + < V 2 + < F e 3 + < Cr3+ < V 3+ < C o 3 + 

< Mn 4+ < Mo 3+ < Rh3+ ~ Ru3+ < P d 4 + < Ir3+ < Re4+ < Pt 4 + . 

Detailed discussion on the origin of lODq will be given in Chapter X 
on the molecular orbital and the Heitler-London theories. 

As for the Racah parameter B, the empirically determined values, in 
particular for trivalent metal ions, are smaller than those of free ions as 
shown in Table 5.2. This means that radial functions Rd(r) in crystals and 
complex ions are slightly different from those of the free ion. Probably 
the reduction from the free ion values would mean the expansion of the 
free ion radial functions in the presence of ligands. This problem will 
also be discussed in Chapter X. 

* C. K. Jorgensen, "Absorption Spectra and Chemical Bonding in Complexes. Pergamon 
Press, New York, 1962. 
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So far we have been concerned only with the systems of cubic 
symmetry. There are many crystals and complex ions in which, to the 
first approximation, transition metal ions are surrounded octahedrally by 
ligands. However, a more detailed examination of the site symmetry of the 
metal ion very often reveals that the site symmetry is lower than cubic. 
For example, the site symmetry of C r 3 + ions in ruby is trigonal, C 3 , as 
mentioned in the previous chapter, and the site symmetry of M n 2 + ions 
in M n F 2 is orthorhombic, D2h . In these systems the electrons associated 
with the metal ions are exposed to the fields of low symmetry in addition 
to a cubic field. The presence of a low-symmetry field causes splittings 
and shifts of the terms in a cubic system, and gives, together with the 
spin-orbit interaction discussed in the next chapter, fine structure of 
the multiplets. This chapter presents the methods of deriving the ligand-
field potentials of low symmetry and calculating their matrix elements 
between the components of the cubic terms. 

6.1 Single Electron in Fields of Low Symmetry 

6.1.1 DERIVATION OF THE LIGAND-FIELD POTENTIALS 

As discussed in Chapter I, the ligand-field potential is invariant to any 
symmetry operation in the group to which symmetry of the system 
belongs. Therefore, it has the same symmetry property as that of the 
base function of the identity representation of the group. For example, 
the cubic-field potential has the same symmetry property as that of the 
1 2 6 
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base function of irreducible representation Alg of the O^-group. If the 
base function of Alg of the O^-group is expressed in the form 

the terms of the lowest order k> except k = 0, should be those of k = 4. 
This is because, as seen in Table 1.2, Alg first appears when one reduces 
representation D{1) with 1=4 (except / = 0) whose base functions are 
given in terms of 0^\θφ) with k = 4. The next higher terms in (6.1) 
have to be those with k = 6, as Alg appears when D{1) with / = 6 is 
reduced. 

Instead of reducing representation D(l\ we will construct the terms of 
k = 4 according to the consideration in Section 2.2.2. The explicit form 
of these terms may be obtained by using (2.32) as proportional to 

in which <pu and <pv are already given in (1.32a) and (1.32b). According to 
the arguments given in Section 2.2.2, it is clear that (6.2) is the base 
function of irreducible representation Alg of the O^-group. 

Since (6.2) is given by a linear combination of ^ ^ ' ( ^ ( ^ ^ ' ( i ç ) ) 
with k' = k" = 2, it is necessary for obtaining an expression like (6.1) 
to express the product of two spherical harmonics by a linear combi­
nation of spherical harmonics as 

(6.1) 
km 

9«(r)<pu{rKEuEu | + <p„(r) <pv{r)(EvEv \ Axe^ 

= Λ Ϊ fo>„(r) y.(r) + <pjr) < p » ] , (6.2) 

Υ*·~<*Ρ) = Σ "*m(k'm', k"m") C™(&p). (6.3) 

By using the orthogonality relation, 

(6.4) 

coefficient akm(k'm'9 k"m") is obtained as 

akJkfm\ k»m") = 2k + 1 
4π j άΨ de sin β ο™*(θφ) Y*mi&p) Υ^Λθφ) 

2k + 1 
4π 

(-\)m"c\k'm', k" -m"), (6.5) 
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which is nonvanishing only when 

m = m' + m". (6.6) 

The values of ck(k'm', k" —m") are given in Table 1.2. 
According to (6.3), (6.5), and (6.6), 

Ymtfa) Υ2ο(θψ) = ^ [ c F M + y C?{<kp) + ^ C< 4 ) (M], (6.7) 

Ï W « P ) = ^ 3 ^ Ci4i , (6.8) 

and 

Y2±2(<V) F2T2(0<p) = 1 [c<°>(0?) - y C$\e<p) + I C?{<kp)\ (6.9) 

Then, one finds that (6.2) is proportional to 

\ C>9>) + \θ?(θφ) + 10ί4\θΨ) + Ο^θφ)] J. (6.10) 

The angular dependence of the second term is in agreement with that of 
the fourth-order term in (1.11) derived from the point-charge model. 

Similarly, we may derive the explicit form of the potential energies of 
low-symmetry fields. Let us first consider the system of tetragonal 
symmetry illustrated in Fig. 1.7. As pointed out in (1.95) this system has 
symmetry Dih . The character table for the Z) 4 / r group is easily obtained 
from Table 1.3 for the D 4-group. As seen from Table 1.3, the base of the 
identity representation of the Z) 4 / r group is the u base of the Eg irre­
ducible representation of the O^-group. Therefore, the potential of the 
Z ) 4 / r field with k = 2 in the form of (6.1) is immediately found to be 
proportional to 

θξ>(θΨ). (6.11) 

Since Eg of the O^-group also appears when Z) ( 4 ) is reduced as shown in 
Table 1.2, there should be the term with k = 4 in the potential which 
transforms like the u base of Eg . This term is obtained by using (2.37) as 

<Pu(T) <Pu(rKEuEu I Eu} + 9v{r) <pv(r)(EvEv \ Eu) 

= ^ t - ^ ( r ) ^ ( R ) + ^ ( R ) * > Λ Γ ) ] . ( 6 · 1 2 ) 

Again, using (6.7), (6.8), and (6.9), one finds that (6.12) is proportional to 

C<2)(%) + jc<4)(%>) - yjl [θΙ*\θφ) + Ci4>(%)] j . (6.13) 
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Putting the first term of (6.13) and (6.11) together, one obtains the Déh 

ligand-field potential, Vtet, up to k = 4 as 

F tet = A(r) CfXdtp) + B'(r) | c 0

w ( < V ) - ^ [C< 4 )(^) + Cl4H)]J, (6.14) 

where A(r) and £'(/") are the functions of r only. We can express (6.14) 
as the sum of cubic and axial fields as follows: 

Ftet(r) = Vc%r) + V^Jr), (6.15) 
where 

r « . f = A(r) Cf{e<p) + B(r) C<4)(ftp). (6.16) 

In (6.15) and (6.16) 

Vc\r) = - 1 B\r) jc<4)(0?) [C?(<kp) + Ci4>(<V)]j (6.17) 

and 

B(r)=^B'(r). (6.18) 

In (6.16) F a x 2 is invariant to rotations around the #-axis by any angle φ 
as it is independent of φ. Therefore, it is the potential of an axially 
symmetric field. 

Problem 6.1. Calculate the potential energy of an electron due to the 
ligand point-charges in the system of the D 4^-symmetry as shown in 
Fig. 1.7. Ο 

In contrast to the Z)4^-group, the Z)4-group has no inversion symmetry 
so that the base function of the identity representation A1 of the Z)4-group 
is given by a linear combination of the u components of Eg and Eu of the 
O^-group. Accordingly, the Z)4-field potential has to have the odd-parity 
part in addition to the even-parity part given in (6.15). Since Eufirst appears 
when D{5) is reduced as seen in Table 1.2, the odd-parity potential of 
the lowest order is given in terms of θ£\θφ). The even-parity terms of 
ligand fields are responsible for the term splittings and shifts, but the 
odd-parity terms are responsible for allowing slightly the parity-
forbidden electric dipole transitions. 

Problem 6.2. Show that the even-parity potentials in the C±v , C±h , 
and C 4 systems are given by Vtet in (6.15), and the odd-parity potentials 
of the lowest order for C 4 u and C 4 are given in terms of 0${θφ\ while 
for C±h it is given in terms of 0^)(θφ). ζ} 
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At this point, it is important to make the following statement. In many 
textbooks, ligand-field potentials are given as 

YAkyC%\e<p), (6.19) 
km 

which is derived by assuming that the potential V(r) satisfies the Laplace 
equation 

AV(r) =0. (6.20) 
The solution of the Laplace equation, which is analytic near the origin, 
is given in the form of (6.19) in which the Akm's are numerical constants. 
However, if one takes into account the spatial distribution of ligand 
electrons extended toward the metal ion, one has the equation 

AV(r) = *ne9(r\ (6.21) 

where p(r) is the electron density of ligands. The solution of (6.21) is 
given in the form of (6.1) rather than (6.19). 

Now let us next consider the system in which ligands 1, 2, 3 are 
displaced by δ along the [111] direction and ligands 4, 5, 6 are displaced 
by the same amount along the [111] direction as shown in Fig. 6.1. This 
system has symmetry D2d, which is the direct product of D3 and C{. 
The Z)3-group contains six elements: E, C3(xyz), C3

2(xyz) = C3(xyz), 
C2(xy)y C2(yz), and C2(zx). These elements are classified into three 

4 

FIG. 6.1. An M X e system of Dsd symmetry. 

classes, Ê, C3 , and C2 . For this simple group, the character table can be 
constructed only by the use of the orthogonality relations of the first and 
second kinds given, respectively, in (1.67) and (1.69b). The character 
table for D3 thus obtained is given in Table 6.1. Comparing this table 
with Table 1.1, one may derive the following reduction of the irreducible 
representations of the O-group when symmetry is reduced to D3 : 

Α1^>-Α1> A2-+A2, Ε —> Ey (6.22) 
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T A B L E 6.1 

CHARACTER TABLE OF THE £> 3-GROUP 

Irred. 
repres. Ê 2€z 3 ( ? 2 

Ax 1 1 1 
A, 1 1 — 1 
Ε 2 — 1 0 

We see from (6.22) that the base of the Alg of the Z) 3 d-group reduced 
from T2g of the O^-group is (ξ + η + ζ)/y/3, consequently the angular 
dependence of the ligand-field potential in the Z>3d-system with the 
lowest k (k Φ 0) should be the same as that of (yz + %x + xy)ly/3. 
The base of the Alg of D3d reduced from Alg of Oh clearly gives the 
cubic-field potential with k = 4. 

Before deriving the explicit form of the DM potential, it is convenient 
to introduce a new coordinate (XYZ), in which the Ζ and Y axes are 

χ 

FIG. 6 .2 . Coordinates (Χ, Y, Z) and y, z). 

6 

chosen along the [111] and [110] directions, respectively, as shown in 
Fig. 6.2. The relation between the (xyz) and (XYZ) coordinates is given 
as follows: 
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It is straightforward to show, by calculating the characters from the 
transformation matrices and comparing them with Table 1.3, that the 
angular functions tabulated in Table 6.2 may be the bases of the 

T A B L E 6 .2 

TRIGONAL BASES 

Irred. 
repres. Components Bases ΨΓΜ 

«+ 
a_ Υι-ι(βφ) 

Ε u+ - [ I W M - V 2 y 2 1 ( ^ ) ] / V 3 
u_ 

[Υ^ΘΨ) + VÎYt-^WVl 
x+ —[V2y 2 _ 2 (M + Y 2 1 ( % ) ] / V 3 
x_ [νΐΥ^θψ)— Υ^θφΚίνΐ 
XQ Υ2θ(.θψ) 

irreducible representations of the O-group: In the table spherical 
harmonics are referred to the new coordinate system. One may also 
show after elementary, but lengthy, calculation that the bases, which will 
be denoted by ψ Γ Μ , in Table 6.2 are obtained from the linear combi­
nation of cpryS referred to the (xyz) coordinate system as follows: 

<ΡΓΜ = Σ<ΡΓν<Γγ\ΓΜχ (6.24) 

in which the <Jy | Γ My s are the numerical coefficients: The unitary 
matrices whose elements are <Ty | ΓΜ} are given as 

u_ 

u Γ - 1 Μ χ J _ 
ν L — i —i J λ/2 

and 

\ ΓΜ "+ a° 
r r \ (*+) (*-) (*o) 

β (ν) 
y(0 

—ω 
—ώ 
- 1 

ω 
ω 
ι 

χ 
V 3 ' 

(6.25) 

(6.26) 

where ω = e2rTÎ/s and ώ = ω2 = β~2πί/3. 
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Problem 6.3. Confirm (6.25) and (6.26). Ο 

By applying symmetry operations in the Z)3-group, the functions in 
each set of (u+ , u_)> (a+ , a_), and (x+ , x_) are shown to be the bases 
of E, the a0 function the base of A2, and the x0 the base of Ax of the 
Z)3-group. Therefore these functions are called trigonal bases. For 
further discussions on the trigonal systems, it is convenient to have 
Clebsch-Gordan coefficients for the trigonal bases, <Γ' 1 Μ 1 Γ 2 Μ 2 | ΓΜ}. 
As easily seen from the definition of C-G coefficients, the C-G coeffi­
cients for the trigonal bases are calculated from those for the cubic bases 
as 

<TXMJ2M21 ΓΜ) 

= Σ <ΓιΜι I ΓιΎιΧΓ2Μ21 Γ2γ2){ΓιγιΓ2γ21 ΓγΧΓγ | ΓΜ}, (6.27) 
ν χ ν 2 ν 

in which necessary (ΓΜ | Γγ}'δ are already given in (6.25) and (6.26). 
The C- G coefficients for the trigonal bases calculated by (6.27) are given 
in Appendix VI. 

Now returning to the problem of deriving the explicit form of the D3d 

potential, the k = 2 term, which is found to be proportional to 
xo = + V + 0/V3, is given from Table 6.2 as proportional to 
£(?\θφ)> in which the spherical harmonic is referred to as the (XYZ) 
coordinate system. The k = 4 term, which transforms like the # 0 

component of T2g , may be obtained from 

Ψχ+ψχ_(Τ2Χ+Τ2Χ- I 7 > 0 > + Ψχ_Ψχ+(Τ2Χ-Τ2Χ+ I ? > 0 > + 9x^XQiT2XQT2X0 I T2X0> 

= (Ϊ)1/2(ψχ+Ψχ_+Ψχ0Ψχ01 (6.28) 

which, by using Table 6.2, is given in terms of the products of spherical 
harmonics referred to the (XYZ) coordinate system. The products of 
spherical harmonics other than (6.7)-(6.9) are expressed by the linear 
combinations of spherical harmonics as follows: 

Υ2!(θψ) Υ^θφ) = [C<0>(%) + η 0?\θφ) - f C<4>(0<p)] (6-29) 

Y 2 ± 2(<V) Υ2±1(ΘΨ) = i - (^) 1 / 2 Ci4>(<V). (6.30) 

Using (6.9), (6.29), and (6.30), one finds that (6.28) is proportional to 

\ 0?\θΨ) + JC<4)(ÎV) - \ Q 1 ' * [C<4)(%) - C%<hp)][ (6-31) 
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Υ1±1(θφ) Υ2Ψι(θφ) = - [0?(θφ) - Ο^θφ)], (6.39) 

On the other hand the term of cubic symmetry, which of course is 
invariant to the Z) 3 d-symmetry operations, is obtained from 

<Ρχ+Ψχ_(Τ2χ+Τ2χ_ I A*i> + <Ρχ_ψχ+<Τ2χ_Τ2χ+ I A&y + φΧοφΧο(Τ2χ0Τ2χ0 I Axe^ 

= ^ (—2<Px+<Px- + <Px0<Px0)> ( 6 · 3 2 ) 

which, by using (6.9), (6.29), and (6.30) again, is found to be proportional 
to 

\ CÎ>°\e<P) + jC^flr i + ( y ) V 2 [^(θφ) - ^1(θφ)]\. (6.33) 

Neglecting the first term in (6.33) and putting together (6.31) and (6.33), 
one finally obtains the potential in the D 3 < r symmetry system as 

VtTig=Vc<>+Vax,z, (6.34) 
where 

Vco = D(r) JC<4)(09) + ( ^ ) 1 / 2 [Cf*(<kp) - CfSi^JlJ, (6.35) 

* W = A{r) C<?\e<p) + B(r) ^(θφ). (6.36) 

The apparent forms of F a x z in (6.36) and V&xz in (6.16) are the same: 
The only difference is that in the latter the quantization axis (#-axis) is 
along the fourfold symmetry axis of the octahedron. 

In contrast to the D2d case, the Z)3-group has no inversion symmetry 
so that the ligand-field potential in the Z>3 system has to involve the 
odd-parity part in addition to the even-parity part given in (6.34)-(6.36). 
As seen in Table 1.2, T2u first appears when Z) ( 3 ) is reduced. Therefore, 
the odd-parity potential of the lowest order is given in terms of 0$(βφ) 
and it is proportional to 

Ψα+<Ρχ_(Τχα+Τ2χ_ I 7> 0> + yajpXj(Txa_T2x+ \ T2x0} 
î 

= ^2 (ψα+ψχ- ~ (6·37) 

where the explicit forms of φα± are given in Table 6.2. By using the 
relations derived from (6.3), (6.5), and 

Υΐ±ΐ(θφ) Υ2±2(θφ) = f θίί(θφ), (6.38) 
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Eq. (6.37) is found to be proportional to 

V?T% = E(r)[C<?\dcp) + ^1(ΘΨ)1 (6.40) 

which is nothing but the odd-parity potential in the D 3-symmetry 
system. 

By using the above mentioned analytical method based on the group 
theory, it is possible to obtain the explicit form of the ligand-field 
potential in any symmetry system. However, in the analysis of experi­
ments, the derivation of the explicit form of the potential is not always 
necessary and a more general treatment of the potential can be applied 
as discussed in the next section. 

6.1.2 TERM SPLITTINGS AND SHIFTS 

Let us first calculate the splittings of the cubic 2T2g and 2Eg terms in 
the system of a single electron in a tetragonal field. The wavefunctions 
associated with these terms are assumed to be those given in (1.31) and 
(1.32), i.e., the ^-functions. Due to the cubic part of the ligand-field 
potential, the 2T2g and 2Eg terms are separated by lODq. 

By using (6.16), (1.31), (1.32), and (1.15), the matrix elements of 
F a x between the components of the 2T2g term are given as 

<f I v*XtZ \ξ> = <ν\ v*XtZ ι v y 

= (A(r)} c*(21, 21) + <£(r)> c4(21, 21) 

= lj<A(r)}~~<B(r)}y (6.41) 

<ζ I Vax>z I £> = (A(r)> c\22, 22) + <£(r)> c*(22, 22) 

= - ? < ^ ( r ) > + l < 5 ( r ) > , (6.42) 

<f I V™,z \v> = <V I VaXtZ I Ο = <£ I V&XtZ I Ο = 0, (6.43) 

where for any function/(r) of r 

<f(r)> = Γ drr*f(r)Rd*(r). (6.44) 
J 0 

Therefore, the energy eigenvalues of the three-dimensional secular 
equation are obtained as follows: 

E(B2g) = <ξ I F a x > , I £>, 
(6.45) 

E(Ef) = <ξ I F a x , , I ξ}, 
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where state B2g is nondegenerate and state Eg is doubly degenerate. Thus, 
the splitting Q± of the 2T2g is given as 

Q1 = E(Eg) - E(B2g) 

= ^ ( r ) > - A (6.46) 

Similarly the matrix elements of Vaxz between the components of 
the 2Eg term are given as 

<« I ^ax,21 «> = η <A(r)> + A. <B(r)}, (6.47) 

Ο I F a x > 2 1 v) = - ? <Λ(Γ)> + 1 <5(r)>, (6.48) 

<« i I »> = 0, (6.49) 

which give the energy eigenvalues, 

E(Alg) = <« I Vax,z I «>, 
(6.50) 

£(β ΐ 9 ) = I Fax,, I ©>. 

Thus, the splitting Q2 of the 2Eg term is given as 

Q2 = £ ( ^ ) - £(Β 1 9) 

= *<A(r)}+^<B(r)y. (6.51) 

When the term separation between 2T2g and 2jBg is not much larger than 
the tetragonal splittings Qx and Q2 , it is important to take into account 
the nondiagonal matrix elements of F a x z between the components of 
2T2g and 2Eg . However, in the present problem, one can show that all 
nondiagonal elements are zero: This is clear from the group-theoretical 
point of view since same irreducible representation of the Z) 4 / r group 
does not appear in the reduction of both 2T2g and 2Eg . The splittings of 
the 2T2g and 2Eg terms are schematically illustrated in Fig. 6.3. 

The next example is the calculation of the splittings of the 2 T2g and 
2Eg terms in the one-electron system with the trigonal symmetry. The 
angular dependences of the wavefunctions referred to the trigonal axis 
are assumed to be those given in Table 6.2. Again by using (1.15) and 
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Ρ 2 E / Γ 

F IG. 6.3. Splittings of the eg

 2Eg and t2g

 2T2g 

terms of 0A-symmetry in a tetragonal (Z)4A) field 
(Qi > 0, Q 2 > 0). 

lODq 

t2g2T2g 

B2g 

(6.36) the matrix elements of F a x z between the components of the 2 7 ^ 
term are given as 

<*+ I νΆΧΖ I * + > = <*_ | F a x , z | 

= _ Α < Λ ( Γ ) > - Α < Β ( Γ ) > , 

<x+ I ^ax . z I x-> = <x+ I ^ax .z I *o> 

= ( χ - I ^ax . z I *o> = °> 

which give the energy eigenvalues, 

E(Eg) = <*+ I VaXtZ I *+>, 

£(A.) = <*o I ^ax .z I *o>-

Thus, the splitting 3 Κ of the 2T2g term is given as 

3K = E(Eg) - E(A19) 

(6.52) 

(6.53) 

(6.54) 

(6.55) 

(6.56) 

Similarly, the matrix elements between the components of the 2Eg term 
are given as 

<W+ I ^ax . z I W+> = <«- I ^ax ,z I «-> 
= <x± I * W I *±>· (6-57) 
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Therefore, no splitting but a shift of the 2Eg term is predicted in 
agreement with the group-theoretical result in ( 6 .22 ) . Since the Eg 

trigonal representation appears in the reduction of both 2T2g and 2Eg , 
one has nonvanishing matrix elements between the 2Eg components of 
Dzd in 2T2g and 2Eg as follows: 

0+ I ^ax.z I "+> = Ο - I ^ax.z I «-> 

= - V 2 K \ (6.58) 

which shift the two 2Eg states in the opposite directions to increase their 
separation. The splitting and the shift of the 2T2g and 2Eg terms without 
taking account of the nondiagonal elements ( 6 . 5 8 ) are schematically 
illustrated in Fig. 6 .4 . The inclusion of ( 6 . 5 8 ) decreases the splitting, 
3Ky if Κ is positive. 

lODq FIG. 6 .4 . Splitting and shift of the t2g

 2T2g and eg

 2Eg 

terms of O f t-symmetry in a trigonal (D3d) field (K > 0). 

\ 3K 

t A, f l 

6.1 .3 EFFECTIVE ELECTRIC-DIPOLE TRANSITION MOMENTS 

As mentioned in Section 5 . 2 . 1 , the parity-forbidden electric-dipole 
transitions are slightly allowed by the presence of the static odd-parity 
potential in the system having no inversion symmetry. For example, 
in the Z>3-symmetry system, the static odd-parity potential is given in 
(6 .40 ) . In this subsection the selection rules and relative intensities will 
be discussed by calculating the effective electric-dipole transition 
moments between the split components of the terms in the one-electron 
system with the Z)3-symmetry. 

It is easy to see that the use of the perturbation theory gives the 
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effective electric-dipole transition moment P e f f(a — b) between even-
parity states a and b as follows: 

p e « ( « - * ) = Ç BT^Ët

 + Ç Ë—Ët <6·59> 

where z is the odd-parity states whose energies are the 2?/s, and Ρ is the 
electric dipole moment, — e Σ rt. The first term of (6.59) is the matrix 
element of Ρ between the small odd-parity component in state a and the 
even-parity state by and the second term is that between the even-parity 
state a and the small odd-parity component in state b: The odd-parity 
components are brought into the even-parity states by perturbation Voad . 
Equation (6.59) is often simplified by using the approximation in which 
the denominators (Ea — and (Eb — E^ are replaced by a suitable 
average, ΔΕ. This approximation is called closure approximation. To this 
approximation, (6.59) may be expressed as 

Peff(* - b) = (a I V0aaP I 6>. (6.60) 

Now, let us calculate the transition matrix element in (6.60) between 
the split components in the one-electron system of Z)3-symmetry. We 
first neglect the mixing of the 2Eg and 2T2g terms due to (6.58), assuming 
that the cubic-field splitting is much larger than the trigonal splitting. 
For calculating (6.60) for the left and right circular polarizations, σ+ 

and σ_ , in the plane perpendicular to the trigonal axis and for the linear 
polarization π along the trigonal axis, it is convenient to express Ρ as 

where 
- P _ C + - P + C - + P0fc°> (6.61) 

1 
v=2{ 

P+ = --±=(Px + iPY), (6.62a) 

and 

P-=^(Pz-iPy), (6.62b) 

P0=PZ, (6.62c) 

G + = - i - ( î + , j ) , (6.63a) 
V2 

fc-=^(î-4 (6-63b) 

R ° = R . (6.63c) 
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<x+ I W°lg |«+> = — <*- I P0Vmg I «_> 
= y 3 g < r g ( r ) ) 
_ 21 (6.73) 

In (6.63) ι, j , and G are the unit vectors in the directions of X, Y, and Ζ 
coordinate axes, respectively. In terms of spherical harmonics, (6.62) are 
expressed as 

Ρ _ = _ ^ Υ ι _ ι ( θ φ 1 ( 6 . 6 4 ) 

*o = y|— γιοΨψ)· 

We reduce the products of two spherical harmonics appearing in PVoia 

into a linear combination of spherical harmonics: In the present problem 
F o d d is given by Vfâg in (6.40). From (6.3) and (6.5) one may derive the 
relations, 

Υι±ι(βφ) Y*U*P) = ^ c£(e<p), (6.65) 

Υι±ι(θφ) Υ^(βφ) = - ^ [3 (η)1" C&fip) - (ψ" d&fkp)], (6.66) 

^ιο(^) = ^ θ£(θφ). (6.67) 

By using these relations one obtains 

P±V& = = ^ [2f%fto) - (ψ" CgM + -L c<^)], (6.68) 

P . f S Ï Ï = = ^ [C%m + C i ^ ) ] . (6.69) 

Then, the transition matrix elements between the trigonal components 
for the 7T-polarization are calculated by using (6.69) and Table 6.2 as 
follows: 

<*0 I P0V$& I X±> = 0, (6.70) 

<*0 I Ρ0Κ£ I «±> = 0, (6.71) 

<*± I P0<â I «τ> = 0, (6.72) 
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0± I P+V$& I «±> = <*± ι p . p f f i S ι w ± > = o, odd ι 

0± I P±Vtng I M T > = 0, 

Similarly, the transition matrix elements for the σ-polarizations are 
calculated as 

(6.74) 

(6.75) 

(6.76) 

(6.77) 

< * ± ι ρΨν$& I « T > 

<*„ ! P±Vmî I *±> = <*o I P±Vtm I «±> = 0, 

2 \ / 5 e(rE{r)y 
21 

odd 

O0 I P+vÏÏÎ I * -> 

<*„ I P+V$?\ «_> = — <*o I P - f ^ S I « + > 

= ^ < « o | P + ^ l * _ > -

o „ 1 p - ^ S g ι χ+y 

i o K ^ W ) 

21 
odd 

(6.78) 

(6.79) 

Since the transition probabilities are proportional to the absolute 
square of (6.60), one may calculate from (6.70)-(6.79) the selection rules 
and the relative intensities for the transitions between the split com­
ponents in the Z)3-symmetry system as shown in Table 6.3. In the table, 
σ+ and σ_ are the constants having the same nonvanishing value only 
when light is left and right circularly polarized, respectively, and π 
is also the constant having the same nonvanishing value only when 

T A B L E 6.3 

RELATIVE INTENSITIES FOR THE TRANSITIONS BETWEEN 2Eg AND 2T2g 

Cubic 
term 

Trigonal 
term 

2E x+ 

2a+ 2σ_ 

4 σ + 

4σ_ 

*E 
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light is polarized parallel to the trigonal axis. For the light linearly 
polarized perpendicular to the trigonal axis, the relative intensities are 
given by the coefficients of î 2 and 
instead of those of | l c + | 2 and | (c~ 
Noting the relations, 

j 2 in the absolute square of ( 6 . 6 0 ) 
2 for the circularly polarized light. 

R- |2 = 1(Î2 + j 2 } > (6.80) 

one may illustrate the transition diagram as shown in Fig. 6 .5 for the 
light linearly polarized along (77) and perpendicular to (σ) the trigonal 
axis, in which σ is the same nonvanishing constant as π. 

Problem 6.4. Derive both the even and odd-parity ligand-field potential 
in the Z)2-symmetry system up to the term of k = 4 : Here the rhombic 
distortion is along the χ or y axis. Then, calculate the splittings and 
shifts of the terms in the one rf-electron system of cubic symmetry. 
Also calculate the selection rules and relative intensities of the transitions 
between the split components, ζ} 

Τ 

π 4σ 

ί 

c 7 

ι 
ι Α, 

tea Toi 

FIG. 6.5. Transition diagram for a single 
^/-electron in a field of Z)3 symmetry. 

6.2 Wigner-Eckart Theorem 

6.2.1 LOW-SYMMETRY FIELD POTENTIALS AS TENSOR OPERATORS 

Let us define irreducible tensor operators of type Γ, Χ{Γ), in such a 
way that their components Χγ(Γ) transform in the same way as the 
bases φ(Γγ) of the irreducible representation Γ under the symmetry 
operations of the O^-group: 

RXv(r) R-1 = Σ XviH D$l(R\ (6.81) 
v' 

where R is a symmetry operation of the O^-group. As discussed 
in the previous section, low-symmetry field potentials are considered 
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T A B L E 6.4 

IRREDUCIBLE TENSOR OPERATORS IN TERMS OF CUBIC HARMONICS 

Irred. tensor 
operators Cubic harmonics 

V(AU) (*4 + 3>4 + z* — | r 4 ) + (6th order) + ··· 
V(AU) x*{y2 — z2) + y\z2 — x2) + z\x2 — y2) + (10th order) + — 
Vu(Ea) (3z2 — r2) + (4th order) + — 
VJLE.) V3(x2—y2) + (4th order) + ··· 
VV(TU) · V3xy(x2 — y2) + (6th order) + · · · 

xy + (4th order) + ··· 
V(Altt) xyz[x\y2 — z2) + y\z2 — x2) + z\x2 — y2)] + (13th order) + ··· 
V(A,U) xyz + (7th order) - j - · · · 
Vu(Ea) V3xyz(x2 — y2) + (7th order) -f- · · · 
VV{EU) xyz(3z2 — r2) + (7th order) + — 
VV(T1U) ' z + (3rd order) + ··· 

V3z(x2— y2) + (5th order) + ··· 

a The other components may be obtained from these by cyclic change of x, y, and z. 
For example, Va(Tlg) oc V3yz(y2 — z2), Vç(T2u) oc V3x(y2 — z2), and so on. 

to be some of these irreducible tensor operators, i.e., real irreducible 
tensor operators Vv(r). For example, the Z) 4 / rsymmetry field potential 
is Vu(Eg)y the ^ s y m m e t r y potential [Vè{T2g) + V,(T2g) + Vt(T2g)]lV3 
in addition to the cubic field potential V(Alg), and the odd-parity poten­
tial of the ZVsymmetry [V,(T2u) + Vv(T2u) + ^ ( T 2 M ) ] / V 3 . Similarly, 
one can associate 18 real irreducible tensor operators VY(T) with the 
ligand-field potentials of certain symmetries as follows: 

cubic and tetrahedral: V(Al0tU) 

tetragonal around the #-axis: Vu(EgiU), VY(Tlg,u)* 

V(A2giU)§ 

—-W£T2g,u) + Vv(T2g,u) + Vc(T2g,u)] 
v 3 

lVa(Tlg,u) + V&(Tlg,u) + Vv(Tlg,u)V 
V3 

rhombic, the distortion along [100] or [010]: Vv(Eg>u) 

the distortion along [110] or [HO]: Vc(T2g,u). 

* Here, Vy(TlgiU) are not associated with the Dih- and Z)4-potentials. 
§ These are not associated with the DM- and Z)3-potentials. 

trigonal around the [ll l]-axis: 
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These irreducible tensor operators may be expanded in terms of 
suitable linear combinations of spherical harmonics: Such linear 
combinations of spherical harmonics, ]Tm

 ckmYkm(^9)y w ^ t n a fixed value 
of k are called cubic harmonics of the kth order. For example, the cubic 
harmonic of the 4th order in V(Alg) is given in (6.10) (except the first 
term with k = 0) and that in Vu(Eg) is in (6.13) [the first term Ο{

0

2\θφ) is 
the cubic harmonic of k = 2 associated with Vu(Eg)]. The cubic har­
monics of the M i order can be expressed in the form of polynomials 
Σ c^^y^ (α + β + y = k) if they are multiplied by rk. To help 
intuitive understanding of the irreducible tensor operators, they are 
given in Table 6.4 in terms of cubic harmonics in the polynomial forms, 
although it is unnecessary in the following arguments to know these 
polynomial forms. 

6.2.2 FACTORIZATION OF REDUCED MATRICES 

Now we consider the matrix elements of irreducible tensor operators, 

(*Γγ ι χ9(Γ) ι ocTyy = j J T ^ C J » χ9(Γ) ψ^τγ). (6.82) 

Since Χ 9 { Γ ) transforms like base φ(Γγ) of irreducible representation Γ 
of the Οβ-group, it is clear from (2.37) that the linear combination of 
products Χ 9 ( Γ ) Φ ( Α Τ Ν ) , 

ψ(Γ«ττγ) = Σ χ9(Γ) φ(*τ'γ'ΚΓ'γ'Γγ ι r y >, (6.83) 

transforms like base φ(Γ"γ") of irreducible representation Γ" of the 
0^-group. By using the orthogonality relation between C-G coefficients 
given in (2.34), (6.83) may be reexpressed as 

Χ9{Γ)<ρ{«'Γ'γ') = Χ ψ(Γ<χΤΤ''γ"ΚΓ"γ'' I Γ'γ'Γγ). (6.84) 

Inserting (6.84) into (6.82), one obtains 

or y ι χ9(Γ) ι ocTyy = Σ <«ry I Γ α Τ τ γ χ Γ γ \ ryP?\ (6.85) 
T'y" 

where 

(aTy I Γ α Τ Τ Υ ) - J άΎψ{αΓγΥ ψ(Γ*'ΓΤ"γ"). (6.86) 
Since (6.86) is nonvanishing only when the integrand transforms like 
the base of irreducible representation Alg , we obtain (see Appendix II) 

<oJV I Γ « Τ Τ " / > = IR 8r~r8y% (6.87) 
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where IR does not depend upon y and y". Therefore, we express IR as 

IR = ( Γ ) - ν 2 < α Γ H Ζ ( Γ ) II α ' Γ ) , (6.88) 

and call <αΓ|| Χ{Γ)\\ «Τ '> reduced matrix. In (6.88) ( Γ ) - 1 / 2 is factorized 
for convenience of later use. Inserting (6.87) into (6.85) one finally 
obtains the formula, 

<cJ> I Χ?(Γ) I «T'y '> = ( Γ ) - ν 2 < α Γ II Χ(Γ) H α Τ ' χ / V I T V / y ) , (6.89) 

which is the mathematical expression of Wigner-Eckart theorem. 
Equation (6.89) shows that the matrix elements with the same αΓ, α'Γ', 
and Γ but different sets of y , y ' , and y are related to each other by 
C - G coefficients < J y | Γ'γ'Γγ}. The usefullness of this theorem will be 
demonstrated in the subsequent subsections. 

Since C - G coefficients have the properties, 

( Γ ) - ι / 2 < Γ 7 I Γ'γ'Γγ} = €(ΓΓΓ)(η^2<Γγ I ΓγΓγ\ (6.90) 

where 

4ΓΑΧΓ) = €(ΓΤ2Γ') = 1, (6.91a) 

*(ΓΑ2Γ') = ^ΓΤ^') = - 1 , (6.91b) 

and 
β(ΓΕΓ') = 1 (6.91c) 

except for 
€{ΤΎΕΤ2) = *{T2ETX) = - 1 , (6.91d) 

one may easily prove the relation for real operators Χ9(Γ) = ν?(Γ) as 
follows, 

<*Γ II V{T) II « T ' > = «ΓΓΓ'Υμ'Γ II V{T)\\ α Γ > , (6.92) 

which shows that 

< α Γ II V(P) II α Γ > = 0 for Γ = Α2 and Τ χ . (6.93) 

For purely imaginary operators* Χ9(Γ) = Τ9(Γ), a similar relation to 
(6.92) may be proved as 

<αΓ II Τ(Γ) II « T ' > = -*(ΓΓΓ'Κ<χΤ' \\ Τ(Γ) || «Γ>, (6.94) 

which shows that 

<<*Γ y Τ(Γ) II αΓ> = 0 for Γ = AlyEy and T 2 . (6.95) 

* For example, the angular momentum operator I = — ih r Χ V is a purely imaginary 
operator T(Tlg) which will be discussed fully in the next chapter. 
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6.2.3 SIMPLE APPLICATION OF WIGNER-ECKART THEOREM 

In Section 6.1 the term splittings and the relative intensities of the 
parity-forbidden transitions were calculated by the use of the explicit 
forms of low-symmetry potentials, to the approximation in which the t2g 

and eg orbitals are the ^-functions. This assumption made it possible 
to cut off the higher order terms with k > 4 in the expansion of the 
potential in terms of cubic harmonics. However, this assumption is not 
necessarily valid in practice, and in what follows the same problem will be 
treated by using the Wigner-Eckart theorem without making such an 
assumption. 

Let us first consider the splittings of the t2g

 2T2g and the eg

 2Eg terms 
in the Z)4-symmetry system. The even-parity Z)4-potential may be 
represented by irreducible tensor operaotr Vu(Eg).x The splitting of the 
t2g

 2T2g term is obtained by calculating the following matrix elements: 

<t29y I Vu{Eg) I t2gy'> = < t 2 g II V(Eg) \\ t2g}(T2y | T2y'Eu). (6.96) 

By using C-G coefficients in Appendix II, (6.96) with various y and y are 
calculated as: 

<t»i I vu(Eg) Ι t2go = <t2gV Ι vu{Eg) Ι t2gVy 

= - j ( A I W I A ) 

= -^^<t2g\\V(Eg)\\t2g\ (6.97) 

the others are zero, which agree with (6.46) if the reduced matrix element 
is related to Q1 as 

<t»\\V(E,)\\ti,> = - - ^ Q 1 . (6.98) 

In contrast to the present results in (6.97), the lack of the relation, 
I V**,z I Ο = - * < Σ I V**,z I O, in the previous results in (6.41) and 

(6.42) is due to the subtraction of the cubic potential part from Vtet in 
(6.14): tensor operator Vu(Eg) corresponds to Vtet. Similarly the 
splitting of the eg

 2Eg term is obtained by calculating 

<egy I Vu(Eg) \ egy'} = -±= (eg || V(Eg) || eg}(Ey \ Ey'Eu). (6.99) 

* Here, Vy(Tlg) is not associated with this potential as it changes the sign under the 
operations in 2(?2 and lC2

f classes in Table 1.5 as easily seen from the expansion form 
of Vv{Tla) in Table 6.4. 
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By using C-G coefficients in Appendix II again, one obtains 

(egu I Vu(Eg) I egu) = - <egv \ Vu(Eg) \ egv) 

= -i<eg\\V(Eg)\\eg>9 (6.100) 

the others are zero, which agree with (6.51) if 

<eg\\V(Eg)\\e9y = -Q2. (6.101) 

Again the lack of the relation, | Vaxz \ u) = — (ν \ V&xz | v}, in the 
previous results in (6.47) and (6.48) should be contrasted to (6.100). 
The absence of the nondiagonal elements of Vu(Eg) between the 2T2g 

and 2Eg terms is easily seen, as (Τ2γ | Ey'Eu) are always zero: 
ExE = A1 + A2 + E involves no T2. 

The next example of the application of Wigner-Eckart theorem is the 
calculation of the relative intensities of the electric-dipole transitions as 
those discussed in Section 6.1.3. The odd-parity potential in the 
Z)3-system may be represented by νΧο(Τ2η).* On the other hand, the 
electric-dipole moments, P+ , P_ , and P0 are represented by irreducible 
tensor operators Ua+(Tlu), Ua_(Tlu), and UaQ(Tlu), respectively. By 
using (6.84), the products of two tensor operators are reduced to linear 
combinations of tensor operators WM(r) as follows: 

P± s UaJTlu) VxJT2u) 

= T^= Wu±(Eg) - Wa±(Tlg) + Wx±(T2g), (6.102) 

A, - uao(Tlu) vXo(T2u) 

= - ^ | W(A») + ^ WH(TU). (6.103) 

The matrix elements of ^ 0 for the 7r-polarization are calculated as follows: 

<***o I ***±> = 0 (6.104) 

<t*r*o I A I egu±} = <t2gx± I P0 \ eguTy = 0, (6.105) 

as all the C-G coefficients appearing in the matrix elements of W(A2g) 

* Here, V(A2u) and VaQ(Tlu) cannot be the Z)8-potential as they change their signs 
under the symmetry operations in the 36% class as shown in Table 6.1 and (6.22). 
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and Wao(Tlg) between these trigonal components are zero. Nonvanishing 
matrix elements of P 0 are 

/ 9 \ l / 2 

(t2gx± I P0 I egu±y = (-) (t2gx± I Wao(Tlg) I egu±) 

= T-±=<t2g\\W(Tlg)\\eg>. (6.106) 

For the a ±-polarization, one sees that 

<t&*± I P+ I egu±y = (t2gx± I i*_ I egu±} = <t2gx± I i ± I eguT> 

= <t2gxQ I P± I ί 2^±> = < ί 2 Λ I P± I ^ W ± > = 0, (6.107) 

as all the C-G coefficients appearing in the matrix elements of Wu±(Eg), 
Wa±(Tlg), and Wx±(T2g) between these trigonal components are zero. 
Nonvanishing matrix elements of P± are 

(t2gx± ι ΡΨI eguT} 

= \ <t2g II W(Tlg) II egy - (t2g II W(T2g) II eg\ (6.108) 

<hgXQ I P± I * 2 I / * T > 

= ± ~ <'2' 11 W ) 1 1 1 2 9 > T ( ^ 1 1 W ( T 2 g ) 11 ^ X ( 6 · 1 0 9 ) 

<t2gxQ I £± I ^w T > 

= ± \ <*» II W(TU) I I Ο ± y ^ g <u. II ^ ( J 1 * ) II (6.110) 

In (6.109) the reduced matrix (t2g \\ W(Tlg)\\ t2gy is set to be zero, as 
operators U(Tlu) and V(T2u) may be chosen to be real, and one can apply 
(6.93) to this case. 

In contrast to the relation derived from (6.73), (6.78), and (6.79) such as 

<χ+1 A> I "+> = <*o I P + I «-> 

= - K * - l * + l « + > , (6.1H) 

which was obtained by approximating the t2g and eg orbitals as the 
d-iunctions, the present result in (6.106), (6.108), and (6.110) shows only 
the relation, 

< * 0 1 P + 1 0 + <*-1P+1 u+y = -<* + 1P 0 1 w +>. (6.112) 
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Relation (6.112), of course, is satisfied if (6.111) is assumed, but in the 
present calculation, (6.111) is satisfied only if we have the relation, 

<t» Il W{Tlg) II = - - L < t 2 g u W(T2g) II eg\ (6.113) 

Similarly, the previously obtained relation (6.79) is valid only when the 
following relation holds in addition to (6.113): 

<t2g\\W(Tlg)\\eg> 

= - \ <h9 II W(Eg) II t2g> + (t2g H W(T2g) II t2g). (6.114) 

Problem (5.5. By using the irreducible tensor operators for the ligand 
field and applying Wigner-Eckart theorem, derive the answers to 
Problem 6.4. In this case be free from the rf-function approximation. Ο 

6 3 Many Electrons in Fields of Low Symmetry 

6.3.1 CALCULATION OF THE MATRIX ELEMENTS 

As discussed in Section 6.2, the matrix elements of the low-symmetry 
potential ν9(Γ) between the 

4 ( S i A ) eg

m(S2r2)SrMy and ^ ( W ) e™\S2T2')ST'MV 

(n + m = n' + m' = N) states are calculated by using Wigner-Eckart 
theorem as follows: 

« W V i ) eg

m(S2rz) SrMy I ¥,(Γ) | i & W ) ef(S2T2') 5T'My> 

= S(SS') δ(ΜΜ')(Γ)- ι / 2 <Ty I Γ'γΤγ} 

X « S W O eg

m(S2r2) Sr y ν(Γ) y ί ^ ' Λ ' ) ef(S2T2') ST'}. (6.115) 

In deriving (6.115) we have used the fact that the ligand-field potential 
involves no spin operator. By using (6.115) it is possible to discuss the 
term splittings leaving reduced matrix 

<&(5ιΛ) eg

m(S2r2) sr\\ V(T) II ^ ( W ) ef(S2T2') 5Γ'> 

as adjustable parameters. However, to reduce the number of adjustable 
parameters, it is more convenient to express the reduced matrix for 
many electrons in terms of the reduced matrix for a single electron. 
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The ligand-field potential V9(F) in a many-electron system is given as 
the sum of the potentials for individual electrons i as follows: 

where νίγ(Γ) is the function of electron coordinate rt. Since the many-
electron states t\geg

mSFMy are given by the linear combination of Slater 
determinants, by using formulas (3.33)—(3.35) the matrix element in 
(6.115) may be expressed in terms of (t2g \\ ν(Γ)\\ t2g), (eg || ν(Γ)\\ eg)>, and 
(t2g [Ι ν(Γ)\\ eg}; in particular, from (3.35) 

<tfc„mSr\\ V(F)\\ t^X^Sry =0 for | k | > 2, (6.117) 

from (3.34) 

<&e,mSr II V(F) II t ^ e ^ S n = C0{t2g \\ v(F)\\ eg}, (6.118) 

and from (3.33) 

<tn

29e™Sr y V{F) II tn

2ge™Sn = II v(F) || t2g> + C2(eg \\ v(F)\\ eg\ (6.119) 

where C 0 , C1, and C2 are numerical coefficients depending upon the 
states of interest and Γ. From (6.93) and (6.119) one sees that 

(tleg

mSr\\V{F)\\tleg

mSr'y=0 for Γ = A2 and Tx. (6.120) 

The calculation of C 0 , C1, and C2 is straightforward as the wave-
functions are already known. For example, C 0 for 

may be calculated as follows: By using Tables 3.2 and 3.4, and also 
formula (3.34), one obtains 

(6.116) 

<tl*A2g\\V{T2g)\\ t2

2gCTlg)eg*Tlg> 

j dr I ξηζ \*νζ(Τ2) I ξνη I = -<£ I νζ(Τ2) | «>. (6.121) 

Noting the relations 

V3 
(6.122) 
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and 

= - L <i 22(3T l ) e y Γ ( Γ ΐ ) y ^ ( 3 ^ ) , 4 Γ 2 > ( 6 - 1 2 6 A ) 

<ξ I ̂ T y h> = <«2 II y *2>, (6.126b) 

one finally proves that 

itffTJe *T2 II V(T2) Il ί ^ ) * *Γ2> = K«i II «(Γι) Il h>- (6-127) 

In this case C 2 turns out to be zero. 

Problem 6.6. Calculate C1 and C 2 in (6.119) for 

and 

^ Τ ^ ^ Γ Ι Ι Γ ^ Ι Ι ^ ^ ^ Γ ) 

with Γ = Tx and Γ 2 . Ο 

and 

<ζ I « c(r 8) I «> = ^ 3 <ί 2 II W II *>, (6.123) 

one finally obtains 

<i23 M a y F(T 2 ) II t ^ T ^ T , > = <*2 H v(T2) II (6.124) 

Similarly Cx and C 2 for ( ί , 2 ^ ) e 4 T 2 || F(T a) | | t ^ 3 ^ ) e 4 Γ 2 > may be 
obtained as follows: By using Table 3.4 and formula (3.33), one obtains 

(ttfTJe *T2 f , I VC(T2) I ί , ν ^ «Γ, I ί) 

= i [3 J Λ I « β |*F { (T 2 ) I ,£« I - J" Λ I «ι» |*F { (T 2 ) | ^ |] 

= l<i\*aTJ\v>. (6.125) 

Noting the relations 

(t^TJe«Γ,|,| Γ {(Γ 2) I ί 2 ^7Λ>*Γ 2 ^ 



152 V I . LOW-SYMMETRY FIELDS 

6.3.2 THE REDUCED MATRIX IN COMPLEMENTARY STATES 

Since the matrix of the ligand-field potential is hermitian and real, 
the matrix elements of ν?(Γ) in the complementary states are related to 
each other as 

<f ,WÎ) em(S2r2) SrMy I ν9(Γ) I iftS/A') em\S2T2') ΞΓ'Μγ'} 

= - < f r W \ ) e*~m{S2r2) ΞΓΜγ I V9(F) I t«2~n' 

X OVA') e*-m'(S2T2') sr'MY'> 

(n + m = n' + w! Φ 5) (6.128) 

as shown in (4.52). Here we neglect constant j P 0 appearing in the diagonal 
elements. Equation (6.128) tells us that 

<f ,W\) *m(S*TJ Sr\\ ν(Γ)\\ tliS^) e™\S2T2') Sr') 

= -<ff*(SiA) e*~m(S2r2) Sr\\ ¥(Γ)\\ tl~n (SiTi) e^m'{S2T2

f) ΞΓ'} 

(η + ηι = η' + m' φ 5). (6.129) 

In particular, if the states have a half-filled subshell configuration such 
as £2

3, one may show from (6.129) and (4.22) that 

(tisr\\ v{T)\\ t2*sryL = -<t2*sr\\ ν(Γ)\\ tt*sr>M 

= -Wi'<h*Sr\\ ¥(Γ) II tfSr>L , (6.130) 

where L and R refer to theL and R states, respectively, and μ1 and μχ' are 
the phase factors defined in (4.22) associated with t2*ST and *2

3*ST", 
respectively. From (6.130) one immediately sees that 

<ί 2 »5Γ| |Κ(Γ) | | ί 2 »5Γ>=0, (6.131) 
and 

<ί2»5Γ|| V(T) II t2*Sr'} Φ0 (Γφ Γ) (6.132a) 

only for the combinations 

Sr = 2 E , 2 7 \ and ST" = 2 Γ 2 , and vice versa. (6.132b) 

Similarly, 
<e*Sr II V(T) II *sr> = 0, (6.133) 

and 
(e2Sr II V(F) U *Sr> Φ0 (Γ φ Γ) (6.134a) 
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only for the combinations 

S r = and ST" = Μ χ , and vice versa. (6.134b) 

In the case of η + m = n' + m' = 5, one may derive by using (4.51) 
and (4.28) the relation, 

<*iWi) em(S2r2) sr\\ V(F)\\ tliS^) em\S%TJ) SryL 

= - < ί Π « ι Α ) eé-m(s2r2) sr\\ ν(Γ) ii *rw 'GW) s r % 

= ~ / W i W t W i ) e^{S2r2) Sr\\ V(F) II 

X (S//Y) e*~m(S2r2) SryL . (6.135) 

In deriving (6.135) one has used the fact that (—l) n m(—l)*'™' = 1 for 
η + m = n' m' = 5. Equation (6.135) shows that, if η Φ 3 and 
η' Φ 3, (6.128) holds even for η + m = n' + m' = 5 as μ^μ^μΊ = 1. 
If w = 3 and w' 7^ 3, one has 

< f , W i ) * 2 (s 2 r 2 ) s r n Γ(Γ) il ί ΐ '^ 'Λ' ) e m ' (s ,7y) s r > 

= - w ^ W i ) « 2 (s 2 r 2 ) 5Γ« Γ(Γ) il tV'is.T,') é-™-(s2T2') sry 

(η' φ 3) (6.136) 
and, if η = 3 and «' = 3, 

< f , W \ ) « W \ ) s r y κ(Γ)y * 2 W A ' ) * 2 ( W ) sr '> = ο 

for S^ , S2r2 , S / i y , and S 2 T 2 ' giving μχμ2μ{μ2 = 1, (6.137) 

which shows 

A T O TO Il WII tftoA) «wy sry = ο. (6.138) 

As shown in (6.131), (6.133), and (6.138), the diagonal matrix elements 
of any low-symmetry potential in the states of the half-filled shell 
configurations, t2

s, e2, and t2

ze2 vanish. This tells us that the spectral 
lines due to the transitions between the terms of the same half-filled 
configuration are not broadened by the vibrational fluctuation of low-
symmetry fields. 

Problem 6.7. By using the argument given in Section 3.1.2, show that 

< W i ) ns2r2) sr ii v{T) ii vcsx'/v) é»(s2T2')sr> 

= δ ( ^ ' ) e(sa5a')<ia W i ) ^{s2r2) sr\\ v(n \\ W i ' ) * W Y ) sry. ο 



Chapter VII SPIN-ORBIT INTERACTION 

The spin-orbit interaction has its origin in the relativistic theory, and 
in the case of a single electron in atoms it is derived from the Dirac 
equation as 

J f eo = i(r) I · s, (7.1) 

where ξ{τ) is 
eh2 1 dU(r) 

2m2c2 r dr 

with spherically symmetric potential U(r) for the electron. Classically, 
this interaction may be viewed as the interaction of the magnetic moment 
of an electron spin with the magnetic field induced by the motion of the 
nucleus around the electron: The nucleus is seen from the coordinate 
system fixed on the electron. 

The strength of the spin-orbit interaction in iron-group ions is about 
one order of magnitude smaller than that of the Coulomb interaction, 
and is comparable to that of low-symmetry ligand fields. Therefore, the 
spin-orbit interaction as well as the low-symmetry ligand-field pertur­
bation is responsible for the fine structure of multiplets. The spin-orbit 
interaction differs from the low-symmetry field perturbation in that the 
former involves spin operators, while the latter does not. The presence 
of spin operators makes it possible to connect the terms of different 
spin-multiplicities, which is important in discussing, for example, the 
intersystem combinations as briefly mentioned in Section 5.2.1. 

1 5 4 
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7.1 The Problem of a Single d-Electron 

7.1.1 ORBITAL ANGULAR MOMENTUM 

Before begining the detailed discussion of the spin-orbit interaction, 
it is instructive to present the matrix elements of the orbital angular 
momentum in the cubic system with a single electron t2g or eg whose 
orbital is made from the rf-function. From the well-known relations* 

lz<PiJj) = ™<plm(r), 

l±<Pim(r) = W +l)-m(m± <p i w ± 1 (r ) , ( ? ' 2 ) 

where 
4t = = Ιχ db Hy ι 

it is straightforward to calculate the following matrices of lx , ly , and lz 

by using the explicit forms of the t2g and eg orbitals in (1.31) and (1.32): 

ξ V ζ u V 
' 0 0 0 '• -Vïi —C 

0 0 i '• 0 0 
0 —i 0 : 0 0 

0 0 : 0 0 
i 0 0 : 0 0. 

" 0 0 —i 0 0" 
0 0 0 V3i —i 
i 0 0 • 0 0 

0 -Vit 0 : 0 0 
0 i 0 : 0 0. 

" 0 i 0 · 0 0" 
—ι 0 0 : 0 0 

0 0 0 \ 0 2i 

0 0 0 · 0 0 
0 0 -2i '• 0 0 

(7.3) 

(7.4) 

(7.5) 

As seen above, the matrices of the angular momentum are hermitian and 
their elements are purely imaginary (note that the bases are real). It is 

Throughout this book, the matrix elements of angular momenta are given in unit of h. 
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also seen that all the matrix elements of / in the eg state are zero. This 
means that the orbital angular momentum is completely quenched in 
the eg state. Therefore, there is no first-order spin-orbit interaction in 
this state. 

In the t2g state the orbital angular momentum is not quenched. It is 
interesting to compare the matrix elements in the t2g state with those 
in the p state in free atoms which are given as follows: 

(7.6) 

(7.7) 

Px Pv Pz 

Γ 0 0 o-
4 = 0 0 —i 

- 0 i Ο­

Γ 0 0 Ι­

K = 0 0 Ο 
-—ί 0 0-

0 —i °1 
4 = i 0 0 

- 0 0 o. 

Then, one immediately sees the relation 

K**) = -KP), 

(7.8) 

(7.8') 

which tells us that the expectation value of I 2 = I2 + I2 + 4 2 * n t n e hg 
state made from the rf-states is /(/ + 1) not with 1—2 but with 1=1. 
This means that the orbital angular momentum is partially quenched in 
the t2g state. Relation (7.8') is called T-P equivalence which will be 
discussed in detail in Section 7.3.2. It should be noted that the T-P 
equivalence is only a formal matter as seen from the fact that \{t2g) does 
not satisfy the commutation relation which the angular momentum 
should satisfy: This is due to the neglect of the nondiagonal matrix 
elements between the t2g and eg states given in (7.3)-(7.5). However, if 
the cubic-field splitting is large, the neglect of the nondiagonal elements 
is justified and the T-P equivalence may conveniently be used for 
practical purposes. 

7.1.2 SPIN-ORBIT SPLITTING 

As the simplest example of the term splitting due to the spin-orbit 
interaction, let us calculate the splittings of the 2Eg and 2T2g terms in 
a single-electron system assuming that the spin-orbit interaction is given 
by (7.1) and the t2g and eg orbitals are the rf-functions. We further assume 
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that the cubic splitting between the 2T2g and 2Eg terms is much larger than 
the spin-orbit splitting of these terms. In this case the spin-orbit inter­
action is ineffective in the 2Eg term as the orbital angular momentum is 
completely quenched in this term as mentioned in the previous sub­
section. 

To calculate the matrix elements of the spin-orbit interaction in the 
2T2g state, the following well-known matrices of the spin operator are 
used: 

m s = 2 

s ζ = 

ϊ 1 
2 

0 1 1 χ h .1 ο] χ h 

0 —*Ι 
ί oJ x έ 
1 Χ * 
0 -ι] 

Χ * 

(7.9) 

From (7.3)-(7.5) and (7.9), the matrix of the spin-orbit interaction, 

•%o = f(rX(A + lySy + I*), (7.10) 

in the 2Tig state is derived as 

ξ V 
1 

— 2 
1 
2 - 1 i -* 

" 0 0 i 0 0 - Γ 
0 0 0 —i 1 0 

—ί 0 0 0 0 Ί 
(7.11) 0 i 0 0 ί 0 χ κ, (7.11) 

0 1 0 —i • 0 0 
- 1 0 —i 0 : 0 O_ 

reduced to two three-dimensional matrices as follows: 

- Κ - i f • 
Γ 0 i -1 Ό —i l-i 

Ί 0 i x i 0 i Χ Κ· (7.12) 
1 -- / 0 -1 —i Ο­
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-*'+ Κ 
- 1 0 0 ι r 1 0 

0 1 - V 2 χ K. 0 - 1 0 
- 0 -Λ/2 0 . L - V 2 0 0 . 

x K . (7.14) 

if one takes the following linear combination of ξ and η as new bases: 

t± = T^2iè±iri). (7.15) 

Then, one obtains the eigenvalues of (7.14) as 

«i = - & *2 = £> (7.16) 

in which €! has fourfold degeneracy and e 2 twofold degeneracy. The 
eigenfunctions associated with €x are 

ΦΪ* =9^)0(1 ±1), 
(7.17) 

and those associated with e 2 are 

« · · = 7 ! [V2 rffe) eg =F±) - *£) eg ± i ) ] . (7.18) 

It is interesting to compare these results with those of the 2P state 
with a single p electron. We know that the 2Ρ level splits into / = 3/2 
and J = 1/2 levels whose separation is given by Landé's interval rule as 

« ( / = ! ) - c ( / = i ) = f î P > (7.19) 

where ζ ρ is given by an expression similar to (7.13) in which Rd(r) is 
replaced by the radial part of the p function. Our result in (7.16) is 
identical to (7.19) if one makes the following replacement: e1 -> e(J = f ), 

In (7.11) and (7.12) ζ is given as 

Ζ = Γ drr2R2{r)È{r). (7.13) 
J ο 

The matrices in (7.12) can be partially diagonalized as 
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€ 2 — > e ( / = and ζ—• — ζρ . The wave function associated with the 
/ = 3/2 level are 

* ( / = ^ M 3 . = ± ! ) = φ(ρ ±1) β (I ± i ) , 
(7.20) 

and those associated with / = 1/2 are 

Φ { J = \ M,=4) = ^ [V2- ±1) β ( I ^ ) - ^ 0 ) β (1 ± 1 ) ] . (7.21) 

In (7.20) <£(f ±-g-) are obtained by operating / T = / T + j T on <£(f i f ) 
and ^ ( ^ ± 2 " ) are obtained by making them orthogonal to </>(f ±^). 
Wavefunctions (7.17) and (7.18) are, respectively, identical to (7.20) and 
(7.21) if one makes the replacement, <p(t±) -> φ(ρ ±1) · A similarity of 
the spin-orbit splitting of the 2T2g term to that of the 2P term comes from 
the T-P equivalence given in (7.9). 

So far we have neglected the nondiagonal matrix elements of the spin-
orbit interaction between the 2T2g and 2Eg terms, assuming that the cubic 
field is much larger than the spin-orbit interaction. These nondiagonal 
elements are calculated from (7.3)-(7.5) and (7.9) as follows: 

ζ 

* - * * - 1 
1 
2 0 0 —ί-
1 
2 - V 3 t 0 —i 0 

1 
2 0 V3 0 - 1 
1 
2 - V 3 0 1 0 

* 0 0 2* 0 
1 
2 0 0 0 -2i 

χ K- (7.22) 

The nondiagonal elements can be shown to be zero between the e 2 state 
and 2Eg term as shown in the following problem: 

Problem 7.1. Show that the spin-orbit interaction does not connect the 
2Eg and e 2 states. Ο 

Furthermore, they bring no splitting of the e1 and 2Eg levels. These 
points will be discussed in the next section in the light of the group 
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theory. The absence of the spin-orbit splitting of the 2Eg term may simply 
be shown, in case the spin-orbit interaction is much smaller than the 
cubic field strength, by using the perturbation calculation: In the 
perturbation treatment the energy shifts of the 2EgMy states are given by 

v \(2ΕΜγ I JfB0 I 2Τ2Μ'γ')\2 3ζ2 

AE=L m = w ( 7 · 2 3 ) 

which is independent of M and y. 

7.2 Double-Group 

7.2 .1 ROTATION I N SPIN-SPACE 

As is well-known, electron spins provide an additional freedom to 
electrons, a spin-space. Here, we consider how the wavefunctions 
involving spin coordinates are transformed by the rotation in the spin-
space. For simplicity let us denote wave-functions W(ocSrMy) as W(SM) 
omitting the orbital specification. Wavefunctions W(SM) were introduced 
as the eigenfunctions of spin operators S2 and Sz to satisfy 

SW(SM) = S(S + 1) W{SM\ 
(7.24) 

SZW{SM) = MW(SM). 
In addition to these, the following relations can be derived from the 
commutation relations for spin operators: 

S±W(SM) = [S(S + 1) - M{M±\)fl2 W{S M ± l ) , (7.25) 
where 

S± = Sx i iSy . 

Now, considering that S is transformed like a vector, one may show that 

i ^ s w ) - 1 = s \ 

RfSJiR*)-* = Sz, (7.26) 

where Ra

e is the spin rotation operator around the #-axis by angle a. 
Then, it follows from ( 7 . 2 4 ) that 

^ S W V R = &RJW(SM) = S(S + l) Ra*W(SM) (7.27) 
and 

RfSJLRsyiRfWiSM) = SZR^W(SM) = MRaW(SM). (7.28) 
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Equation (7.27) shows that Ra

8lF(SM) is also the eigenfunction of S2 

with eigenvalue S(S + 1 ) , consequently it is given by a linear combi­
nation Σ Μ ' CMM'WÎSM'). Therefore, just as in the case of con­
tinuous rotations in the position-coordinate space, W(SM) (M = SY 

S — 1,..., —S) form the bases of (2S + 1 ) -dimensional irreducible 
representation D(s). Combined with this fact, Eq. (7.28) shows that 

R^(SM) = μ{Μα) W(SM), (7.29) 

where μ(Μοί) is a constant depending upon M and a, and because of the 
normalization of W(SM) it should satisfy 

I μ(Μα)\2 = 1 or μ{Μ(χ) = e-iX(M«\ (7.30) 

In (7.30) X(Moc) is a real function of M and a . Since X(M0) = 0, X(Moc) 
for very small oc may be expressed as X(MOL) = λ Μ α . Considering that the 
rotation by any angle α may be achieved by successive rotations by very 
small angles, one finally obtains 

μ(Μοί) = exp(—i\Moc) (7.31) 

for any angle a . On the other hand, it follows from (7.25) that 

R^S^R^R^WiSM) = e^S±R^W(SM) 

= [S(S + 1) - M(M ± 1)]V2 R^s M ± 1), (7.32) 

which, by use of (7.29) and (7.31), is expressed as 

e#* exp[-i(XM - XM±1)oc] S±W(SM) = [S(S + 1) - M(M ± W(SM ± 1). 
(7.33) 

Equation (7.33) shows that 
XM~XM±I = T l , (7.34) 

whose general solution is 
XM = C + M, (7.35) 

in which C is a real constant independent of M. We choose C to be zero 
so that the transformation property in the spin space is similar to that in 
the position-coordinate space as given in (1.74). Then one obtains the 
transformation 

R*W(SM) = er*M«W(SM). (7.36) 

Notice that this choice of C makes Ra

B commute with the time reversal 
operator Κ — K8K0 given in (4.30), in which K0 is now considered as the 
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complex conjugate operator acting also on the phase of the spin function: 
Readers will see from (7.31) and (4.32) that expressions 

KR^W(SM) = **<c+M)« ( _ i y - M ψ($ _ M ) (7.37) 
and 

RflZFiSM) = (~l)s~Me-w-w* W(S -M) (7.38) 

are not identical to each other if C Φ 0. Just as in the case of calculating 
X{1)(OL) in (1.76), the character of Dis)(Ra

8) is obtained from (7.36) as 

x „ ) ( a ) = s i n (S + i)« . ( 7 . 3 9 ) 
Λ v ' sin £ a v ' 

In contrast to the case of χ(1)(α), where / is always an integer, 5 in 
% ( , S ) (a) can be a half-integer. For half-integral S, one sees from (7.39) that 

χ<«(α + 2n) = -x ( S , (« ) . (7.40) 

For example, for half-integral 5 one has 

χ<»(0) = 25 + 1, 
(7.41) 

x < S ) ( 2 7 r ) = _ ( 2 S + 1 } . 

Therefore, the representations for half-integral S are, in general, double-
valued: The exceptional case is for α = π, for which the representations 
are single-valued as X{S)(7T) = xis)(3n) = 0. Such a complexity of the 
double-valuedness may formally be avoided if the rotation period is 
considered as 4π instead of 2π in the spin space with half-integral S. 

7.2.2 CUBIC DOUBLE-GROUP 

Let us consider the iV-electron system with cubic symmetry whose 
electron Hamiltonian is given as 

$f = -f- jtf^ - j - , (7.42) 
where 

= ΧΛ> 
i 

i>3 

In (7.42) is the one-electron operator defined in (2.2) and is invariant 
to any symmetry operation of the O-group, and gif is the Coulomb 
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interaction operator, which is also invariant to any symmetry operation 
of the O-group. Since J^ s o is the scalar product of I and s , it is invariant 
if the same rotation is applied in both the spin-space and the position-
coordinate space simultaneously: In this case I and s may be regarded as 
two vectors in a single space. The simultaneous and common rotation 
jR0S in both the spin and position-coordinate spaces may be expressed as 

Ros = RoRs = RSROy (743) 

where R° is the rotation in the position-coordinate space and i? s is the 
same rotation in the spin space. The result of our argument is 

Rosjf(Rosyi = (7.44) 

for Ros involving R° of the O-group. It should be noted that f (r) in J(?80 

is not necessarily spherically symmetric but could be of cubic symmetry 
for JiT to satisfy (7.44). 

Before discussing physical problems related to (7.44), we now study 
group theoretical problems associated with R°9. It is evident that the 
aggregate of R0B with R° of the O-group forms a group. However, to 
avoid the double-valuedness of the spin-rotation group as mentioned 
in the previous subsection, we also assume the fiction that the period of 
the space rotation is 4π, i.e., the cubic system is not to go over into itself 
on rotation by 2π around an arbitrary axis but only on rotation by 
4π. Then, the number of elements in this group is twice as many as 
in the O-group. This group is called cubic double-group. Although the 
number of elements is doubled, the number of classes is not necessarily 
so. The reason is explained as follows: In a double-group with the 
rotation period 4ττ, the inverse of a rotation by angle π around a symmetry 
axis denoted as Rn is equal to RnR9 where R is the rotation by angle 2π 
around the same axis. Then, if the direction of this axis can be inverted 
by a rotation in the group, Rn and RnR should be associated with the same 
class. For example, there are eight classes in the cubic double-group, 
while there are five classes in the O-group. 

Since the cubic double-group has forty-eight elements and eight classes, 
the application of (1.71), 

l 2 + l 2 + 2 2 + 3 2 + 3 2 + 2 2 + 2 2 + 4 2 = 48, 

shows that in this group we have two two-dimensional (denoted by Ex 

and E2) and one four-dimensional (denoted by G) irreducible represen­
tations in addition to those found in the O-group. These additional 
irreducible representations are called double-valued representations, 
whose characters are different in sign for rotations oc and oc + 2π (α φ π). 
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To construct the character table of the cubic double-group, we show 
the classes and the symmetry operations in each class in the tabulation. 

Classes Symmetry operations 

Ê Rotation by 0 (or 4π) 

Ê Rotation by 2π denoted by R 

<V c i t C^R = C / 

c: C4 3 c,R = (CY)- 1 

CfR = (C^)-1 

CS2R = c;1 

c; CSR = (Ca2)"1 

ct 
ct, C2R 

The characters for single-valued representations Ατ , A2, Et Τλ , and T2 

should be the same as those in Table 1.3 with the same values for the 
sets of Ε and R> C± and C\ , and Cs' and Cl. It is evident from (7.41) 
that the characters of double-valued representations, Ely E2, and G, 
for operation Ε are 2, 2, and 4, and for operation R are —2, —2, and —4, 
respectively. It is also evident that all the characters of the double-valued 
representations for (? 4

2 and C2 are zero as the rotation angles are π and 
3π, and the characters for Cl and C% are, respectively, just those for C± 
and Ô3' with the signs changed. Then, with the help of the orthogonality 
relations (1.67) and (1.69b), the remaining unknown characters for the 
double-valued representations are calculated as shown in Table 7.1. 

T A B L E 7.1 

CHARACTER TABLE FOR CUBIC DOUBLE-GROUP 

Bethe R 6CV 6CY 6CV 8CV 8<V 12C% 

A 1 1 1 1 1 1 1 1 
Λ 1 1 —1 —1 1 1 1 —1 
Λ Ε 2 2 0 0 2 —1 —1 0 
Λ Τι 3 3 1 1 —1 0 0 —1 
Λ τ 2 3 3 —1 —1 —1 0 0 1 

2 —2 V2 - Λ / 2 0 1 —1 0 
Λ £ 2 

2 —2 -VI V2 0 1 —1 0 
Λ G 4 —4 0 0 0 —1 1 0 
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Calculating x{S)(oc) with half-integral S for particular α by use of (7.39) 
and comparing them with the characters in Table 7.1, one may derive 
the scheme of reducing D{s) with half-integral S into the double-valued 
representations of the cubic double group when rotations in the spin 
space are restricted to those of the cubic double-group. Such a reduction 
scheme is given in Table 7.2. 

TABLE 7.2 
REDUCTION OF D{S) INTO REPRESENTATIONS 

OF CUBIC DOUBLE-GROUP 

S Irred. reprs. 

1/2 £ i 
3/2 G 
5/2 Et + G 
7/2 Ex + E2 + G 
9/2 Ex + 2G 

11/2 Ex + E2 + 2G 

Problem 7.2. Derive the character table for the double Z)4-group given 
in the tabulation, where 

ct, c4

3#, 
CI: c4

3, C A 

<V: ct\ 

C2: c 2 > 

<V: C 2 , 

Ê 2<V 2Cl 2Cf 4C2 4<V 

1 1 1 1 1 1 1 

^2 1 1 1 1 1 - 1 - 1 

£1 1 1 - 1 - 1 1 - 1 1 
£2 1 1 - 1 - 1 1 1 - 1 

£ 2 2 0 0 - 2 0 0 
2 - 2 V2 - Λ / 2 0 0 0 

(£3/2) £2 2 - 2 -V2 V2 0 0 0 

ο 
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Problem 7.3. Derive the character table for the double Z)3-group as 
given in the tabulation. It should be noted that in this case C 2 and its 
inverse C2R do not belong to the same class as the directions of the 
twofold symmetry axes perpendicular to the trigonal axis cannot be 
inverted by any symmetry operation in this group. To obtain pure 
imaginary characters, the orthogonality relations in the forms of (1.65a) 
and (1.69a) should be used. Two double-valued representations Ax and 
A2 are always combined together to assure the vanishing X(S){TT) and 
Xis\3n) for half-integral S. 

Ê R 2<V 2GI 3(? 2 ' 3C'2 

At 1 1 1 ! 1 1 
A I 1 1 1 1 - 1 - 1 
Ε 2 2 - 1 - 1 0 0 
A 1 - 1 - 1 1 i ~i 
A2 1 - 1 - 1 1 —i i 
Ë 2 - 2 1 - i 0 0 

c 3 , C3

2R, Ô " · C 2 

U 3 · *^3 > 
C3R 

c 2 , 02 - C2R 

Ο 

7.2.3 LABELING OF THE SPIN-ORBIT SPLIT COMPONENTS 

As shown in (7.44), the electron Hamiltonian of a cubic system 
including the spin-orbit interaction is invariant to symmetry operation 
Roa defined in (7.43) in which R° and Rs are rotations in the cubic 
double-group. Therefore, according to the argument given in 
Section 1.2.2, the energy levels of the system described by this 
Hamiltonian may be labeled with the irreducible representations of the 
cubic double-group. Then, a question arises: What irreducible represen­
tations of the cubic double group are derived from the 2s+lr term ? 

For the purpose of answering this question, we examine the transfor­
mation property of wavefunction Ψ(α8ΓΜγ) on the rotation Ros. From 
(2.19) and the argument given in Section 7.2.1, one sees 

ROSW(ocSrMY) = X W{ocSrMy) D$M(R8) DV(R°), (7.45) 
M'y' 

where D{^)M(RS) and D{fl(R°) are the matrix elements of the represen­
tations (not necessarily irreducible) of the cubic double-group. Now, just 
in the same way as done in (2.21) and (2.22), we look for the unitary 
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transformation* U which reduces the product representation DiS) χ Dir) 

into irreducible representations Dirj) of the cubic double-group. Then, 
it follows that the wavefunctions 

W(ocSrrjYj) = £ Ψ{^ΓΜγ)υΜΎ^ (7.46) 
Μ. ν 

are the bases of irreducible representation j P , of the cubic double-group 
as shown by 

RoaW(aSrrjYj) = χ W(aSrrjYj')Dyvj, (7.47) 

where the γ/s are the degenerate components of Γ7 . However, for the 
purpose of merely knowing what irreducible representations are obtained 
by reducing Dis) χ D(r\ we may use the relations (2.23) and (1.78), 

x{Roz) = xu\R*) χ x

{r\R°) 

= Σ Χ ( Γ Λ * 0 % (7.48) 

Since we know from Table 7.2 the reduction scheme of D{s) with half-
integral S into D{FJ] and from Table 1.4 that of Dis) with integral 5 , 
it is easy to show what irreducible representations of the cubic double-
group are derived from the 2s^r term if one knows how the product 
representations are reduced. The scheme of reducing the product 
representations, which is partly given in Table 2.1, is supplemented by 
Table 7.3. The table is derived by using Table 7.1. 

TABLE 7 .3 
PRODUCTS OF DOUBLE-VALUED REPRESENTATIONS OF CUBIC DOUBLE-GROUP 

A Ε T2 E2 G 

E1 E, G Εχ + G E2 + G Ax + Tx 
A2 + T 2 E+ Tx+ T2 

Et E, E, G Ε2 + G Ex + G A2 + T2 Ax + Tx E+ Tx+ T2 

Ελ + Ε2 Εχ + E2 E, + E2 E + Tx E+ Tx Ax + A2 + E 
Lr Lr Lr + G + 2 G + 2 G + τ2 + T 2 + 2TX + 2 T 2 

For example, 4 7 \ is reduced to G χ Τχ = Ελ + Ε2 + 2G, *Ε to 
7 \ χ £ = 7\ + Γ 2 , and Μ 2 to ( £ 2 + G) χ Α1 = Ε2 + G. The results 
of Section 7.1.2 may be interpreted on the basis of the group theory as 

* In the present problem, the same Ζ) ( Γ / ) may appear more than once when DlS) X DiF) 

is reduced as we will see later. Then, the unitary transformation is not uniquely deter­
mined. 
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follows: Since the 2T2 term is reduced to EX X T2 = E2 + G, the term 
splits into two levels. One of them has twofold and another fourfold 
degeneracy in agreement with the result in Section 7.1.2 if the state 
described by φ^ζ is G and that described by </>2's is E2. The 2E term is 
reduced to E1 χ Ε = G so that no splitting is expected. The group 
theoretical consideration also explains the previous result that the 
spin-orbit interaction connects the 2E term and the fourfold degenerate 
component of the 2T2 term, as both these states are labeled with the 
same G irreducible representation. 

7.3 Method of Operator Equivalent 

7.3.1 APPLICATION OF WIGNER-ECKART THEOREM 

In this subsection, the factorization for the matrix elements 

(ccSrMy I Σ è{n) I, · s , I a 'ST'M'y') (7.49) 
i 

will be discussed. For this purpose, we rearrange the terms in as 
follows: 

JPS0 = -±= [-fWlTV) + iV+1tfT,)] 
V2 

+ 4? T i ) + iV-*& T ^ + F°v(l Ά), (7.50) 

where 

fWiri) = Ew*,, (7-51a) 

and 

V±IB(IT1) = j w « , 

^ ± 1 — ~f (six i ẑi/)> 

= £(Ti)liy y 

= m u , . 

(7.51b) 

(7.51c) 

(7.52a) 

(7.52b) 

(7.53a) 

(7.53b) 

(7.53c) 
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Then, (7.49) is expressed as the linear combination of 

(μΞΓΜγ I Vq9{\Tx) I oc'ST'M'yy , (7.54) 

where q = 0, ± 1 > and γ = α, β, y. 
First note that spin operator S transforms like a vector, consequently 

like the base of irreducible representation D{s) with S = 1 in the 
spin-rotation group, and operator t like the base of 7\ in the cubic-group 
if ξ(ή is the function with spherical or cubic symmetry.* Then, it turns 
out that on rotation R08 operator Vqs?{\T^) transforms like Ψ(ζΤ^γ). 
Therefore, the following linear combination of V^ITJ Ψ{α ST'M'y'), 

9{<x'S'T"M'y)= £ vgy{\T1)W{oc'ST'My)(S'M'\q\s,fM"y 
M'q v'y 
x <ryr1y ι ry>, (7.55) 

transforms on R08 like the y" base of irreducible representation Γ" and 
is the eigenfunction of S2 and Sz with eigenvalues S"(S" + 1) and M". 
By using this property, one may derive 

Σ \ dTW*{oiSrMy) ^ ' 5 T M V ) 
a 

= [(2S + i)(r)]-y\ocsr II V(l7\) \\ a ' S T ' > «r*rVv V * K ' M , (7.56) 

which is similar to (6.87). In (7.56) the reduced matrix 

< « S R | | F ( I R 1 ) | | « ' S T ' > 

is independent of y, y', and y as well as M, Μ' , and q. From (7.55) and 
(7.56) one finally obtains the formula 

(αΞΓΜγ I VJITJ I at'ST'MY) 

= [(is + \)(r)]-y\ocsr\\ ν{\τλ)y « ' S T ' > 

X {SM I S'M'\qy(ry I T'y' Ay), (7.57) 

which is the expression of the Wigner-Eckart theorem for the matrix 
of the spin-orbit interaction. 

* In crystals and complex ions, the Hamiltonian of the spin-orbit interaction may 
differ from (7.1). However, in Chapter X we will show that, even in this case, the following 
argument is still applicable. 



170 VII. SPIN-ORBIT INTERACTION 

As seen from the example in Section 7.1.2, the matrix elements (7.54) 
are purely imaginary and have the property 

(ocsrMy ι vqy(\T-ù ι oc'ST'Myy 

= -(-WWST'M'y' I V^ITJ I ocSrMyX (7.58) 

which assures the Hermitian property of JifBO , 

(oiSrMy I ^ s 0 I oc'ST'Myy = (μ'&ΓΜ'γ' | ^ s o I aSTMy)*. (7.59) 

Applying the Wigner-Eckart theorem to (7.58), and using the relations 

(Γ)-ν\Γγ ι ryrjy = -{ryv\ry \ Γγτφ (7.60) 
and 

(is + iy^iSM ι s'M'\qy = (-iy(-iy-s^2s' + iy^\s'M' \ S M \ - Q \ 
(7.61) 

one can show the relation 

<ptSrII V(l Tx) II a'ST'y = {-\)S-SX*'ST' \\ V(\Tx) \\ ocSry. (7.62) 

Relation (7.60) is derived from (6.90) and (6.91). Since Wigner 
coefficients and C-G coefficients with the cubic bases in (7.57) are real, 
(ocST\\ ν{\Τχ)\\ oc'ST'y are purely imaginary. 

Problem 7.4. Check (7.11) and (7.22) by using the Wigner-Eckart 
theorem. Ο 

Problem 7.5. Show that with the trigonal bases the matrix elements of 
are given as 

<*SrMJM IJTS 0 I oL'ST'Ms'M'y 

= (-\)M°-M*X(2S + 1)(Γ)]- 1 / 2< α£Γ|| V(\TX) II oc'ST'y 
X (SMSI S'Ms'l Ms-Ms'y(rM \ ΓΜΎΧ M / - M s > , 

where the M's indicate the trigonal components xM , aM , and uM for T2 , 
7 \ , and E9 respectively, and they are zero for the components of Ax 

and A2 . In deriving the above formula, note that 

*«> = Σ rj, 
<7=0,±1 

where 
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Here, all the components, a, /?, γ of I and x> y> ζ of s in Vq .^(ΙΤ^), are 
referred to the coordinate system introduced for the trigonal system 
(see Fig. 6.2). Ο 

7.3.2 FIRST-ORDER SPIN-ORBIT SPLITTINGS OF CUBIC TERMS 

The extensive use of formula (7.57) derived in the previous subsection 
provides a simple method of calculating the first-order spin-orbit 
splittings of the cubic terms 2s+ir. It is clear that the terms with 
Γ = Al9 A2 , and Ε show no first-order splitting as the orbital angular 
momentum is quenched in these terms. Therefore, one may confine 
oneself to the splittings of terms 2 5 + 1 T 1 and 2S+1T2. 

For the purpose of obtaining the simple method to calculate the 
first-order spin-orbit splittings of the 2 ^+ 1 T 1 and 2S+1T2 terms, let us 
introduce purely imaginary operator T(7\) whose component T9(Tj) 
transforms like the γ base of irreducible representation Tlg of the 
O - g r o u p and whose reduced matrix is given as 

<«7\ II Γ (Α) II ocT,) = < a T 2 y T(TX) II <*Γ2> = V6 i. (7.63) 

Applying formula (6.89), one can show that, for example, the matrices 
of TV{T^) in the 7\ and T2 states are given as 

(£) 0?) (£) 
α β γ 
0 ( + ) / o - i 

( - ) t ο ο 
0 0 0 

(7.64) 

in which the signs and bases in brackets are for the T2 state. Comparing 
(7.64) with (7.8), one sees that the matrix of T v (7\) in the 7 \ state is 
identical to that of Lz in the Ρ state and the matrix of T^T^) in the T2 

state is identical to that of — Lz in the Ρ state. The same relation is found 
between the matrices of Γ α (7\) andi^. and between T&{T^) andLy . 

On the other hand, if one considers the matrix element of XSqT^Tj) 
in the ocST term as 

(κΞΓΜγ ι XS^TJ ι ocsrMyy 
= [(2S + 1)(Γ)]-ι/2λ<£Γ|| ST(7\) II Sr> 

X (SM I SM'\qXrY \ Γγ'Τφ, (7.65) 

where λ is a constant and the Sq

fs (q = 0, ± 1 ) are the components of 
resultant spin S = Σ si defined in a way similar to (7.52) for siq , one 
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notices that (7.65) is identical to (7.57) for ocSr = a ST' when λ is 
given as 

X { A S R ) = <SR|| STiTjusry · ( 7 · 6 6 ) 

This means that, when the first-order spin-orbit splittings of the ocST 
terms are calculated, Jif80 may be expressed as 

^ s 0 = X(<xSr) S · T(7\), (7.67) 

in which X(ocSr) in general takes different values for different aST terms. 
Expression (7.67) is called operator equivalent of the spin-orbit interaction 
(7.1), and is quite similar to X(ocSL) S · L for calculating the spin-orbit 
splittings of the 2S+1L terms in free atoms and ions. 

Now, from the previously mentioned simple relation between the 
matrices of T ( 7 \ ) in the Tx and T2 states and L in the Ρ state, it is 
evident that XS · Τ makes the 2s+^T± term split just in the same way as 
AS · L does for the 2 5 + i p atomic term, and the splitting pattern of the 
25+1Τ2 term is just inverted to that of the 2S+XP term. Therefore, 2S+1T1 

and 2S+1T2 terms split at most into three sublevels, leaving more 
degeneracies unlifted than those expected from the group theory. In 
this way, the patterns of the first-order splittings of the 2S+1T1 and 
2S+1T2 terms are obtained without performing any calculation. The 
splittings of the terms with S = 1/2,1, 3/2, and 2, are shown in Table 7.4, 

T A B L E 7.4 

T H E FIRST-ORDER SPIN-ORBIT SPLITTINGS 

"+ 1 Τ 1 (Γ 2 ) 
Eigenvalues 
of λ S · Τ « 

Symmetries of the 
split components 

TA 
±λ /2 G (G) 

Τ 2 λ 
TA 
±A 

Α ΙΑύ 
Ά (Τ2) 

Ε, Τ, (Ε, Τ,) 
Τ5Λ/2 
TA 
±3λ/2 

Ε1 (Εύ 
G (G) 

Ε2 y G (Εχ, G) 

Τ3λ 
TA 
±2λ 

2 \ (Τύ 
Ε, Τ2 (Ε, Τύ 

Α2, Τχ, Τ 2 (Αχ y Τ2 y Τχ) 

° The upper signs are for 2^+ιχ± a n ( j t h e lower signs for ZS+1T2 . 
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in which labeling of the split components is performed by using the 
method discussed in Section 7 . 2 . 3 . 

As mentioned previously the values of λ are different for different terms 
and determined by ( 7 . 66 ) , in which the denominator is 

(sr Y S T ( Ï \ ) IL sry = <s N S || s><r \\ Τ(ΐ\) || r> 
= i V6 [S(S + l)(2S + l)] 1 / 2 . (7.68) 

The numerator of ( 7 . 6 6 ) may be expressed in terms of the reduced 
matrix of V{\T^) for a single electron. This will be discussed in the next 
section. The values of λ for some interesting terms are calculated in 
Problem 7 .6 . 

7 . 4 Spin-Orbit Interaction in Many-Electron Systems 

7.4.1 CALCULATION OF (ocSr\\ Γ ( 1 7 \ ) | | oc'ST) 

In dealing with the spin-orbit interaction in many-electron systems, 
the reduced matrices (t2

nemSr\\ V(l 7\) | | t^'e^ST} are left for the 
calculation as shown in ( 7 . 5 7 ) . Since J(?80 is given as the sum of one-
electron operators, these reduced matrices can be expressed in terms of 
those for the one-electron system, (t2 \\ v{\T^) \\ e) and (t2 || ^ ( l^ i ) || ^ 2 ) · 
The reduced matrix (e || v{\ 7 \ ) || e) does not appear as there is no 
spin-orbit interaction in the Eg state. By using an argument similar to that 
given in Section 6 .3 .1 for low-symmetry fields, one can show that 

<t2

nemSr II V{\7\) II t%~kem+kST') =0 for | k \ > 2, (7.69) 

<faV\Sr II V(l Tx) II tr^ST'y = C0(t2 \\ v { \ | | e\ (7.70) 

<h«é»sr Y v(i A) 11 i a w r > = cx(t2 \\ v{\Ï\) N t 2 \ ( 7 . 7 1 ) 

where C 0 and C1 are numerical constants depending upon the terms in 
the matrix element of interest. 

The calculation of C 0 and Cx is straightforward as the wavefunctions 
are already known. For example, Cx for 

it^Tx)e *T2 y V(l TJ II t^T^e *Γ2> 

can be calculated as follows: We had better choose a nonvanishing 
element involving the reduced matrix we want to calculate, which is as 
simple as possible for the calculation. In the present case, it is 
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< i 2

2 T O e 4 r 2 f | | VJXT^ttfTae'T&b. By using Table 3.4 and 
formula (3.34), one obtains 

(ttfTJe « Γ , | ί | Fov(l^i) I h ^ e *Γ2 f ^ 

= Σ / A * [ V 3 h C « I + h i * II* Σ [ - V 3 K f » I + I ^ II 

(7.72) 

Noting the relations 

1 
: (t^TJe *T2 II V(l TJ II i^T^e 4Γ 2> 

and 

(7.73) 

(7.74) 

2VlO 

<«.frî I M l 7Ί) I = - \<h II *-( i?\) II 

one finally obtains 

<t i Vr 1 ) e *Γ2 II F( l Tx) II ttfTJe 4Γ 2> = - <i21| t<l ϊ \ ) || *2>. (7.75) 

If we assume the rf-function approximation and use Ji?8Q in (7.1), (7.74) 
is given as —ιζ/2 as seen in (7.11). Therefore, to this approximation, one 
has 

<*2Μ1Γι)ΙΙ*2> =3ίζ. (7.76) 

The next example is the calculation of C 0 for 

Hi *Ε\\ν(\Τχ) Il tWTJe'Tà. 

We choose (t**E\u \ V^J\T^\ t^TJ e 4 T 2 | 0 for this purpose. By 
using Tables 3.2 and 3.4 and formula (3.34), one can show that 

· £ I « I V.JX τ χ ) I ί,«(·Γι)β 4 r 2 ? f ) 

= Σ ί r f T Λ; Π ^ I - 1 Η I ] * Σ *<-A. i [V31 ι + ι I] 
σ J V2 i z 

+ (t2-\$\v_la(lT1)\e^]. (7.77) 
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On the other hand, one has the relations 

175 

h3 2E±u 

= - J <i2" *E II V(\Γχ) II t^TJe *T2>, 

1 
2V3 <U\\*QTd\\e>, 

and 

<h - i f I Γι) I Φ> = *<Ί II «<ι ?Ί) II *>· 
Therefore, one finally obtains 

<i/ «£ ii V(i τ,) il « . « e i y e <τ 2 > = ^ < Î 2 y *<ι τ \ ) || 

(7.78) 

(7.79) 

(7.80) 

(7.81) 

If we use the rf-function approximation and £Fm in (7.1), (7.80) is given 
as —1£/\/2* a s s e e n from (7.22). However, even if the J-function 
approximation is used, the eg orbital may have the radial function which 
differs from that of t2g . Therefore, we replace ζ by Then, to this 
approximation, one has 

(7.82) 

All the nonvanishing reduced matrices of the spin-orbit interaction 
in iV-electron systems (N = 1, 2,..., 5) are given in Appendix VII. 
The reduced matrices in the remaining systems with Ν = 6, 7, 8, 9, are 
related to those already calculated. This point will be discussed in the 
next subsection. 

7.4.2 THE <«5Γ| | V(lTJ\oL'ST'y IN COMPLEMENTARY STATES 

Let us first consider F%k> in (4.41) and FH~N in (4.43) in the case in 
which one-electron operator F is V^IT^. In this case it follows from 
(4.30) that.for ocp = {\Γνηιργρ) with mp = ± 2 one has 

Fl°kTN = - < ^ ν | Μ 1 Γ ι ) | ^ > 

= ( - i r ^ ' < - « V 9 V I ^v(l^i) I -f**Yv>, (7.83) 

where ρ' = Ν + q and quantum numbers s = 1 /2 and Γρ are not 

* N o t e factor 1/V2 of V^ITJ in JT S 0 as shown in (7.50). 
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written for simplicity. In (7.83) we have used the fact that the orbital 
functions are real. By using (7.58), (7.83) may be reexpressed in the form 

= — <<*P I VQ?i}Ti) I °w> 

In deriving (7.84) the relation* 

<rny \ ^ ( 1 7 \ ) \ m'y") = -(-my | ν_α9{\Ττ) | -m'y'} (7.85) 

is used. Quite similarly, one can show that 8 

10 

10 

= Σ <«ίΙ««(1ΪΊ)Ι«ί>· (7-86) 
Furthermore, sinceF 0 is the matrix element of Vq9(\T^) in the XAX state, 
it is zero. After all, (4.52) shows the relation 

^ W i ) Λ ^ Α ) SrMy I V^ITJ I tliS^) e™'{S2T2>) ST'M'y'y 

= - < f ? " W \ ) e*~m(S2r2) SrMy I | ί ^ Ο ^ ' / γ ) £ ~ m ' 

X (S2T2

f) ST'M'y') (n + m = nf + m' φ 5), (7.87) 

which leads to 

< f a W \ ) em(S2r2) Sr\\ V{\TX) II tliS^) em'(S2T2') ST) 

= -<*2"~w(SiA) e*-m(S2r2) Sr\\ V(\TX) II ί ^ ι ' Λ ' ) e'~m\S2T2') ST'} 
(n + m = n' + tn' φ 5). (7.88) 

Equation (7.88) is similar to (6.129) for the case of low-symmetry ligand 
fields. Because of this similarity, relations similar to all those derived for 

* This can be proved by using the relation 

<y im iy 2w 2 \jJJ*m3> = ( - l ) , i + i2+ i3- 2 w i3 < y i -mxj2 -m2 \jj2j3 - m 3 > t 

M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr. "The 3-j and 6-j 
Symbols." Technology Press, MIT, 1959. 

δ In our problem of Γ{ = t2 and e, and FH~N are zero. 
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low-symmetry fields in the systems of half-filled subshell configurations 
also hold in the present case: Corresponding to (6.131) and (6.132), one 
can show that 

<t2*sr\\V(lTJ\\tfSr> =0, (7.89) 
(t2*Sr II V{\7\) II t*ST) Φ0 (Sr=£ ST') (7.90a) 

only for the combinations 

Sr = *A2, 2 £ , and ST' = 2T2, (7.90b) 

and vice versa. Corresponding to (6.135) one can show that (7.88) holds 
even for η + rn = 5 if η Φ 3 and ri Φ 3. Furthermore, corresponding 
to (6.136), (6.137), and (6.138), one has, respectively, 

< * i W \ ) e\S2r2) Sr\\ F(17\) || i f t S / A ' ) * M ' ( S 2 T 2 ' ) ST) 

= - / W ' i W i ) * 2(^Α) 5Γ | | F(17\) II «T'iS/AO ^ ' ( 5 , 7 Υ ) ST) 
(η'φ3, m'Φ2\ (7.91) 

( W i ) W F(17\) II t2\S^T{) e%S2T2') ST) = 0 
for S i A , £ 2 Γ 2 , S / J Y , and S 2 T 2 ' giving μ^μ^' = 1, (7.92) 

and 
<*>W\) ^ Il ^(1 î \ ) Il ί 2 W i ) « W ^ S T ' > = 0. (7.93) 

Problem 7.6. Calculate λ(α5Γ) in terms of <*21| ̂ (17^)1112)9 and then 
confirm the following values of λ(α5Τ) obtained with the rf-function 
approximation: 

Ν = 1 λ( ί 2

2 Γ 2 ) = ζ 
ί W » r 1 ) = - ζ / 2 , 

Ν = 2 λ(ν 3 Γ 1 ) = ζ/4, 
( λ(ί 2« 3Γ 2) = - ζ / 4 , 
( λ( ί 2 ^Γ 1 ) .*Γ 1 ) = ζ/6, 

Ν = 3 - ζ / 6 , 
( λ ( ^ ( Μ 2 ) % ) = - ζ / 3 , 

ζ/4, 
Ν = 4 ζ/4, 

( λ(ί2 Β3 3Γ2) = - ζ / 4 , 
/ λ(ί1νϊΊ)β«2'1) = - ζ / 6 , 

Ν = 5 ) ^ W ^ = ζ/6, Ν 
λ(ί 2*(3Γ 1> 2Γ 1) = - ζ / 6 , 
A(i,VÎ ,i)e ,î'1) = ζ/6. 

The values of X(aSr) for Ν > 5 are easily obtained from those for 
Ν < 5 by using (7.88). Ο 
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Problem 7.7. In ruby where C r 3 + ions are at the C 3-symmetry site, the 
effective electric-dipole transition moment P e f £ for the intersystem 
combinations i 2

3 *A2MS <-» t2

3 2EMS'M' is approximately calculated from 

P e f f (* 2

3 *A2MS ^ i 2

3 2em;m') 

= Σ <t2**A2Ms\P\t2

2e*rf'MsMr'> 
Γ"Μ" 

X <t2e TMsMn I I * 2

3 2EM^M'y[W(2E) - W(*r")]~\ 

where Ρ is the effective electric-dipole moment combined with odd-
parity ligand fields as introduced in Section 6.2.3, and Ms and M are 
those explained in Problem 7.5. Show that in this case intermediate states 
t2

2e *Γ" are essentially restricted to only one term, t2

2(?T±)e 4T2 . Then, 
calculating P e f f , show that the dipole strengths which are given as 
absolute squares of P e l f are calculated as follows: 

M 2 M > 

3/2 
1/2 

- 1 / 2 
—3/2 

2E 
M8'M' \u+ 

where 

» e /2 
σ + α /3 
* - / 6 

• ζ'2 

σ + α /6 
"-α/3 
7Γ α/2 

*«/6 
σ + α /3 
0-J2 

σ + α / 2 

7Γ α/6 

σ ± α 

and 

4 
3 ς 

W(2E) - W(*T2) 

ρα± 
W{2E) - W(*T2) 

Ρα°»± = CA2 I Ρ» I 4 7> 0 , ± >. 

Suffix OL of ^ a indicates α component of P . Note that 

has already been calculated in (7.81). The dipole strengths calculated 
here are used for the analysis of the Zeeman patterns of the R lines in 
ruby. Ο 

Problem 7.8. By using the argument given in Section 3.1.2, show that 

<*2W\) W i ) Sr\\ K(17\) II f r tS i ' JY) *%S,T e ') ST'} 
= S(S2S2')8(r2r2') 

X <f ,Wi) ^ A ) II F(l 7\) II VWA') ^ A ) S T } , o 



Chapter VIII FINE STRUCTURE 

OF MULTIPLETS 

8.1 Kramers Degeneracy 

8.1.1 TIME-REVERSAL OPERATOR 

Operator Κ was introduced in (4.30) for the purpose of obtaining 
W(ocSrMy) from Ψ(οί8Γ —Μγ) in a simple fashion, and was called a 
time-reversal operator. However, the physical implication of this operator 
was left unexplained. This operator was also used in Section 7.2.1, 
where Κ was shown to commute with rotation operator Rs in the spin 
space. In this subsection we will clarify the physical meaning of this 
operator, which helps one to understand Kramers degeneracy. 

Let us first consider the time-dependent Schrodinger equation 
involving no spin, 

i h ^ - = ^(t). (8.1) 

By denoting the time variable as t' instead of t, the complex conjugate 
to (8.1) is 

-ih d**(p == * V * ( 0 = « # V * ( 0 , (8.2) 

in which * = is assumed as it is the case for Jfé* — 
(7.42). Replacing t' in (8.2) by —f, one obtains 

i h ^-*> = *φ*{-ΐ), (8.3) 

179 
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which shows that φ*(—ί) is also the solution of Eq. (8.1). Therefore, 
φ*(—t) represents the states in which all velocities have opposite 
directions to those in φ(ί). State θφ(ΐ) = φ*(—t) is called the time-
reversed state of φ(ΐ). 

In time-independent problems, the time-reversed state of φ(γ) is 
given by 

Wr) = Κ0φ(Γ) = ψ*(τ) (8.4) 

In (8.4) operator KQ is the complex conjugation operator introduced in 
(4.30). Equation (8.4) indicates that KQ is a time reversal operator for 
orbital functions, and this reversal is called Wigner's time reversal. 
Using the well-known relation, 

KoYU*P) = YU*P) = ( - 1 Γ Υι^(θΨ), (8.5) 

one can show that the orbital angular momentum operator is transformed 
by K0 as 

KolKô1 = - I , (8.6) 

which confirms the property of time reversal of KQ . 
The proof of (8.6) is as follows: The relations 

KoU&KoYJLbp) = (-ψΚοΙ,ΚΪΥ^Θψ) 
= mKoYUfo) = (-ir»iWe?>) (8-7) 

and 

KoLJ&KoYJt&p) = (-\ΤΚοΙ*Κ?Υ^θφ) 
= [/(/ + 1) - m(m ± Κ0ΥΐΎηφφ) 
= i-vrw + υ - ( -»x-» τ iw Υι-τη(θψ) (8.8) 

indicate that 
KokKo1 = -4 (8.9) 

and 
KQl±Kox= - i p , (8.10) 

which means 
KolJCô1 T i K o W 1 = -{h T tf,); (8.11) 

thus 
ΚοΙχΚο1 = —Iχ » KolyKo1 = —4/ · (8.12) 

Quite similarly, using the relations (7.24), (7.25), (4.30), and (4.33), one 
can prove the transformation 

KsK-1 = - s . (8.13) 
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Equation ( 8 . 1 3 ) shows that Κ is a time reversal operator for the systems 
involving spins. 

8 .1 .2 KRAMERS THEOREM 

Kramers theorem states that, in a system with an odd number of 
electrons whose electron Hamiltonian is invariant to time reversal, the 
electronic energy levels are at least twofold degenerate. 

To prove the theorem it is convenient to express Κ in the following 
form: 

Κ = ΥΙ(-ζσ^Κ0, (8.14) 
3=1 

where iV is the total number of electrons and 

α β 

= (8-15) 

is a transformation matrix (Pauli matrix) for spin functions α and β of 
electron/: the equivalence of — ioy to Ks in ( 4 . 3 0 ) is seen by comparing 

(«,/?) [ ° ~ J ] (8.16) 

with ( 4 . 3 1 ) . Then, it follows from (-tay)2 = — 1 * that 

K2 = (-l)N. (8.17) 

Now, since the eigenvalue equation 

JfW = ΕΨ (8.18) 

is also satisfied by ΚΨ if KJifK'1 = Jif, one has two possibilities: 

(i) ΚΨ = βίδΨ, 

or 

(ii) ΚΨφβίδΨ, 

where δ is a real number. In the case of (i), one sees that 

Κ2ψ = €-ίδΚΨ = ψ (8 19) 

contradicts ( 8 . 1 7 ) if Ν is odd. Therefore, in the system with an odd 

* The number 1 is the unit matrix. 
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number of electrons, ΚΨ and Ψ represent different states with the same 
energy, which proves the theorem. 

Kramers theorem does not exclude the possibility that some electronic 
levels in a system with an even number of electrons are doubly degenerate 
due to time reversal. Regardless of whether Ν is odd or even, if ΚΨ is 
different from Ψ, the pair of these states are degenerate. This degeneracy 
is called a time-reversal degeneracy, and ΚΨ and Ψ are called time-reversal 
pair states. The time-reversal degeneracy is lifted if an external magnetic 
field is applied, as the interaction energy of the magnetic moment 
proportional to the angular momentum with the magnetic field changes 
its sign when the direction of the magnetic moment is reversed by time 
reversal. 

8.2 Higher-Order Splittings of Cubic Terms 

As shown in ( 6 . 1 3 1 ) , ( 6 . 1 3 3 ) , ( 6 . 1 3 8 ) , ( 7 . 8 9 ) , ( 7 . 9 1 ) , and ( 7 . 95 ) , the 
terms of half-filled subshell configurations undergo no first-order 
splitting due to low-symmetry fields and the spin-orbit interaction. These 
terms, however, may split due to the higher-order action of these 
interactions. In this section, we shall show several examples of the 
higher-order splitting of the cubic terms by using the perturbation 
theory. A general treatment of the splittings of the cubic terms including 
the higher-order perturbations will be found in the next section. 

8.2.1 SPLITTING OF THE t2

32E TERM 

Let us first consider the splitting of the t2

s 2E term in a system of the 
Z)3-symmetry. As shown in ( 6 . 1 3 1 ) and ( 7 . 89 ) , this term undergoes no 
first-order splitting due to either the trigonal field or the spin-orbit 
interaction, so that we have to consider the second-order splitting. 

As discussed in Section 6 .2 , the even-parity field in this system is 
expressed by the tensor operator VXQ{T2Q) = V0(T2G). If we ignore the 
t2

2e 2Γ terms whose energies are much higher than that of t2

3 2E in the 
range of Dq/B ~ 2 to 3 as seen in Fig. 5 .3 , the trigonal field may 
connect t2

3 2E only with the spin doublets within the t2

3 electron confi­
guration. Furthermore, ( 6 . 1 3 2 ) shows that the trigonal field may connect 
£2

3 2E only with t2

32T2. The nondiagonal matrix elements of VQ(T2g) 
between the t2

3 2E and t2

3 2T2 terms with the trigonal bases, 
<*2

3 2EMSM I Vo(T2g)\ t2

3 2T2MSM'>, are calculated by using ( 6 . 8 9 ) and 
the method given in Section 6 . 31 as follows: 

<fa» *EMSM I V0(T2g) I t* 2T2MsM'y = -V6KS(MMf)y (8.20) 
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where the relation 

(t* 2E II V{T2g) II ti 2T2} = V2 <t2 II v(T2g) \\ t2} (8.21) 

is used and Κ is defined as 

< M ^ ) I I * 2 > = —3 Λ/2 Κ. (8.22) 

The definition of Κ in (8.22) is identical to that of Κ in (6.56). From(8.20) 
one sees that the second-order perturbation energy 

X <fa» 2EMSM I V0(T2g) I t2* *T2MM,S> 
AT 

X <i 2

3 2T2MSM' I F 0 ( r 2 g ) I t2* *EMsM"y/[W(*E) 

= δ(ΜΜ")6^ 2/[^( 2£) - W(2T2)] 

W(*T2)] 

(8.23) 

is independent of M, giving no splitting of * 2

3 2 £ . In this calculation the 
spin-orbit interaction is not considered, and this result is evident from 
the group theoretical view as irreducible representation Ε of the 
O-group goes to Ε of the Z)3-group without any decomposition. 

Next, we consider the nondiagonal matrix elements of J^BO which 
connect t2

s 2E with the other terms. We ignore the t2

2e 2Γ terms also in 
this case. Equation (7.90) shows that the spin-orbit interaction connects 
i 2

3 2E only with t2

2 2T2 if we confine ourselves to the terms of the t2

s 

configuration. The nondiagonal matrix elements 

<*2* 2EMSM I ^ 8 0 I *2

3 2T2MS'M'} 

are calculated by the use of the formula in Problem 7.5 and the method 
in Section 7.4.1 as follows: 

2T 

M M S

N 

ι 
2 

M' x+ x_ 
1 _ 2 i \ - i 1 

2 
1 2 

- 1 0 • 0 V2 0 0 
0 1 0 0 ; V2 0 

ν ζ 

0 0 1 0 0 V2 XV6' 

-V2 0 0 - 1 0 0 - i 

where the relation 

<i / *E II V(l 7\) » *T2> = - (2 /3)^< < 2 1 | „(l Tl) || i2> (8.25) 

is used together with (7.76). If the t2

2e 4Γ terms are considered in 
addition to the t2

3Sr terms, it will be found that the spin-orbit interaction 
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<=̂  sn 

V(T2.) 

Ao V(T2g) 

<Â<tr 

r2 . 2 

V(T2fl) 

t 3 2 T 

, 1 % 1 I 1 
FIG. 8.1. Coupling scheme among terms of dz through V(T 2 f f), J^so , and L. 

also connects t2

3 2E with t2

2{*Tx)e *T2 but not with t2

2(3Tx)e 4 7 \ . The 
coupling through ^ ( T ^ ) and J ^ s o among the terms of the t2

3 confi­
guration ( M 2 , 2£", 2 7 \ , 2 T 2 ) and the *2

2ί> 4 Γ terms ( 4 Γ 2 , 4 7 \ ) is shown in 
Fig. 8.1, where the coupling through L is also indicated for later use. 

Problem 8.1. Show that there is no nondiagonal matrix element of Jfeo 

between the * 2

3 2E and t^TJe 4 7 \ terms. Ο 

From the group theoretical consideration, it is evident that the 
second-order perturbation involving ^ 0 twice does not split the 2E term: 
Such a perturbation still exists in a cubic system, where 2E is reduced to 
Ελ χ Ε = G. Therefore, we have to consider the second-order pertru-
bation involving V0(T2G) and J ^ s o . The perturbation energies of this type 
are calculated from (8.20) and (8.24) as 

[ ζ <*2

3 2EMSM I V0(T2g) I t* 2T2MSM'> 

x <* 2

3 2T2MSM' ι jrso ι ί 2

3 *EM;M*> 

+ Σ <*23 2EMSM I Jf80 I t* 2T2MIM'} 
Μ' 

X < * 2

3 2T2M"SM' I V0(T2g) I * 2

3 2EMlM"y\l[W(2E) - W(2T2)] 

= ( 2Κζ 8(MsMd KMM")I[W(2E) - W(2T2)] for MSM = ±\u±, 
( - 2 # ζ δ(ΜδΜ;0 8(MM")/[W(2E) - W(2T2)] for M SM = ±fa , 

(8.26) 
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which gives the splitting 

WÇE ±\u±) - W?E ± i « T ) = W ( ? E ) * % m • (8-27) 

The doubly degenerate split components, ± \u± and ± ^uT , cannot be 
split further because of Kramers theorem. The splitting of the t2

s 2E 
term calculated here may be observed in the spectrum of ruby as the 
separation of the i?j and R2 lines, and it has been found that the second-
order perturbation calculation described here explains well the observed 
separation. 

Problem 8.2. Examining the transformation properties of the wave-
functions associated with the split components, i \u± and ± , show 
that they are, respectively, labeled with double-valued irreducible 
representation A± + A2 and Ε of the double D 3-group given in 
Problem 7.3. Ο 

Problem 8.3. Calculate the splitting of the t2

3 2E term in the 
Z)2-symmetry system, ζ} 

8.2.2 SPLITTING OF T H E * 2

3 4^4 2 TERM 

Here we will discuss the splitting of the t2

s *A2 term in the Z)3-
symmetry system. In the cubic system the 4A2 term shows no spin-orbit 
splitting as G X A2 = G, but in the Z)3-symmetry system G is decom­
posed into Ax + A2 + Ε so that the *A2 term may split: The decom­
position of G in the D 3-symmetry system is achieved by comparing 
Table 7.1 and the table in Problem 7.3. It follows from Kramers theorem 
that the *A2 term may split into two Kramers doublets labeled as 
A1 + A2 and Ë. 

From the above-mentioned argument, it is evident that the pertur­
bations involving only JifBO give rise to no splitting of *A2 . It is also 
evident that the perturbations involving only VQ(T2g) give no splitting 
as *A2 is an orbital singlet. Therefore, to calculate the splitting, the 
combined action of J(?80 and V0(T2&) has to be taken into account. A 
detailed examination shows that the lowest-order perturbations giving rise 
to the splitting are the third-order ones involving Jfso twice and VQ(T2g) 
once. If the t2

2 e2T terms are ignored, the coupling scheme of Fig. 8.1 
shows that the third-order perturbations of this type are given by the 
following processes: 

(I) tf*Ax^tte*T%m^tfe*Tx^tt*AXt (8.28a) 
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(II). 

(III)i 

t,» M 2 tie * 2 \ *Tt ^ t* M 2 , 

ί 2

3 4 Λ 
S( 

ί 2

3 *,3 2 r 2 

(8.28b) 

(8.28c) 

All these perturbation processes give comparable contributions to the 
splitting of the t2

3 4A2 term. For example, process (I) is calculated as 
follows: It follows from (6.89), (6.127), and (8.22) that 

where 

<h2e *T2MSM I V0(T2g) I tfe *T2MS'M'} = - \Κ%Μ&,·) S(MM') «{M), 

(8.29a) 

a(M = ±1) = - 1 , a(M = 0) = 2. (8.29b) 

From the formula in Problem 7.5, (7.82), and 

Λ/ΤΟ WA^WVilTJWtfe'T,} =• <i 2 | | ^ l T J I k ) , (8.30) 

one obtains <ί 2

3 M 2 M / 2 | JT 8 0 | f2

2e 4 T 2 M S 'M '> as 

Γ 2 M' 
f 1 

2 - 1 a 
2 

1 
2 

3 2 

x0 
1 2 -* - I 

0 0 0 0 : 0 0 0 -3 0 0 0 
- V 6 0 0 0 : 0 0 2V2 0 0 -1 0 0 

0 --2V2 0 0 : 0 0 0 \ /6 0 0 1 0 
0 0 -v s 0 : 0 0 0 0 0 0 0 3 

3 " (8.31) 

Then, by using (8.29) and (8.31), one knows that *A2 splits into two 
Kramers doublets, Ms = ± § and ± h a n ^ their separation is 

W(M.-±IÙ-W(M.= ± * ) - * miTflK

WAi)? · (8-32) 

This separation could be enhanced or canceled by comparable contri­
butions from the other processes, even from those not mentioned in 
(8.28), so that the calculation of the small splitting of the orbital singlet 
such as £ 2

3 *A2 requires a very careful treatment. 

Problem 8.4. Calculate contributions to the splitting of the t2

s éA2 term 
from processes (II) and (III) in (8.28). Ο 
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8 3 Effective Hamiltonian 

8.3.1 SPIN HAMILTONIAN 

Let us consider an orbital singlet with the 2S + 1 spin multiplicity, 
2s+i£ ^ — JI^ o r which is well separated from the other terms. 
This state, in general, is mixed with the other terms through low-
symmetry fields and the spin-orbit coupling and shows small splittings. 
Therefore, the (2S + 1 ) wavefunctions of this state are given by a linear 
combination of the wavefunctions of various terms. We denote such 
(2S + 1 ) functions by φ1, φ2 0 2 i s+i , and suppose that, with these 
functions as the bases, the matrix of the total Hamiltonian involving 
low-symmetry fields and the spin-orbit interactions is partially diagonal, 
i.e., the nondiagonal matrix elements connecting the orbital singlet with 
all the other terms are zero as shown below: 

Φι 02 025+1 

Φι Χ Χ χ 

02 Χ 0 

025+1 Χ Χ 

0 
χ χ — 
χ 

In principle it is possible to obtain functions φί by applying a unitary 
transformation to the wavefunctions of the cubic terms, but here without 
trying to look for the explicit forms of 0 / s we assume that these functions 
have already been obtained. Then, our problem of calculating the 
splitting of the orbital singlet is to diagonalize the small (25 + 1)-
dimensional secular matrix. This secular matrix is, of course, hermitian 
and reflects symmetry properties, including time-reversal symmetry, of 
the system. Our purpose in this subsection is, without knowing the 0 / s 
and the small secular matrix, to find an effective Hamiltonian which 
involves only spin operators and which reproduces the same small secular 
matrix with spin functions Θ(5Μ) as the bases. This effective 
Hamiltonian is called spin Hamiltonian. In doing this it is inevitable to 
leave unknown parameters in the spin Hamiltonian. 
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M = \ 

'-Β ?] > (8.34a) 

IL x έ , (8.34b) 

1] (8.34c) 

X Ί » (8.34d) 

one sees that the matrix of the spin Hamiltonian, 

j>fs = \(a + b)\ +{a~ b)Sz + 2cSx + 2dSy , (8.35) 

with bases Θ{\ \) and Θ(^ — J) is identical to (8.33). The spin 
Hamiltonian in the form of (8.35) involves as many unknown parameters 
as in (8.33), thus providing no advantage. However, if one considers 
that bases Θ{\ \) and Θ{\ — ^) have, respectively, the same transfor­
mation properties* as those of φ1 and φ2 with respect to the symmetry 
operation which bring the system into itself, one notices that the spin 
Hamiltonian should be invariant to those symmetry operations as the 

* The wavefunctions of the 2S+1AX cubic terms may be the bases of irreducible repre­
sentations r's of the double group of a certain symmetry. Since low-symmetry fields and 
the spin-orbit interaction connect the states with the same Γ", φ/s (or the linear com­
binations of φϊ) may also be the bases of the r's. Furthermore, since the transformation 
properties of wavefunctions ¥ ' ( 2 5 + M 1 M£ 1 ) are the same as those of spin functions @(SM), 
we may conclude that the transformation properties of Θ(5Μ) and the 0 f's (or the linear 
combinations of φ{) should be the same. A similar argument may also be applied to the case 
of 2S+1A2 : In this case @(SM)f(A2) transforms in the same way as Ψ(23+1ΑζΜβ2) does, 
where f(A2) is a function which transforms as the base of irreducible representation A2 

of the O-group. The presence of factor f(A2) in the bases of the spin hamiltonian brings 
no essential difference in the argument. Afterall, it may be said that, as long as orbital 
singlets are concerned, the spin Hamiltonian should be invariant to the symme tryopera-
tions which bring the system into itself. An example of 1E for which this is not the case 
will be discussed later. 

For this purpose, we first study an example with S = 1/2, 2A1. In 
this case the Hermitian secular matrix is given in the form 

l U ' ~ Λ <8·»> 

where a, b, cy and d are real numbers. Considering the matrices of 1, 
Sx, Sy , and Sz with bases Θ(^Μ) as follows, 
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real Hamiltonian is. Now imposing the condition of time-reversal 
invariance on (8.35), we know that the linear terms in Sx , Sy , and Sz 

should be zero, i.e., 
= #a + b)i. (8.36) 

Spin Hamiltonian (8.36) indicates the absence of the splitting of the 2AX 

(or 2A2) term in any symmetry system in agreement with Kramers 
theorem: spin doublets (S = \) always appear in the system with an odd 
number of electrons. 

In the case of ZA12 , the secular matrix corresponding to (8.33) is 
three-dimensional and, in general, involves nine unknown parameters. 
By using spin functions 0(11), 0(10), and 0(1 — 1) as the bases, the 
diagonal elements involving three parameters may be reproduced by a 
suitable linear combination of operators 1, Sz, and S 2 whose matrices 
are independent of each other and are given as 

(8.37a) 

(8.37b) 

(8.37c) 

The independence means that none of the matrices can be expressed by 
a linear combination of the others. The elements one-off the diagonal 
involving four parameters may be reproduced by a suitable linear 
combination of the following Hermitian matrices: 

rl 0 O-i 
1 = 0 1 0 

.0 0 1. 

rl 0 O-i 
s, = 0 0 0 

-0 0 - 1 . 

rl 0 Οι 
V = 0 0 0 

.0 0 1. 

S„ = 

S„ = 

SXSZ + SZSX — 

SySz s,s„ = 

r0 1 Oi 
1 0 1 χ 

-0 1 0. 
-o —i °1 i 0 —i X 
.0 i 0. 
r0 1 °1 1 0 - 1 X 
-0 - 1 0-
Ό —i o-
i 0 X 

-0 —i Ο­

1 
v r 

1 
v r 

1 
v r 

1 
v r 

(8.38a) 

(8.38b) 

(8.38c) 

(8.38d) 
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which are independent of each other. Finally, the elements two-off the 
diagonal involving two parameters may be reproduced by a suitable 
linear combination of the following Hermitian matrices: 

r0 0 l-i 
0 0 0 
-1 0 0-

r0 0 —ί-
SXSy " j " SySX = 0 0 0 

-i 0 0-

(8.39) 

which are also independent of each other. From all these it follows that 
the spin Hamiltonian for 3 A 1 2 is given by a linear combination of 1, 
3χ > y Sz y SySz + SzSy y SgSχ "f" Sg.Sg , S /gSy ~\~ SySx y S^ , 3Xla 
Sx

2 — Sy2. Imposing the time-reversal invariance on 34?8, one sees that the 
terms linear to Sx , Sy, and Sz should be zero. Furthermore, for example, 
if the system has the Z)2-symmetry whose twofold symmetry axes are x, yf 

and z y only the terms proportional to 1, Sz

2 and Sx

2 — Sy

2 should be 
nonvanishing as they are invariant to the rotations of the Z)2-group. Thus, 
one finally obtains the spin Hamiltonian 

^ = D[S* - IS(S + 1)] + E(SX

2 - Sy2). (8.40) 

In (8.40) the constant term is included in —^DS(S + 1) so that the trace 
of the matrix be zero. The trace gives the shift of energy levels as a whole, 
which we are not interested in. In (8.40) D and Ε are undetermined 
parameters. The secular matrix of (8.40) with bases &(SM) (S = 1) is 
easily obtained by using (8.37) and (8.39) as 

M = 1 0 - 1 

whose eigenvalues are 

Όβ 0 Ε ι 
0 -2D/3 0 
Ε 0 Όβ 

(8.41) 

Equation (8.42) shows that S A 1 2 split into three nondegenerate com­
ponents in the Z)2-symmetry system. 

Considering these examples, we can find the general method of 
constructing the spin Hamiltonian with spin S for the 2 S + 1 A 1 2 terms. 
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For this purpose we introduce irreducible spin tensor operators Sik) 

whose components are denoted by S(k). The Sq

k)'s are obtained first by 
symmetrizing the polynomial expansion, ΣΟαβνχαγβζ^ (oc + β + γ = k)> 
of the cubic harmonics of the M i order, and then by substituting Sx , Sy , 
and Sz for x, y, and respectively. For example, SxSy + SySx in (8.39) 
is a component of S ( 2 ) and is derived by symmetrizing the polynomial 
expansion of the second-order cubic harmonic Vt(T2g) = xy as xy + yx, 
and then by substituting Sx and Sy for χ and y, respectively. The 
symmetrization is necessary to make the spin operators hermitian. 

As seen from such a process of constructing the irreducible spin-tensor 
operators, S M has 2k + 1 components, which are transformed like the 
γ base of irreducible representation Γ of the O-group. Therefore, q of 
Sq

k) may be denoted by Γγ. Furthermore, as seen in examples of the 
matrices of Sq

2) given in (8.37)-(8.39), the matrices of all the components 
of S<*>'s (k = 0, 1, 2,..., 25) with bases Θ(5Μ) (M = 5 , 5 — 1,..., - 5 ) 
are independent of each other. 

Now considering that the (2S + l)-dimensional hermitian matrix 
generally involves the (25 + l ) 2 parameters, one sees that this matrix 
may be equivalent to the matrix of a suitable linear combination of 1, 
S{

q\..., Sq

2S) with bases @(SM): In this case the total number of S{k)fs is 
Σ ϋ ο (2Λ + 1) = (25 + l ) 2 . Imposing the symmetry requirements on 
this linear combination, one finally obtains the spin Hamiltonian for the 
state with spin 5 . 

For example, let us construct the spin Hamiltonian for the 4A2 state 
in the Z)3-symmetry system. We first make a linear combination of the 
components of irreducible spin tensor operators, 1, Si1), S i2), and S<3>. 
Then, requesting the time-reversal invariance and the invariance to any 
rotation in the Z)3-group, one obtains 

^ s = D[SZ* - \S(S + 1)], (8.43) 

where the Z-axis is along the trigonal axis. The eigenvalues of (8.43) for 
the state with the fictitious spin 5 = 3 / 2 are obtained as 

e1 = D (twofold degeneracy), 

e 2 = — D (twofold degeneracy), 

in agreement with the result in Section 8.2.2. 
Parameters are left undetermined in the spin Hamiltonian. These 

parameters are determined from experiments or by the theoretical 
calculation as described in the previous section. The method of the 
spin Hamiltonian demonstrates its great power when the splitting due 
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to an external magnetic field is treated. This will be discussed in the next 
section. 

So far we have confined ourselves to orbital singlets. However, it is 
generally true that the (2S + l)-dimensional Hermitian matrix may be 
replaced by the matrix of a suitable linear combination of S{

q

k) 

(0 < k < 2S) with bases 0(SM). Therefore, in principle, for any cubic 
term with a ( 2 5 + l)-fold degeneracy including both spin and orbital 
degeneracies, one may construct a "spin Hamiltonian , , with the fictitious 
spin S. For example, the 1E term may be dealt with as though it has a 
fictitious spin of ^ and the "spin Hamiltonian , , in the form of (8.35) is 
applicable. The most serious drawback in this case comes from the fact 
that the transformation properties of φ1 and ψ2 may not necessarily be 
the same as those of Θ( \ \) and © ( ^ — i ) . This makes us unable to 
simplify the linear combination of spin-tensor operators by using 
symmetry arguments. To show this, let us consider an example of the 
t2

2 1E term in the D 4-symmetry system. The group theory shows that 
this term splits into A1 and B1, while 0 ( J J ) and 0 ( ^ — J ) transform 
as the bases of Ελ of the double Z)4-group. Therefore, the "spin 
Hamiltonian" cannot be expected to satisfy all the symmetry requirements 
which are satisfied in the real Hamiltonian. Actually, if one calculates the 
diagonal matrix element of the D 4-symmetry potential, Vu(Eg), as 

(t2 ΐΕγ I Vu(Eg) I t 2 W > = - ( 2 / 3 ) V 2 δ ν νβ,<ί 2 y v{Eg) \\ t2\ (8.45) 
where 

β%ι = - 1 / V 2 , and βυ = 1 /V2, 

one sees that the splitting of the t2

2 XE term really occurs. This contradicts 
the result obtained from (8.36). This means that we can not impose the 
time-reversal invariance on the "spin Hamiltonian , , in (8.35). This 
example shows that great caution is necessary when the terms with 
orbital degeneracy are treated with the "spin Hamiltonian. , , However, 
in the treatment of a Kramers doublet, we may always assume the 
time-reversal invariance of the "spin Hamiltonian/' since φ1 and φ2 

as well as Θ{\ ^) and @(Jr — \) are the time-reversal pair states. 

Problem 8.5. By using the method of spin Hamiltonian show that six­
fold degeneracy of the term is partially lifted in a cubic system. Ο 

Problem 8.6. Treat the 2E term in the Z)3-symmetry system as if it has 
a fictitious spin of 3/2. Ο 

8.3.2 GENERAL EFFECTIVE HAMILTONIAN 

In the previous subsection, we showed that the method of spin 
Hamiltonian is simple and powerful in predicting qualitative features 
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of the splitting of orbital singlets but not necessarily so for the terms 
with orbital degeneracies. This defect may be eliminated if one chooses 
in place of spin functions bases which transform in the same way as the 
η functions φί, associated with the term of n-îold degeneracy including 
both orbital and spin. With these functions φί the nondiagonal matrix 
elements of the total Hamiltonian connecting the term of interest with 
the others are assumed to be zero. This choice of base functions makes 
one unable to construct simple effective Hamiltonian by using spin 
operators only. However, we will show in this subsection that a relatively 
simple effective Hamiltonian may be constructed by using both spin 
operators and irreducible tensor operators Χ{Γ)> introduced in 
Section 6.2. 

Let us start with the simple case of obtaining the effective Hamiltonian 
for spin singlets having orbital degeneracies, 1Γ (Γ = Ε, 7 \ , Τ2). Note 
that the (r')-dimensional secular matrix with bases ί/f/s involves (Γ)2 

parameters. This matrix may be replaced by the matrix of a linear 
combination of irreducible tensor operators Χ?(Γ) (Γ χ Γ = ΣΓ) with 
bases φ(Γγ). Here φ(Γγ) is any given function which transforms like the 
γ base of the irreducible representation Γ of the O-group. The reason 
why this replacement is possible is clear if one considers the fact that the 
matrices of Χ9(Γ) with different Γγ are independent of each other and 
the number of operators Χ9(Γ) with Γ appearing in Γ χ Γ is (Γ1)2. 
Furthermore, since ψ(Γγ)^ transform in the same way as ί/r/s do, the 
linear combination of Χ?(Γ) should satisfy the symmetry requirements 
which are satisfied by the real Hamiltonian. 

For example, the primitive form of the effective Hamiltonian for the 1E 
term is given by 

where a, b, c, and d are real unknown parameters. In (8.46) X(Alg), 
Xu(Eg)y and Xv(Eg) are given by real operators ν?(Γ) and X(A2g) by 
purely imaginary operator T(A2g), as we are dealing with diagonal 
matrices [see (6.93) and (6.95)]. Requiring K^nK~x = Jfeii for (8.46), 
one knows that all the irreducible tensor operators should be real so that 
parameter b should be zero. Furthermore, since Jfeft should be invariant 
to any rotation of the D 3-group, all the terms except V(Alg) should be 
zero. Thus, the final form of the effective Hamiltonian for 1E in the 
Z)3-symmetry potential is obtained as 

JTeff = aV(Alg) + bT(AJ + cVu(Eg) + dVv{Eg), (8.46) 

jrett = aV(Alg), (8.47) 

which shows that no splitting is expected in this case. 
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For the 1E term in the Z)2-symmetry whose twofold symmetry axes 
are x, y, and z, a similar consideration leads us to 

^ e f f = cVu(Eg) + dVv(Eg\ 

where constant term aV(Alg) is omitted for simplicity. For this 
Hamiltonian, bases φ(Εγ) may be chosen so that 

WE)\\nEg)\\m> = 29 

which gives 
u ν 

V&) = [ J J ] . 

Then, the use of (8.48) gives the splitting, 

*i,2 = ±(c2 + άψ\ (8.51) 

Now, let us discuss a general method of constructing effective 
Hamiltonian for the terms with both orbital and spin degeneracies, 
zs+ip \ y e i 0 0 k for an effective Hamiltonian whose matrix with given 
bases W{SrMy) is identical to the (25 + l)(F)-dimensional secular 
matrix with bases φί . Here, ΨζΞΓΜγ) transforms in the same way as 
unperturbed wavefunction Ψ(α8ΓΜγ) as well as φι does. Considering 
the arguments previously given for the spin Hamiltonian for spin 
singlets, we immediately notice that the effective Hamiltonian we are 
looking for is given by a suitable linear combination of the products 
5< Λ ) Χ ν (Γ), where 0 < k < 2 5 and Γ χ Γ = ΣΓ. The number of these 
products is (25 + \)2(Γ)2 which is equal to that of parameters in the 
(25 + l)(jT)-dimensional secular matrix. It is evident that the matrices 
of these products with bases Ψ(ΞΓΜγ) are independent of each other. 
The final form of the effective Hamiltonian is obtained by making the 
linear combination invariant to any symmetry operation which brings 
the system into itself. 

For example, the effective Hamiltonian for the 2E term in the Z)3-
symmetry is obtained as follows: We first make a linear combination 
of the products of an element in (1, Sx , Sy , Sz) and an element in 
(V(AJ, TiA^), Vu(Eg), Vv(Eg)) as 

Jfea = V(A10)(aJ + a2Sx + a3Sv + a4Sz) 
+ TiA^bj} + b2Sx + b3Sy + btS,) 
+ Vu(Eg)(Cl\ + c2Sx + c3Sv + CiSz) 
+ VJiE^dJ + d2Sx + d3Sv + d4Sz). (8.52) 

(8.48) 

effective 

(8.49) 

(8.50) 
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Then, imposing time-reversal invariance on (8.52), one may simplify 
(8.52) as 

JTea = axV{Alg) + T(A2g)(b2Sx + b3Sy + béSM) + cxVu(Eg) + dxVv(Eg). (8.53) 

Furthermore, imposing the Z)3-rotation invariance on (8.53), one finally 
obtains 

œe{t=AT(A2g)SZy (8.54) 

where Sz = (Sx + Sy + and Δ is an undetermined parameter. 
In (8.54) the constant term a1V(Alg) is omitted. It should be remarked 
that T(A2g) alone is not invariant to rotations in 3C2 as shown in 
Table 6.1, but T(A2g)Sz is the trigonal invariant. And Ψ(2ΕΜ8Μ) may 
be chosen so that 

<9(*E)\\T(A2g)\\9(*E)) = -iV2, 

which gives the matrix of T(A2g) as follows: 

(8.55) 

M = u+ u_ 

(8.56) 

Then, the secular matrix of <?ΤβίΙ in (8.54) with bases Ψ{*ΕΜΒΜ) is 
calculated as 

i - i 

"1 0 
0 - 1 

0 

ι ι 
2 2 

-1 0 
0 1 

Χ \Δ, (8.57) 

which gives the splitting of the 2E term as 

*{±\u±) - *{±\uT) = Δ. (8.58) 

Although Ψ(2ΕΜ8Μ) are not wavefunctions Ψ(<χ 2EMSM) of the oc 2E 
term, the transformation properties of Ψ(2ΕΜ8Μ) and W(oc 2EMSM) are 
the same. Therefore, we may conclude from (8.58) that the oc 2E term 
splits into two components, oc 2E ± \u± and oc 2E ^ . 

* Here Ζ is the trigonal coordinated axis introduced in Fig. 6.2. 
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In the method of effective Hamiltonian several parameters are left 
undetermined. They should be determined by experiments or by other 
kinds of theory. To calculate the values of these parameters one may 
use the perturbation theory as described in Section 8 .2 . For example, 
A(t2

z 2E) was already calculated in ( 8 .27 ) . 

Problem 8.7. Calculate the splitting of the oc 2T2 term in the Z>3-
symmetry by the use of the effective Hamiltonian method. <̂> 

8.4 Zeeman Effects 

8.4.1 TREATMENT BY THE EFFECTIVE HAMILTONIAN METHOD 

With the aid of the relativistic theory, it is known that the total 
magnetic moment M of electrons in a many electron system is given by 

Μ = -μΒΣ ('< + 2*i) = - ^ ( L + 2 S ) > ( 8 · 5 9) 
i 

where 
μΒ = eh/lmc, (8.60) 

is called Bohr magneton and e is positive for an electron. When an 
external magnetic field Η is applied, this magnetic moment interacts 
with the magnetic field giving the interaction energy as 

tfz = μΒΗ · (L + 2S) , (8.61) 

which is called a Zeeman term. The purpose of this section is to discuss 
the additional term-splitting induced by the Zeeman term, which is 
called Zeeman splitting. 

To study the effects of the Zeeman term by the effective Hamiltonian 
method, it should first be noticed that ( 8 . 6 1 ) changes its sign under 
time-reversal Κ acting on the electron system, but it is invariant to the 
time-reversal acting on both the electron system and the source of the 
magnetic field: The magnetic field is induced by a current which changes 
its direction by time-reversal. This time reversal will be denoted by K. 
It follows that the total Hamiltonian including the Zeeman term is 
invariant to operation K. 

A similar generalization of symmetry operations may also be done for 
rotations. We first note that the magnetic field transforms like an axial 
vector if a rotation is applied to the source of the magnetic field. Then, 
it follows that the Zeeman term ( 8 . 6 1 ) is invariant to any simultaneous 
rotation of the electron system and the magnetic field source by the same 
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angle, as L and S also transform like axial vectors by rotations, and (8.61) 
is the scaler product of two axial vectors. Such a simultaneous rotation 
will be denoted as i ? o s , where R08 are elements of the group to which the 
rotational symmetry of the system belongs. It is clear that the total 
Hamiltonian including the Zeeman term is invariant to rotations i ? o s . 

Now we are ready to construct the effective Hamiltonian for the 2 5 + 1 Γ ι 

term in a magnetic field. Since the (25 + 1 )(r)-dimensional secular 
matrix is still hermitian when the Zeeman term is included, it has to be 
expressed by the matrix of a suitable linear combination of the products, 
Sq

k)X9(r) (0 < k < 2 5 ; Γ χ Γ = ΣΓ), with bases Ψ(8ΓΜγ). However 
in the presence of a magnetic field, the coefficients of the linear combi­
nation should be functions of the field. If these coefficients are expanded 
in powers of the magnetic field, the effective Hamiltonian will be given 
in general as 

Q.9 
(8.62) 

< # ( Η ) = Σ Σ A:,y(kr,qy)Hx«Hy*Hz\ 
n=0 α, β, γ 

a+j3+y=n 

Since the higher order terms in the expansion in powers of H are 
usually small, we retain only the terms with η = 0 and 1 in the following 
argrument. 

To see how Zeeman splitting is calculated by the effective Hamiltonian 
method, let us consider an example of the 2E term in the D 3-symmetry. 
In this case the final form of the field-independent terms in (8.62) are 
already obtained in (8.54). Imposing the K invariance on the field-
dependent terms, one sees that 

4*v (0 Alg , 0 elg) = Al,y(l A2g , q e2g) 

= Αΐβν(0Ε9)0γ)=0 (8.63) 

for all possible combinations of αβγ. At this stage, the form of the 
effective Hamiltonian is 

JTeff = àT(A2g){Sx + Sy + 5 2)/V3 + [a2(H)Sx + a,(H)Sy + aA(H)SM] 

+ ^ (H) T(A2g) + Vu(Eg)[c2(H)Sx + c,(H)Sy + cé(H)Sz] 

+ Vv{Eg)[d2(H)Sx + d3(H)Sy + dA(H)S,], (8.64) 

in which ^(H), ^(H), ^(H), and ^(H) are linear functions of H 
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(without terms independent of H), and V(Alg) is replaced by unity as 
it is equivalent to a unit matrix. 

Now let us further impose the rotation invariance for R08 in the 
Z)3-group on the field-dependent terms in (8.64). For this purpose it is 
convenient to introduce H±1 and H0 defined by 

(8.65) 

and S±1 and S0 defined by 

(8.66) 
^0 S % y 

in which X9 Y, and Ζ are the coordinate axes introduced in Fig. 6.2 for 
the trigonal system. Clearly HM and SM(M = ± 1 , 0 ) transform like the 
M trigonal base of irreducible representation 7\ under the rotation R0B 

in the cubic group. Then, by using a method similar to that used for 
deriving low-symmetry ligand field potentials, the trigonal invariants 
given by linear combinations of the products of HM and SM' are obtained 
as follows: 

—H+1S_± — H^S+i + H0S0 = HXSX + HYSY + HZSZ, (8.67) 

H+1S_X + H^S+1 + 2H0S0 = -(HXSX + HYSY) + 2HZSZ . (8.68) 

Equation (8.67) transforms like the base of Ax and (8.68) like the x0 

base of T2 , which are both trigonal invariants. These invariants have 
to be obtained from the second term in (8.64) by assuming appropriate 
relations among nine parameters. By making suitable linear combinations 
of (8.67) and (8.68), the trigonal-invariant form of the second term in 
(8.64) may be given by 

g^BHzSz + g^B{HxSx + HYSY\ (8.69) 

where gn and g± are undetermined parameters. The trigonal invariant 
form of the third term in (8.64) is easily obtained as 

g^BHzT(A29)y (8.70) 

where g „ ' is an undetermined parameter. It would not be difficult to see 
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that the trigonal-invariant forms of the fourth plus the fifth terms in 
(8.64) are given as 

Σ HMSMVM*(T1M'EM'' I TXM"')<JXMTXM" \ A ^ 
MM' 

M'M" 

oc H+1(S+1V+ + S0V_) + / / _ X ( 5 0 F + - + i / 0 ( 5 _ x F + + S+1V_), 

(8.71) 

Σ HMSM'VM-(JXM'EM" I TXMn"y<JXMTLM'" | T20> 
MM' 

M"M'" 

oc H+1(S+1V+ + S0V_) + ff_1(50F+ - 5 _ , F _ ) - 2H0{S_1V+ + S+1V_), 

(8.72) 

Σ HMSM.VM-<JXM'EM" I Τ2Μ°'ΧΤΎΜΤ2Μ"' | T20} 
MM' 

M"M" 

oc # + 1 ( S + 1 F + - S 0 F _ ) - H^(S0V+ + S^VJ), (8.73) 

where the V±'s are VM(Eg) with M = ± 1 . Making suitable linear 
combinations of (8.71), (8.72), and (8.73), one may finally obtain the 
trigonal invariants of the fourth and fifth terms in (8.64) in the following 
form: 

B^BHIS^V^) + S^V_(E9)]IV2 

-gMH+1S+1V+{Eg) - H^V^E,)] 

- V2 g^B[H+1S0VJEG) + H.&V+iE,)], (8.74) 

where g"n , g±' and g"L are unknown parameters. Summing up all the 
trigonal invariants, we obtain the final form of the effective Hamiltonian 
as follows: 

3em = dSzT(A2g) + g^BHzSz + gs^BHzT(A2g) 

+ g ^ H ^ V ^ E , ) + S+LV_(Ee)]IV2 (8.75) 

for H y Ζ, and 

Jifett = ASzT(A2g) + g^BHxSx 

+ g^BHX[S+1V+(EG) + S_1V_(Eg)]l\/2 

+ g^BHXSZ[V+(EG) - V_(EG)] (8.76) 
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for H K X. Base functions W(2EMSM) are chosen so that the matrices of 
V±(Eg) are given by 

"-<*•> = [ ο i l -

(8.77) 

The matrices of S±1 are easily obtained from (8.34). Then, the matrix 
of J^ett for H II Ζ is calculated as 

A+(gi+gt ')μΒΗ -g\ μΒΗ 
-g^BH Δ — (£„ +Ει')μΒΗ 

ο 

0 -Δ -{g, - * . ' K f f J 

Χ i, (8.78) 

and the matrix of e^eff for H || X is calculated as 

Δ 
0 

0 
Δ 

\u_ — \u+ 

—gl^H g^BH 

g±H<BH g'!t*BH 
~ Δ g±l*BH 

g^BH -Δ 

(8.79) 

The eigenvalues of (8.78) are easily obtained. The result shows the 
Zeeman splitting with Η || Ζ as illustrated in Fig. 8.2. Such a splitting 
has been observed in ruby,* and the linearity of the splitting to a magnetic 

* In ruby the site symmetry of Cr 3 + ions is C 3 , so that we have additional terms in 
(8.75) and (8.76). However, the final result for C 3 does not differ from that for D3 . 
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field has been confirmed by using pulsed magnetic fields up to 200 kOe. 
The proportionality factors to μΒΗ, called g-values, have been found 
to be 1.48 ± 0.08 for the ±%u± component and 2.44 ± 0.08 for the 
± 2 M q = component. The observed relation, 1.48 + 2.44 ~ 4, shows that 
g"} in the effective Hamiltonian is small, as the sum of the ^-values is 
*2gκ ~ 4 if gl is neglected: £„ is expected to be close to the spin-only 
value, g n ~ 2. 

FIG. 8.2. Zeeman splitting of the 2Ε term in the D3-symmetry with Η || Z. 

By assuming that \g^BH and \g"^BH are small as compared with A, 
the eigenvalues of (8.79) are obtained as shown in Fig. 8.3. In this case 
no Zeeman splitting has been found in optical experiments for the 
two components of t2

3 2E in ruby. This shows that g±' is very small. 

FIG. 8.3. Zeeman splitting of the 2E term in the D3-symmetry with Η || X. Relations, 
gj-PeH <ξ 2Δ and g"±pBH <^ 2Δ, are assumed. 

However, a more accurate experiment by the use of an optical detection 
of electron spin resonance in the component* has confirmed the 
presence of nonvanishing g±', although this parameter has been found 
to be very small, 0 < g±' < 0.06. 

* S. Geschwind, G. E. Devlin, R. L. Cohen, and S. R. Chinn, Phys. Rev. 137, A1087 
(1965). 
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Problem 8.8. Derive the spin Hamiltonian linear to H for the *A2 term 
in the Z)3-symmetry in a magnetic field H. <0> 

Problem 8.9. Derive the effective Hamiltonian linear to H for the 2T2 

term in the Z)3-symmetry in a magnetic field Η. <> 

8.4.2 CALCULATION OF £-VALUES 

Undetermined parameters in effective Hamiltonian may be calculated 
theoretically by the use of either the perturbation theory or more 
elaborate methods. Here, we present two examples of calculating 
^-values in effective Hamiltonian. The methods of calculating ^-values 
in the other cases are inferable from these examples. 

The first example is the calculation of g in the spin Hamiltonian 

•*i =gμB^ · S. (8.80) 
for the t2

s éA2 term in a cubic system. For simplicity, the magnetic field 
may be assumed to be along the ^-direction without any loss of gener­
ality, so that the Zeeman term in the original Hamiltonian is given by 

JT, = μΒΗ(Σζ + 2SZ). (8.81) 

The main contribution to g comes from the diagonal matrix elements 
of —2pBHSz in the t2

z *A2 term, and it gives the spin-only value, g0 = 2 
(more exactly g0 = 2.0023). What we are interested in is the deviation 
of g from g0 , g — g0 , which is called a g-shift. The £-shift may be inter­
preted as coming from the contribution of the orbital angular momentum 
which is brought into the orbital singlet because of the spin-orbit 
interaction: Otherwise, the orbital angular momentum is completely 
quenched in the orbital singlet. 

In the *A2 term, g in (8.80) is calculated from 

^ = 3 ^ K M ^ ) - E ( M « = - | ] - <8-82> 
As seen from the physical argument given above, the £-shift comes from 
the second-order contribution to (8.82) involving Jfso and μΒΗΣζ in the 
perturbation calculation. By using the coupling scheme in Fig. 8.1, the 
second-order contribution to (8.82) is found to be 

*g = Μ<4Λ *?2 K><4r, f ζ I œB01 M 2 | > 
+ <lA2 11 ^ 8 o I *τ2 f £><«r, f ζ ι Lz ι M 2 f > 

- <M, - f I Lz\ *T2 - UX*T2 - U I ^ S o I 4 A f > 

- <*a, - f ι χ„ ι 4 r 2 - |D< 4T 2 - κ I L* 14Λ - f >] 
X [W(tt» M 2 ) - W(tfe 4Γ 2)]-ι, (8.83) 



8.4 Zeeman Effects 203 

in which t2

2e for 4T2 is suppressed in the matrix elements. Since the 
matrices of Lz and e^g0 are hermitian and each term in (8.83) is real, 
(8.83) may be simplified as 

4 ? 
2<*At 

3 
1 ^ 1 % ) 
lODq 

2 <<2ζ I 4 I ev> 
3 10Z>? Φ Μ - 2 -
4 < α ΐ 4 ΐ ^ χ 4 ^ 1 ^ ο ΐ α θ 
3 
8 AT 
3 \0Dq ' 

where lODq is the cubic field splitting parameter equal to 

W(t2*e*T2)- W(t2**A2) 

(8.84) 

and h! is defined as 

<* 2ζ I 4 I ev> = 2i*'. (8.85) 

Here is unity in the rf-function approximation as seen from (7.5). In 
deriving (8.84), use was made of the relations 

< 4Γ 2 ± f£ I JT S 0 I *A2 ±f)=(e±\v\ 3tfm I t2 ± J O , (8.86) 

< M 2 | L , | * r 2 0 =< ί 2 ζ | (8.87) 

which are easily derived by using the explicit forms of the wavefunctions. 
The method of calculating the matrix elements of the orbital angular 
momentum in general is explained in detail in Appendix VIII. Since 
lODq ~ 10 4 c m - 1 , ζ' ~ 10 2 cm" 1 and k' ~ 1 for the systems involving 
iron-group transition metal ions, (8.84) shows that the £-shift is of the 
order of 10~2. 

The next example is the calculation of g/ in (8.75). Since the term 
gl]^BHT(A2g) involves no spin operator, the perturbation processes 
giving g „ ' should involve spin operators an even number times. Further­
more, the orbital operator of type T(A2g) has to be found in the reduction 
of the products of orbital operators appearing in the perturbation 
processes into irreducible representations. Of course, the perturbation 
processes should involve operators Lz or Sz once as the term of interest 
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[W{t* 2E) - W(t* tTJÏÏWfo* 2E) - W(tf 2T2)} 

6K2 

[W(t2* 2E) - W(tf 2 T 2 ) ] 2 ' 
(8.89) 

where Κ is the trigonal splitting parameter defined in (8.22). 
In ruby Κ 350 cm" 1 , W(2E) - W{2TX) ~ - 7 0 0 cm" 1 , and 
W(2E) - W(2T2) ~ - 6 5 0 0 cm- 1 , so that (8.89) gives g/ ~ - 0 . 3 4 
which almost explains the observed £-values, g(±^u±) = 1.48 ± 0.08 
zndg(±^uT) — 2.44 ± 0.08, if is assumed to be the spin-only value. 

As seen in these examples, the form of effective Hamiltonian gives us 
some insight into the perturbation processes effective in calculating 
undetermined parameters in the effective Hamiltonian. This is also one 
of the merits in using the effective Hamiltonian method. 

8.4.3 ELECTRON SPIN RESONANCE AND OPTICAL ZEEMAN PATTERNS 

As discussed so far, the application of a magnetic field induces Zeeman 
splitting of terms, and transitions between the Zeeman levels within 

is linear to Hz . From these considerations and the coupling scheme in 
Fig. 8.1, it follows that none of the first- and second-order processes 
may contribute to a nonvanishing g/ ; 

(t2* *E\u± ^> ti 2T^a± t* *T2\x± Î 2 3 2Eiu± 9 ( O S a ) 

(conjugate complex of the above [Vo(T2g)V0(T2g)Lz]y 

( I I ) f a3 *E\u± ti 2T2\x± ±* ti 2T2\x± ί 23 2Eiu± 9 ( 8 . 8 8 b ) 

!

+ 3 2171 Vo(T2g) 2 2 /TT 1 * 3 2 /Γτ 1 " ŝo g 2 771 

l2 &2U± > l2 1 22X± >• t2 122X± > l2 J^2U± , oo \ 
conjugate complex of the above [^soSzV0(T2g)]y * ' ' 

t* 2E1U± 1 ^ t* 2T2±X± t* 2E1U± _X f* 2E1U± , 

( I V ) I i,3 2 £ 1 W ± ^ i,3 2 T 2 1 ^ ± 2 ^ i 2 3 *E±U± ̂  ^ 1 W ± , ( g ^ 

1 i 2

3 2 Z ^ ± i 2

3 2 Z ^ ± * 2

3 *T2\X± ^ i 2 3 2 £ | W ± , 

i 2

3
 2E\U± ^ t* 2 ^ 1 W ± ^ tf 2 Γ 2 1 ^ ± Ζ ί ί ^ Î 2 3 2 £ 1 „ ± . 

The detailed examination of these processes shows that processes (III) 
and (IV) cancel out, and one obtains 

12i£2 
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a term (or within a split component of a term) are observed in electron 
spin resonance experiments, and transitions between the Zeeman levels 
of two different terms (or of two different split components of a term in 
far-infrared spectroscopy) are observed as Zeeman patterns in optical 
experiments. 

In electron-spin resonance experiments, the transitions are mainly of 
magnetic-dipole type and are allowed between the two Zeeman 
levels with quantum numbers Ms and M8' which are related by 
I Ms — Ms' | = 1. Here Ms and Ms' are to be associated with the base 
functions @(SMS) for the spin Hamiltonian as there is a one-to-one 
correspondence between these base functions and the real wavefunctions 
φί. Therefore, it is straightforward to calculate transition intensities 
once the eigenvectors which diagonalize the matrix of spin Hamiltonian 
are obtained. 

The calculations of transition intensities in optical Zeeman patterns 
are more complicated than those of transition intensities in electron-spin 
resonance experiments. Here we mention only one example of calculating 
the Zeeman pattern for the electric-dipole transitions between the t2

s 4A2 

and t2

z 2E terms in the C 3-symmetry system, ruby. The caltulations of 
Zeeman patterns in many other cases may easily be inferred from this 
example. In this example with a magnetic field parallel to the trigonal 
axis, the calculations by using the effective Hamiltonian method show 
that the *A2 term splits into four Zeeman levels specified by Ms = 3/2, 
1 /2 , -1 /2, —3/2, and the 2E term also into four specified by MSM = \u+ , 
— \u_ , \u_ , —\u+ .* The electric-dipole transition intensities between 
these Zeeman levels were already calculated in Problem 7.7. In 
Problem 7.7, one can show that 

(8.90) 

if one calculates transition moments P^f± by using the method described 
in Section 6.2.3. Then, the Zeeman pattern in this case is given in terms 
of 77 = 7 7 0 , σ + = σ + α = - 1 , and σ _ = σ _ α = 1 . 

Besides performing the calculation as described in Problem 7.7, it is 
also important to examine the selection rule governing the transitions 
between the Zeeman levels. The selection rule may be found by consid­
ering the transformation properties of the initial and final states as well as 
those of the effective transition moment operator. In the present problem 

* We assume that g\ = 0. 
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the selection rule may be found as follows: We first note that P e f f in 
Problem 7.7 can be reexpressed as 

Peff = Σ <*23 *AMs I (R0B)-1R0SHR08)~1R081 Φ 4 Γ , , Μ ; Μ , / > 
Γ"Μ" 

m; 

X <ί2β*Γ"Μ'8Μ"\ (R^R^soiR08)-^08 \ t2*2EMs'M'} 

X [W(2E) - W^r")]-1 

= Σ <*23 AA2MSI (R^yiR^PiR^yWoM \ t2

2e *r"M"sM"y 
rnM" 

m'; 

X <t*e *F"M"SM" I 3trs0R08 | * 2

3 2EMs'M,sy 

χ [W{2E) - W(*r*)]-\ (8.91) 

where R08 is a rotation in the double C 3-group. In deriving (8.91) we have 
used the relation 

Σ R081 SrMsMXSrMsM \ (R08)-1 

MM8 

= χ ι srM/M'y UM>M-MsMUM;M\MaM<SrM;M" ι 
MSM,MS'M' 

M"8M" 

= Σ \SrMS'M'XSrM:M"\ Σ U M ; M ; M S M U ^ S M W 

MS'M',M"8M" MSM 

= Σ \SrMa'M'XSrM8'M'\, (8.92) 
MS'M' 

where U is the unitary representation matrix for operation of R08 on the 
Sr term. Since all the elements in the double C 3-group are generated 
from a single element C 3 , it is sufficient in our argument to consider 
only the case of Roa = C 3 . Now, by using Table 6.2 and (7.36), one 
can show that 

CJF(2EMSM) = exp [ — { M a + Μ ) ] Ψ{*ΕΜ8Μ), (8.93a) 

C3W(*A2MS) = exp [ - M s ] ^ ( M 2 M S ) , (8.93b) 

CZPMC? = exp [ - - ^ Μ] PM , (8.93c) 
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where PM are P+ , P_ , and P 0 defined in (6.64) for M = + 1 , - 1 , and 0, 
respectively. Then, Eqs. (8.93) enable us to reexpress (8.91) as 

Pett.M = exp j — ψ - [(Μ/ + Μ') + M - Ms] J PeîîM, (8.94) 

which shows that for Peff,M Φ 0 

MS - ( M / + M') + 3n = M (8.95) 

(w = positive and negative integers including zero). The relation in (8.95) 
gives the selection rule we wanted to obtain. This selection rule, of 
course, is consistent with the result given in Problem 7.7, but cannot 
predict some of the zero-intensity transitions calculated there: For 
example, according to the selection rule, the 7r-transition (M = 0) is 
possible between *A2% and 2E — \u_ as Ms — (Μ8' + Μ') = 3, but its 
intensity was found to be zero in Problem 7.7. In the trigonal system, 
(Ms + M) of the STMSM state are called crystal quantum numbers. It is 
possible to establish a more elaborate theory on this line for more 
complicated symmetry systems.* 

Next let us consider the case in which a magnetic field is applied 
perpendicular to the trigonal axis (Η || X) and the magnetic field 
strength is in the range of g^BH^> 2D and gjjiBH 2Δ. Here 2D 
(0.38 c m - 1 in ruby) is the initial splitting of the t2

3 *A2 term defined in 
(8.43), g± and Δ (29 c m - 1 in ruby) are defined in (8.76), and g±' and g]_ in 
(8.76) are assumed to be zero. This situation often occurs, as magnetic 
field strengths easily available are of the order of 10 to 100 kOe 
(2μΒΗ '—' 1 — 10 c m - 1 ) , while in many cases the initial splittings of 
orbital-singlet ground states are ~ 0 . 1 — 1 c m - 1 , and those of the 
excited states are larger than 10 c m - 1 . In this case the M 2 term splits 
into four Zeeman levels specified by M{

S

X) = 3/2, 1/2, —1/2, —3/2, in 
which the quantization axis is the X-axis instead of Z. On the other hand, 
the Zeeman levels of the 2E term may still be specified by MSM as in 
the case of Η \\Z. Then the effective transition moments are calculated by 

P e f f(* 2

3 *AJM™ - i 2

3 2EMS'M') 

= Σ <S = f Μ\Χ) I S = f M s

( z )> P e f f(* 2

3 *A2M\Z) - t* 2EM;M'\ (8.96) 

* T. Murao, F. H. Spedding, and R. H. Good, Jr., / . Chem. Phys. 42, 993 (1965); 
T. Murao, W. J. Haas, R. W. G. Syme, F. H. Spedding, and R. H. Good, Jr., / . Chem. 
Phys. 47, 1572 (1967). 
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where (S = f M{

S

X) \ S = f Ml

s

Z)} is the matrix elements associated with 
the transformation of the quantization axis from Ζ to X. It is known* 
that, when the quantization axis is rotated by angle (0, φ), the wave-
functions W(jm) associated with the jm' state (/: angular momentum) 
quantized along the rotated axis are given in terms of W{jm) associated 
with the jm state quantized along the unrotated axis as follows: 

W(jm') = X W(jm) υ±>(θφ), (8.97) 
m 

where ϋ^θψ) = ^ ϋ ^ θ ΰ ) and 

(m = (-nj-m' \ u + m)' - Γ 
K K L (j - m)l (j + m')\ (j - m')\ J 

X i ( S m 2 ) ( C 0 S 2 ) J 
XI d \j~m ι 

X \-ir) tj+m'(l ~ iy~m> · (8.98) 
l\dtl Ji=(C0S Θ/2)2 

For example, 

ι 

= [6

β J], (8.99) 

r(3/2) 
£C?(f lO) 

" c? -V3a2b V3ab2 -b* " 
V3 a2£ A(1 - 3b2) b{\ - 3a2) V3 ab2 

V3 aft2 -ft(l - 3a2) a(l - 3ft2) - Λ / 3 a2b 
ft3 V3ab* V3a2b a* 

, (8.100) 

where a = cos (0/2) and ft = sin (0/2). From (8.96) and (8.100) with 
0 = 77-/2, one may easily calculate the dipole strengths in terms of 77, σ + , 
and σ _ . 

Problem 8.10. Calculate the dipole strengths of the 

t* *A2M{

S

X) t2

3 2EMS'M' 

transitions. Ο 

* J. Schwinger, "Quantum Theory of Angular Momentum" (L. C. B. Biedenharn and 
H. Van Dam, eds.), p. 229. Academic Press, New York, 1965. 
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8.5 Linear Stark Effects 

In the theory of atomic spectra it is well known that an external 
electric field Ε interacts with electrons and induces shifts and splittings 
of energy levels. This effect is called the Stark effect. The interaction 
Hamiltonian in this case is given by 

jes = eE.y£rt. (8.101) 
i 

Since £FS changes its sign by inversion at the origin, it has no matrix 
element between the states with the same parity. Therefore, if the 
system has inversion symmetry, we can expect no Stark effect linear to E. 
In this subsection, using the effective Hamiltonian method, we treat the 
Stark effect linear to Ε in the system without inversion symmetry. For 
this purpose we cite a particular example of the 2E term in the C 3 -
symmetry system. It will also be shown that no linear Stark effect is 
expected for this term if the symmetry of the system is D3 where no 
inversion symmetry exists. In the course of the argument we should 
keep in mind that Kramers degeneracies are not lifted by an electric 
field as J^s is invariant to time reversal. 

If one reexamines the arguments given for obtaining (8.62), it is 
evident that the primitive form of the effective Hamiltonian in the 
presence of an electric field is also given by a form similar to (8.62) in 
which Η is replaced by E. Therefore, in our specific problem, after 
imposing the time-reversal invariance condition, the effective Hamil­
tonian is given by 

Jfeff = ASzT{A2g) + a(E) V(Alg) + i(E) Vu(Eg) + c(E) Vv (Eg) 

+ Τ{Α2β)[άχ{Ε)8χ + d2(E)Sy + d,(E)Sz]f (8.102) 

where <z(E), ô(E), c(E), and d{(E) are linear functions of Ε without terms 
independent of E. Now we notice that, if ROB is defined as a rotation 
acting on both the electron system and the source of an electric field, 
the Stark term in (8.101) is invariant to the operation of any rotation R09 

as the electric field transforms like a polar vector and the Stark term is 
the scalar product of two polar vectors. Therefore, the total Hamiltonian 
is invariant to the operation of Ros in which Ros is an element of the 
group to which symmetry of the system belongs. In the present problem 
Ros is an element of the C 3-group. 

The trigonal (C 3)-invariants should transform as the bases of A1, A2 , 
TXM = 0, and T2M = 0 of the O-group, and they are obtained from the 
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terms of (8.102) by assuming suitable relations among the parameters 
as done in (8.71)—(8.73). To obtain the trigonal-invariants, we define 

E±1 = Τ \ {Ex ± iEY\ E0 = EZ. (8.103) 
V2 

The trigonal-invariant of the second term in (8.102) is 

EQV(Alg), (8.104) 

which transforms as the TXM = 0 base. The trigonal-invariant forms of 
the third plus fourth terms are 

i{E_xV+ - E+1V_) (T2 M=0), (8.105) 
and 

E^V+ + E+1V_ (7\ M=0). (8.106) 

The trigonal-invariant forms of the fifth term are 

+ E_,S+1 - E0S0) T(A2g) (A2\ (8.107) 

i(E+1S^ - Ε_^+1) T(A2g) (T2 M=0), (8.108) 
and 

( £ + 1 S _ ! + E_,S+1 + 2E0S0) T(A2g) (T, M = 0 ) . (8.109) 

Then, the final form of the effective Hamiltonian is obtained as 

= ASzT{A2g) + ocE0V(Alg)/2 + ιβ(Ε_ιν+ - E+1V_)/V2 
+ β\Ε.χν^ + E+1V_)/V2 - WE^S-i - T(A2g) 

+ y'E0S0T(A2g) + Y"(E+1S^ + E^S+1) T(A2g). (8.110) 

It should be remarked that factor i in the terms proportional to β and y is 
important, as, due to the relations 

KS±1K~1 = ST1, 
(8.111) 

KE±1K 1 = — ΕΨ1, 

these terms are time-reversal invariants only if factor i is included. The 
first relation in (8.111) differs from (8.11) because of the different 
definitions of S±1 and S± . The base functions Ψ(8ΓΜ8Μ) of the 
effective Hamiltonian will be chosen so that the matrices of V±(Eg) are 
given by (8.77). 
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The secular matrices of (8.110) for E\\Z and E\\X with bases 
*P(SrMsM) are calculated as 

•Δ+(μ+γ')Εζ 

0 

— \u_ 

and 

0 
Δ+(α+γ')Εζ 

-Δ+(α-γ')Εζ 0 
0 -Δ+{<χ-γ')Εζ] 

X i 

(8.112) 

Δ 
0 

0 (ίβ 
-{ίγ 

β')Εχ -(ΐγ + γ")Εχ 

-{ίβ + i S ' ) ^ 

-(ΐβ+β')Εχ (ίγ+γ")Εχ • -Δ 
(ϊγ-γ")Εχ (ϊβ-β')Εχ • 0 

0 
-Δ 

Χ i (8.113) 

These secular matrices show that a linear Stark shift is expected only 
when an electric field is parallel to the trigonal axis. If the symmetry of 
the system is D3, the rotation invariants should transform only as the 
bases of A1 and T2M = 0, so that α = β' = γ = γ" = 0 in (8.110). 
In this case no linear Stark shift can be expected even if the system lacks 
inversion symmetry. 

Parameter α in (8.110) is given by the second-order perturbation 
process involving odd-parity potential V0(Tlu) and J^s , while y is given 

160 V 

FIG. 8-4. Pseudo-Stark splitting Δν of ruby versus 
applied electric field E0 parallel to the trigonal axis. 
Data are obtained from the Ri(9) and R2(X) lines. 
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by the third-order process involving an odd-parity optential, ^ θ 0 and 
2/Ps . Therefore α rftay be expected to be larger than y . In ruby there are 
two different sites of C r 3 + where the odd-parity potentials are different 
only in sign, so that we have to assume α with different sign for C r 3 + 

ions in two sites. Then, the linear Stark shifts in opposite directions are 
superposed and observed as if it were a linear Stark splitting. This is 
called pseudo-Stark splitting, which has been observed* as shown in 
Fig. 8.4. Since α comes from odd-parity potential V0(Tlu)> the observa­
tion of the pseudo-Stark splitting in ruby emphasizes the importance 
of V0(Tlu). In the experimental data the presence of y has not been 
confirmed as seen in Fig. 8.4. 

* W. Kaiser, S. Sugano, and D. L. Wood, Phys. Rev. Letters 6, 605 (1961). 



Chapter IX INTERACTION BETWEEN ELECTRON 

A N D NUCLEAR VIBRATION 

So far we have assumed that the nuclear framework of the systems 
of interest is at rest. However, in real problems the systems undergo the 
vibration of the nuclear framework even at 0°K (the zero-point vibration), 
and the interaction of electrons with the nuclear vibration causes the 
release of the parity-selection rule as briefly discussed in Section 5 . 2 . 1 , 
the broadening of spectral lines, and so forth. In particular, as seen in 
the dynamical Jahn-Teller effect which we will discuss later on, the 
separation of the electron and nuclear motions in degenerate states is 
sometimes impossible. These problems will be discussed briefly in this 
chapter. 

9.1 Nuclear Vibrations 

9.1 .1 ADIABATIC APPROXIMATION 

The nonrelativistic Hamiltonian of the system having Ν electrons and 
iV0 nuclei is given by 

<7CQ - j - < r̂n -f- en » (9.1a) 

where 

Ν Ν -2 

i=l i>j=l ** 

(9.1b) 2m 
i=l i>j=l ** 

213 
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= - Σ 2 ^ » * + Σ ^ r ^ > (9.1c) 

k = 1 ZMk k > l = 1 Kkl 

No Ν y 2 
«^n = - Σ Σ ~Γ~ • (9-ld) 

k=l i=l ik 
In (9.1) A E I is the Laplacian operator of the zth electron coordinates; 
A N K is the Laplacian operator of the kth nuclear coordinates: RKL is the 
nuclear distance between nuclei k and /; rik is the distance between 
electron i and nucleus k; Zke is the charge of nucleus k; and Mk is the 
mass of nucleus k. We observe that Ji?e involves the electron coordinates 
only, J^n the nuclear coordinates only, and ^ β η both the electron and 
nuclear coordinates. To solve the Schrôdinger equation with the 
Hamiltonian (9.1), we first assume that the electronic wavefunction 
W(r ; R), obtained by keeping the nuclei fixed at R , has a physical 
meaning. This assumption seems reasonable if one considers a great 
difference between the velocities of the electron and nuclear motions due 
to the difference between the electron and nuclear masses; the electron 
velocity is of the order of 108 cm/sec while the velocity of the nuclear 
motion is of the order of 10 5 cm/sec. The wavefunction Ψ(Γ ; R) satisfies 
the equation 

(*e + Σ ^4^- + ^en) ^ ( r : R) = U^K) Wu(r : R), (9.2) 
k>l 

which is derived by dropping out the nuclear kinetic energy terms in 
(9.1). Here R represents the positions of nuclei, R x , R 2 R ^ , and r 
the electron coordinates, r x , r 2 r N . Subscript μ is a set of quantum 
numbers. We regard ^ ( r ; R) as a function of r with parameter R. By 
using this wavefunction we express the total wavefunction for the 
Hamiltonian (9.1) as 

<Z>(rR) = f ( r : R ) x ( R ) . (9.3) 

Then, x(R) may be determined from 
[ - Σ (*2/2ΜΛ) Ank + t/u(R)l Xuv(R) = EuvXuv(R), (9.4) 

k 

only when the following replacement is permissible* : 

-nnkT{r : κ ; χ (κ; - > : κ ; | -
k 

"Σ ^ a ^ ( r : R) x(R) - f ( r : R) [ - £ ^ à n k X ( R ) ] . (9.5) 

* This replacement is permissible if Vn*F · V„x and χ ΔηΨ are negligible compared 
with Ψ Δηχ. To compare the magnitudes of these quantities, we notice that Ψ spreads 
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Now, as shown in (9.2) and (9.4), the equations of motion for electrons 
and nuclei are separated in the present approximation. This approxima­
tion is called the adiabatic approximation or Born-Oppenheimer 
approximation. As shown in (9.2), the displacement of nuclear positions 
may induce a deformation of the electron orbital but not an electron 
jump from one orbital to another. This means that electrons follow the 
nuclear motion adiabatically. As shown in (9.4), UU{R) serves as a 
potential for the nuclear motion so that it is called an adiabatic potential. 
The adiabatic potential is calculated as the eigenvalue of (9.2) with 
parameter R. Therefore, its form depends upon the electronic state μ. 
It is important to note the Hamiltonian (9.1) as well as the Hamiltonian 
in (9.2) is invariant to any symmetry operation on the electron and 
nuclear system which brings the system into itself. Consequently, the 
adiabatic potential is also invariant to such a symmetry operation. 

9.1.2 NORMAL MODES OF VIBRATION 

Now let us consider the problem of solving equation (9.4) for nuclear 
motion, which may be reexpressed in terms of nuclear displacements 
multiplied by {Mkfl\ Qk = {Mkfl* (Rk - R o k ) , as follows (Rok are the 
equilibrium positions): 

[ - £ ξ (-w,+ - w , + -fc)+ "Ή *-(β) - £ Λ ( β ) ' ( 9·6 > 

where Q represents , Q 2 Q N q . For the purpose of solving (9.6), 
we first consider a 3iV0-dimensional vector space whose basic unit vectors, 
êkx , êky , êkz (k = 1, 2,..., iV0), are the basic vectors of the orthogonal 
coordinate system fixed at the equilibrium position of the kth nucleus. 

over the distance of the order of 1 atomic unit while χ extends over the amplitude of 
nuclear vibration x0 . Then, it follows that 

ν,Ψ ·νΜ/ΨΔ* ~ χ., 

x ΔηΨ/Ψ ΔηΧ ~ X o \ 

On the other hand, denoting the electronic energy as Ee, the vibrational energy as Ev, 
the vibrational frequency as v, and the force constant responsible for the vibration as k, 
one has the relation, Ey = hv = h(k\M.y2 = hiklm)1'2 (τη/Μ)1/2, which shows that 
Ev/Ee ~ (m/M) 1/ 2: in atomic unit Ee ~ 1 and k ~ 1. Considering the relation, 
Ev ~ kx0

2, one obtains x0 ~ (mjM)1/4. Then, one learns that the adiabatic approximation 
is valid if (m/M) 1/ 4 <^ 1. It is interesting to note that i>n/i>e ~ (m/M) 3 / 4 follows from 
Ee ~ mve2 and Ev ~ Mvn

2, where ve and vn are the electron and nuclear velocities. 
Therefore, the condition x0 1 for the adiabatic approximation to be valid is stronger 
than νφβ < 1 and Ev/Ee < 1. 
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In this space vector Q is given by its 3N0 components with respect to 
basic vectors êki (i = x, y, z) as 

β — (Qlx , Qiy , Qu , Q2X y Qlv >···> QN0Z)-

For an arbitrary scaler λ, ÀQ is defined as 

AQ = (XQlx , XQly λζ)ΝοΖ), 

and the sum of two vectors, 

® = (Qlx > Qlv >···> QNoz)y 

(9.7) 

(9.8) 

I (II) 
— (Qlx\ Qly\'~y QNQz)y 

(IDx 

is defined as 

e « ) + q u i ' = ( ρ « > + ρ - ' , ρ « + ρ - . . . , ρ - + ρ - ) . | (Π) (π) rid) ^(π) *<Π>\ (9.9) 

This vector space is called the displacement vector space. Now we consider 
the transformation of basic vectors eki by operation R which brings the 
system into itself: 

Λί„ = ΣΜ«*>(Λ). (9.10) 
13 

Matrix A whose elements are A{}k) is considered to consist of three 
dimensional matrices A i l k ) as shown in Fig. 9.1. Matrix A ( l k ) is nonzero 

a"" A""jÀ'" 
A'i,T 

Aïï!f 1 FIG. 9.1. Matrix A consisting of three-dimensional 
matrices Allk). 

only when nucleus k is transformed to nucleus / by R, and all the nonzero 
matrices A i l k ) are the same and equal to the transformation matrix 
for the basic vectors of a three-dimensional space: for example, when R 
is the rotation around the 0-axis by angle 9?, the nonzero matrix A i l k ) is 
given as 

Îcos φ —sin φ 0] 
sin φ cos φ 0 | , (9.11) 

0 0 1 

which is independent of / and k. We can show that the aggregate of the 
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3iV0-dimensional matrices A(i?) for various i?'s forms a representation 
of the group to which the i?'s belong. However, this representation A, 
in general, is reducible. In order to learn what irreducible representations 
appear in reducing representation A, we use the property of characters 
similar to (1.78). 

For example, let us consider an XY 6 molecule with the O^-symmetry 
in which atom X is surrounded by atoms Y, octahedrally. The basic 
vectors in this system are shown in Fig. 9.2. The characters of representa­

tion matrices A(i?) for pure rotations in classes Êf CA , CA

2

9 Cs , and C2 

of Oh are obtained from 
X(R) =NR(l +2cos<p), (9.12) 

where NR is the number of the atoms which do not move on rotation R> 
and φ is the rotation angle around the symmetry axis.* The character of 
A for rotation-inversions in classes / , C±Iy C^I, CZI, and C2I are obtained 
from 

χ ( φ = - # Λ ( 1 + 2 α > β φ ) , (9.13) 

which may be derived if one considers the that, for inversion after 
rotation around the #-axis by angle <p, A ( W c ) is given by 

—COS φ 
—sin φ 

0 

s in φ 
-COS φ 

0 
(9.14) 

* If the symmetry axis is the #-axis, (9.12) is evident from (9.11). When the symmetry 
axis is not the ar-axis, the matrix corresponding to (9.11) is given by UA"*' U - 1 where 
U is an orthogonal transformation matrix. Since the character of U A ( I f e , U - 1 is the 
same as that of A ( H f ) , (9.12) is valid for the rotation around any symmetry axis. 
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By using (9.12) and (9.13), one can calculate the characters of A for all 
the symmetry operations in the O^-group as shown in Table 9.1, in 
which NR and x(R) for atom X and the group of atoms Y 6 are separately 
given; the sum of these x(R) is the character for XY 6 . Comparing 
Table 9.1 with Table 1.7, one sees that representation A is reduced to 

Alg + Eg + Tlg + 3Tlu + T2g + T2U . (9.15) 

TABLE 9.1 

CHARACTERS OF REPRESENTATION A IN THE CVGROUP 

Ê <?4 c% / cV cV cV 

φ 0 77/2 77 2TT/3 77 0 77/2 77 2T7/3 77 

\NR 6 2 2 0 0 0 0 4 0 2 
Y« 

\x(R) 18 2 - 2 0 0 0 0 4 0 2 

ν \NR 1 1 1 1 1 1 1 1 1 1 
A \x(R) 3 1 - 1 0 - 1 - 3 - 1 1 0 1 

XY 6 x(R) 21 3 - 3 0 - 1 - 3 - 1 5 0 3 

Note that x(R) for atom X is the character of Tlu . The number of bases 
of the irreducible representation is 1 + 2 + (3 X 6) = 21, which 
agrees with 3iV0 = 21. 

The transformation of A(i?) into an irreducible form is achieved by an 
orthogonal transformation C as follows: 

X C^tljAf\R) C ^ r v = D$(R) Sioux') δ(ΓΓ'), (9.16) 
lj,ki 

where α is introduced to distinguish the same irreducible representation 
appearing more than once. When the same irreducible representation 
appears more than once, the orthogonal transformation is not uniquely 
determined from (9.16) only. Now, we denote the unit basic vectors of 
the irreducible representations as ê™, which are given by 

^ = Z ^ C ë r v . (9.17) 

With respect to these basic vectors, a displacement vector in the 3N0-
dimensional space is now given as 

(9.18) 
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* [ Σ ^ ' ' W & ' l = Σ K^RQ^RQig 
""aaTy J aaTy 

= Σ Σ KirD%{R)D£>(R)Q%Q% 
y'y* aaTy 

= Σ K^Q^Q%\ (9.23) 
aa T y 

in which we used (9.19) and the orthogonality relation 

Σ D£(R) = % ' / ) · (9-24) 

* Strictly speaking, RQfy should be written as RQfyR-1, because Qfy is an operator. 

where new components Qfi} are given by 

0 # = Σ < # . « β « , (9.19) 
hi 

and they transform by operation R in the following way*: 

RQ(rl = Σ<#.η*0η = Σ CgjJfWQu 
ki ki.lj 

= Σ <%ΜΑΤ&)<%\ΦΙ=Σ1>%9%' (9-20) 
ki,lj, γ' 
αΤ'ν ' 

In deriving (9.20), we used the inverse relation of (9.19), 

0 « = (9.21) 
αΓν 

Returning to the problem of solving (9.6), we reexpress (9.6) in terms 
of Q(pYK Since UU(Q) is invariant to any operation R in the group to which 
the system belongs, UU(Q) may be expanded in powers of Qty as follows: 

UJP) = UJO) + 1 Σ ^pQ^Q%\ (9.22) 
αα' 
Γν 

in which Kjg'* are numerical constants, and only the terms up to the 
second power of Qty are retained. In (9.22) no term linear to Qty appears 
as the system is in equilibrium at Q = 0. The fact that (9.22) is invariant 
to R may be seen in the following: Uu(0) is obviously invariant to R and 
the second term in (9.22) is transformed under the operation R as 
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ki x^ki αΓγ *>r,y' & Γγ ki 

h2 d2 

= ~~T^1PQW (9'25) 

By using (9.22) and (9.25), (9.6) is now given as 

L * αΓγ \υ)έΓγ> A αα'Γν J 

= [Eu-Uu(0)]Xti(Q), (9.26) 

which is separable into the equations with different Γγ as 

r h2

 v d2 1 v ( α ( / ) ( α ) ( α ' ) Ί 

α <· *~Γγ> αα' 

if χ μ ( 0 ) is assumed to have the form 

χ μ ( « ) = Π >···>^ Γ ))· ( 9 · 2 8 > 
Γγ 

Functions xurv involve Qty, Qffi when the Γ irreducible 
representation appears gr times. In (9.27), eur is independent of γ and 
Z?u is related to € u r as 

Σ ( * > * r = 3 . - ^ . ( 0 ) , (9.29) 
r 

where (Γ) is the dimension of Γ. 
When a certain Γ' appears only once, (9.27) is the wave equation for 

a simple harmonic oscillator with angular frequency ωμΓ = (K^)1/2; 
in this case Kur is always positive as the equilibrium configuration is 
stable. Then, the eigenvalue of (9.27) is 

<r = (* + *) n(Kur)1/2

y ν = 0, 1, 2,..., (9.30) 

and the eigenfunction is known to be 

χ%ν(ξ) = NJI^) exp( - \ξ\ (9.31) 

The kinetic energy term in (9.6) is reexpressed in terms of Qty as 
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where Ηυ(ξ) is the vih Hermite polynomial given by 

HJLt) = ( - 1 ) ' e x p ( i 2 ) - j ^ e x p ( - H . (9-32) 

ί = α ρ Γ ν > <* = Kur\h\ (9.33) 

and normalization constant iV~ 1 / 2 is given as 

(9.34) 

When a certain Γ appears gr times, we apply an orthogonal transforma­
tion to Q(rY

)ys) 

Q(r*=ZBe«Qrl> (9.35) 
a=l 

so that UU(Q) — Uu(0) has the following form: 

£ / M ( Q ) - υμ(0) = i Σ K%Q%Q%- (9-36) 

Now Κ{

μ

β) and the orthogonal transformation can be determined by 
solving 

Σ X A v = KBr W ) (9-37) 

or 
Σκί?)Β«β = Κ(

μ

(?ΒαΒ, (9.38) 
a' 

which gives the ̂ -dimensional secular equation. It should be emphasized 
that the additional orthogonal transformation Β can be determined 
without violating (9.16) as (9.16) does not determine the transformation 
C, uniquely. Transformation Β depends on the physical property of the 
adiabatic potential, and is not determined by symmetry considerations 
only. Even when the QrJ's are used the kinetic energy term has the same 
form as that given in (9.25), so that with the potential-energy term of 
(9.36) the wave equation is now reduced to that for a single harmonic 
oscillator having angular frequency a>^ = (Kffl)1/2. 

The oscillation specified by βΓ is called the βΓ normal-mode, and Q{J?y

} 

is called the γ normal-coordinate belonging to the βΓ normal-mode. In 
the XY 6 molecule described in Fig. 9.2, eight kinds of normal-modes as 
given in (9.15) are obtained. However, it is evident from a physical 
point of view that in general six degrees of freedom out of 3iV0 are 
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ascribed to the free translation and rotation of the system. For example, 
in the XY 6 molecule one Tlu mode belongs to the free translation and 
one Tlg to the free rotation. The normal coordinates of the free 
translation and rotations are easily obtained by insight and the Kffl's 
for these modes are, of course, zero. Therefore, the procedure of 
determining transformation Β is simplified if the normal-coordinates of 
the free translation and rotation are subtracted from the Qr^s from the 
beginning. 

9.1.3 EXPLICIT FORMS OF NORMAL COORDINATES 

In principle, the explicit forms of the normal coordinates are obtained 
by determining both the transformation matrix C from (9.16) or from its 
modified form, 

and the transformation matrix Β from (9.38). However, it is much 
simpler for the systems of high symmetry to use geometrical insight 
in determining the normal coordinates. 

In what follows we consider the example of the XY 6 molecule whose 
normal modes have already been classified as; Alg , Eg , Tlg ,3Tlu , T2g , 
and T2u . Among these normal modes the modes of internal vibrations 
besides the free translation and rotation are Alg , Eg , 2Tlu , T2g , and 
T2u . To determine the normal coordinates of the internal vibrations, 
we first note that in the internal vibrations both momentum and angular 
momentum of the system are zero. From the fact that the velocity 
components are in the ratio of the displacement components, the 
conditions of vanishing momentum and angular momentum are expressed 
in terms of the displacement components Ski = Qkil(^k)1^2 a s 

Σ ^ ? ' ( Λ ) ^ ! ί ν = Σ ^ . ^ ( Λ ) , (9.39) 
ki y' 

YMkSki=0, (9.40) 
k 

£ Mk(Sk X Rok)t = 0 (i x, y, z) (9.41) 
k 

in which 

Sfc — Σ ^ki^ki · 

The normal coordinate of the Alg mode is easily obtained as shown in 
Fig. 9.3. It is given by the displacements which keep the original 
symmetry, Oh . These displacements clearly satisfy (9.40) and (9.41). 
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Therefore, the basic unit vector êA of the normal coordinate QA is given 
as 

^Alg

 = (ê\x + e2v + ^32 *5l/ ^62)· (9.42) 

From the arguments given in Chapter VI, it is clear that the presence 
of the Egu normal-mode reduces the symmetry of the system to Ζ) 4 Λ 

whose fourfold symmetry axis is the #-axis, as QEgU transforms as the u 
component of the Eg irreducible representation. From such a symmetry 
consideration, QEgU is immediately given as shown in Fig. 9.3 with 

FIG. 9 . 3 . Normal coordinates of a X Y E molecule. 

displacement vectors having different lengths S2 and S2'. Then, the 
orthogonality relation between QAig and QEgU determines S2 to be 2S2 . 
It is needless to show that these displacements satisfy (9.40) and (9.41). 
After all, one obtains 

By a similar consideration, it is easy to obtain 

^Egv = \(βΐχ — ~~ ê*x + ê5v), (9.43') 

êT2gc = Wiv + ê2x ~ hv - hx\ (9.44) 

= Wu ~ + ~ hz). (9.45) 
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The displacement vectors of these normal-modes are shown in Fig. 9.3. 
For obtaining the displacement vectors in the Τ2ιαζ normal-mode, it is 
convenient to use the fact that the ζ base of T2u transforms like z{x2 — y2) 
as shown in Table 6.4. In normal-modes Alg, Eg, T2g, and T2u, the 
displacements of the central atom are zero. They contribute only to the 
Tlu mode as shown in Table 9.1. 

Some complication arises in determining the normal coordinates of 
the two Tlu vibrational normal-modes. As seen from Table 9.1 two Tlu 

modes and one Tlu mode are obtained from the displacements of six Y 
nuclei and a single X nucleus, respectively. Therefore, if one ignores 
conditions (9.40) and (9.41), it is a simple matter to obtain three kinds 
of mutually orthogonal displacements of symmetry Tluy as shown 
in Fig. 9.4. The free translation is obtained by superposing the dis­
placements in (a), (b), and (c) of Fig. 9.4 with the equal weight and 
phase. The displacements in the two Tluy vibrational normal-modes 
may be those given in Fig. 9.5. From the orthogonality between Qr^y and 
Qrlly > o n e obtains the relation 

AOLOL'M + Ιββ'Μ - M0 = 0, (9.46) 

(a) (b) (c) 
FIG. 9.4. Three independent modes of nuclear displacements of Tlu . 

FIG. 9.5. Two vibrational normal modes of Tlu . 
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and from (9.40) 

M0 + 2βΜ - AOLM = 0, (9.47) 

M0 - 2β'Μ + 4oc'M = 0, (9.48) 

where M0 and M are the nuclear masses of nuclei X and Y, respectively, 
and a, jS, a', and β' the parameters determining the lengths and signs 
of the displacements as shown in Fig. 9.5. Relations (9.47) and (9.48) 
are equivalent to the orthogonality relations between the free translation 
mode and Qr^y and those between the translation mode and £?™y . Since 
there are four unknown parameters and three equations that they should 
satisfy, the values of the parameters cannot uniquely be determined. To 
determine the parameters completely, it is necessary to know the 
explicit form of the adiabatic potential. It has been known that a simple 
choice of β = 1 nearly diagonalizes a reasonably assumed form of the 
adiabatic potential in some cases.* If β = 1 is assumed, one may 
determine all the parameters from (9.46)-(9.48) as follows: 

« = (M0 + 2M)/4M, β = 1. 
(9.49) 

oc' = 0 , β' = MJ2M. 

The displacements with the parameters given in (9.49) are visualized in 
Fig. 9.6. The basic vectors corresponding to the normal coordinates in 
this case are given as 

Ti»v L(M 0 + 6M)(M0 + 2 M ) J 

X I [ M 4 M i / 2 2 M ] i6» + 4 , + êiz + S») - M"* (ê3l + Su) - (M 0)i/%,j 

(9.50) 
and 

ÊZ = Ιμ^+μ;Γ
 X [ ( M E ) 1 / ^ - Y W r ^ + <4 <9-51> 

Normal coordinates Qry are obtained simply from êrv by substituting 
Qkifor EM · 

Problem 9.1. Derive the normal-coordinates of a X 3 molecule with 
the shape of a regular triangle (D 3^-symmetry) by using (9.39). Ο 

Problem 9.2. Derive the normal-coordinates of a tetrahedral M X 4 

molecule by symmetry considerations. <0> 

* S. Koide and M. H. L. Pryce, Phil. Mag. 3, 607 (1958). 
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FIG. 9 .6 . Two Tlu normal-modes for a particular adiabatic potential. 

9.2 Linear Interaction in Nondegenerate Electronic States 

9.2 .1 INTERACTION HAMILTONIAN 

The interaction Hamiltonian between electrons and nuclei is given by 
J^en in ( 9 . 1 ) or ( 9 .2 ) . This Hamiltonian is invariant to any operation on 
the electron plus nuclear system which brings the system into itself. 
Therefore, it may be expanded in powers of the normal coordinates as 

^en(r Q ) = V0(r Q = 0) + Σ ^(r)Q^ + - , (9.52) 
βΓγ 

in which V0(r Q = 0 ) is the ligand-field potential that we have discussed 
so far. In ( 9 . 5 2 ) the terms linear to , except the term with the identity 
representation, are vanishing within the μ electronic state when the state 
is nondegenerate as shown by 

J drWu(r : Q = 0)*F r y (r ) ^ ( r : Q = 0) = 0 (9.53) 

(Γ Φ the identity representation). In ( 9 . 5 3 ) Wu(r : Q = 0 ) is the 
unperturbed nondegenerate electronic wavefunction obtained at the 
equilibrium position Q = 0 , and it is the base of the one-dimensional 
irreducible representation Γ„ . Equation ( 9 . 5 3 ) holds as Γ„ χ Γ„ is the 
identity representation. The nonvanishing linear term of the identity 
representation within the nondegenerate electronic state should be 
canceled by the linear term UAQA in the expansion of Σ ^k^ie2l^ki: 

Σ ZjSJRn = U0 + UAQA + Σ UpfQ^Z (9.54) 
k>l 
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in which U0 , UA , and U^'] are numerical coefficients and QA is the 
normal coordinate of the identity representation. Expansion ( 9 . 5 4 ) is 
mainly based on the symmetry property that Σ Zk^i^l^ki 1S invariant 
to any operation of the group to which the system belongs. The 
cancellation 

j drW„*(r : Q = 0 ) VA(r) ^ ( r : Q = 0 ) + UA = 0 (9.55) 

is necessary as the adiabatic potential in the μ electronic state, 

UU(Q) = / drWu(r : Q = 0 ) [*>e + Σ + ***] ψ»(* : « = 0), 
(9.56) 

is quadratic to QjQ. In degenerate-electronic states the situation is quite 
different, and in the next section we will discuss why nonvanishing linear 
terms are important in degenerate electronic states. 

Although the matrix elements of V{/y

] in nondegenerate states are 
vanishing, the nondiagonal matrix elements of VjÇJ between a non-
degenerate state and others are, in general, nonvanishing and play 
important roles in giving the intensities of parity-forbidden transitions. 

9 . 2 . 2 INTENSITIES OF PARITY-FORBIDDEN TRANSITIONS 

In Section 5 .2 .1 we discussed the parity-selection rule that may 
be released slightly by the instantaneous distortions of the system 
induced by nuclear vibrations. In what follows we will explain this 
mechanism on a more rigorous theoretical basis. 

Let us consider the parity-forbidden transition, μ-+ν. The electronic 
wavefunctions ^ ( r : R 0) and ^ ( r : R 0) are assumed to be obtained by 
solving ( 9 . 2 ) with a fixed value of R, R = R 0 . These wavefunctions are 
nothing but those employed in the ligand-field theory*; in calculating 
Ψ(γ : R 0) the first term V0(r : R 0) in the expansion of ^ e n as given in 
( 9 . 5 2 ) has already been taken into account as a ligand-field potential. The 
second term in ( 9 . 5 2 ) which is linear to nuclear displacements from R 0 

may be regarded as a perturbation to the solution of the ligand-field 
theory. 

For simplicity we deal with a rather particular case in which the 
equilibrium nuclear positions as well as the angular frequencies of the 
corresponding normal-modes in both the μ and ν electronic states are the 
same; R u 0 = R v 0 = R 0 , and ω(^γ = ω[β^γ = ω{

Γ

β

γ

]. Then, it is evident 

* In many cases we use as R 0 an equilibrium-nuclear configuration determined by x-ray-
or neutron-diffraction experiments in the ground state. 
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that V$(r) with odd-parity Γ in the second term of (9.52) gives the 
instantaneous odd-parity field induced by the nuclear vibration of the 
βΓ-mode. In this case the effective electric-dipole transition moment of 
the parity-forbidden μν -> νν' transition is given as 

Peff(/** - W) = Σ (μν I Σ V$(r) Q% | W > 
*odd ΟάάβΓγ 

X <Aodd^' I Ρ I νν'>[Ε(μν) - EQ^aav')]-1 

+ Σ {μν I Ρ I W > < W I Σ Vrl(T) Q{£ I w'> 
A o d d odd/3ry 

X - ^(Aodd^)]" 1, (9.57) 

in which the A o d d

, s are the electronic states of odd-parity and Ε(μν) is the 
energy of the electron-nuclear system given by 

EQx>) = UJp) + l # > (9·58) 
i 

where number vi is a quantum number of the z'th vibrational normal 
mode (/ = βΓγ). In (9.58) eJJ* is the energy of the harmonic oscillator i 
as given in (9.30). As we did in (6.60), (9.57) may be simplified in the 
closure approximation as 

P e « ( ^ - v z ; ' ) = ( 2 / ^ ) < ^ | P Σ V%(r)Q%\w'y, (9.59) 
oddjsry 

in which ΔΕ is a suitable average of the denominators in (9.57). By using 
the relation 

<v\Q\V> = ( ^ p ) 1 ' 2 K 2 + (v + l ) i / 2 δ ν ; υ + 1 ] , (9.60) 

Eq. (9.59) may be expressed as 

P e t t ( ^ - W ) = ^ Ç ( - 2 ^ ) 1 / 2 

Χ Ο I PVfr)\ *>[(»i) 1 / 2 8Vi>.Vi-i + (»* + 1) 1 / 2 V .* < + J-
(9.61) 

Now, if μν and vv' are the good quantum numbers of the system, we 
may expect nonvanishing electric-dipole transition lines at the photon 
energies Euv ± %ω{ (i ; odd-parity normal modes) where Euv is the 
electronic excitation energy taking no account of nuclear vibrations. The 
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dipole strengths, Sk — \ Pett>k | 2 , of these lines for the β-polarization are 
given from (9.61) as 

Sk(E„v ± *ω<) = ( - ^ ) 2 \<μ I PkVfr)\ v}\* 

iOt> + 1 r u 
X I, \ for absorption, 

X J . \ , Λ for emission, 
K»<> + 1 

(9.62) 

l<f>i> + 1 

where (Vs) is the thermal average of ν given by 

Z ^ e x p [ - ( M * ? > ] 1 , Q ~ v 
W Σ ΐ ΐ 4 , « ρ [ - ( Λ υ / * ϊ > ] β χ ρ ( « ω / * Γ ) - 1 * 

In deriving (9.62) the initial state is assumed to be in the thermal 
equilibrium. In the absorption the intensity of the Euv — ΐΐωΐ line is zero 
at Τ = 0, while in the emission the intensity of the Euv + fiœi line 
is zero at Τ = 0 as <^> r = = 0 — 0· At high temperatures the intensities 
of the both Ε„ν ± fiœi lines are proportional to Γ, as 

1 k T for (9.64) cxp(hœ/kT) - 1 #ω 

So far we have considered a particular case in which the equilibrium 
nuclear positions as well as the angular frequencies of the corresponding 
normal-modes are the same in both the initial and final states. However, 
in many real problems this is not the case; The equilibrium position and 
the angular frequency of the harmonic oscillator of a certain mode 
associated with the ν electronic state are, in general, different from those 
of the corresponding mode associated with the μ electronic state. We 
denote the vth vibrational function of the ν state for a certain vibrational 
mode as # / ( Q ) , and expand it in terms of the vibrational wavefunctions 
of the μ state as follows: 

χ Λ β ) = Σ * * χ Λ β ) - (9.65a) 

This is always possible as % / ( Q ) with ν = 0, 1,..., form a complete 
orthonormal set. In (9.65a) coefficients αΰυ satisfy the relation 

Σ Ι * - Ι 2 = Σ Ι * - Ι 2 = 1 · ( 9 - 6 5 b ) 
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Then, Ρβΐί(μν —> νν) involves the matrix element 

<*\Ω\*> = Σα*<*\12\*>> (9·66) 
where ν' indicates the ν' vibrational state associated with the μ electronic 
state. As seen from (9.66), Q may connect any ν with ν as far as αϋν_χ and 
av,v+i

 a r e nonzero. Therefore, we expect many nonvanishing electric-
dipole transition lines for a certain mode at the photon-energies, 
Euv + ϋ(ων — ών) where ώ is the angular frequency of the harmonic 
oscillator of the corresponding mode in the ν state. In many cases these 
lines are difficult to resolve and observed as a broad band. The integrated 
dipole strength of this band induced by the *th odd-parity mode is 
obtained from 

5*0* -*v) = (-~) \<μ I PkVJr)\ v>|« 

χ Σ Σ « Ρ [ - η £ v ] I « * · I 2 \ < v \ Q \ « Ο Γ / Σ « Ρ [--|H> 
(9.67)* 

which is identical to the sum of Sk(Euv + Hco{) and Sk(Euv — hwt) given 
in (9.62) because of (9.65). Therefore, the temperature dependence of 
Skfa —>• v) is given by the factor 

2<^> + l = c o t h ^ g K (9.68) 

which is again proportional to Τ at high temperatures. 

9.2.3 SPECTRAL LINE SHAPES 

As seen from (5.5) and (5.16), the absorption coefficient k{v) at the 
photon energy hv is given as 

* In deriving (9.67), the relation 

Σ Σ °™<v ι Q ι ν ' > 2 = Σ ι αΜ ι2 Κ«Ί ο ι ν'>\* 

ν ν ν ν 

was used. This relation may be proved by using the relation 
Σ avv'avv" = ^v'v" ' 

V 

8 In dielectric media of refractive index n, the right-hand side of (9.69) should be 
divided by n. 
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where Ν is the number of absorption centers per cubic centimeter and 
I P(v)\2 is the dipole strength in the photon energy range h Δν at hv. The 
dipole strength | P(v)\2 divided by h Δν is called a spectral shape function 
and is denoted by F(v). This function gives the spectral line shape. The 
spectral shape function for the μ -> μ electronic transition at temperature 
Τ is given by 

FJy) = (i/* Δν) Σ Σ Κμ» IΡI W p * . > (9J0) 
ν ν 

where the summation over ν and v should be performed with the 
restriction, hv < Εβϋ — E„v < h(v + Δν\ 

p . v = exp(-EJkT)/^exp(-E^ikn 

and J P is the effective electric-dipole moment operator for a certain 
polarization. The restriction on the summation in (9.70) may be removed 
if one uses the delta function in the following way: 

FJtr) = Σ Σ λ « Km» I * t /*«>l*«(^. - 3 . . - *")· (9-71) 

Elaborate theoretical works have been done on the calculation of the 
shape function in the systems with a single vibrational mode* and also 
with many vibrational modes. 8 In order to simplify the problem without 
losing the physical insight, we adopt a semiclassical approximation for 
the calculation of F(v), which is valid at high temperatures. 

Let us suppose that the adiabatic potentials UU(Q) and Ua(Q) are given 
as shown in Fig. 9.7. Note that the following argument is valid only when 
QQ is much larger than the vibrational amplitude of the ground state. For 
simplicity, we assume that the system has a single nondegenerate 
vibrational mode whose normal coordinate is Q. The absorption takes 
place around Q = 0, and the important final states for the transition will 
be the excited vibrational states with large vibrational quantum numbers 
if the dipole strength does not depend upon Q appreciably. Since these 
vibrational states can be treated classically, the final vibrational state 
XfiV(Q) oscillate rapidly except near the classical turning points, i.e., 
the points Q for which Ufi(Q) — Εβϋ. Therefore, a good approximation 
to the sum over ν can be obtained by replacing Εβδ in the delta function 

* K. Huang and A. Rhys, Proc. Roy. Soc. A204, 406 (1950). 
§ M. Lax, / . Chem. Phys. 86, 929 (1952). R. Kubo and Y. Toyozawa, Progr. Theor. Phys. 

(Kyoto) 13, 160 (1955). 
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U0 

FIG. 9.7. Adiabatic potentials £/μ(Ρ) and Ua(Q). 

Q =0 Qo 

in (9.71) by U^Q). The summation over ν can now be performed with 
the closure relationship 

ÎxAQ')xAQ) = W-Q'), 
ν 

and (9.71) simplifies to the form, 

FJr) = Σ A . . / dQ I ̂ ( £ ) l 2 1 * / ( £ ) ! 2 - - Η . ( 9 . 7 2 ) 

where 

where 

Furthermore, if the temperature is high enough so that many initial 
vibrational levels ν are populated, Euv in (9.72) may be replaced by 
UU(Q) with the result 

FJr) = jdQ\ PJS)\%PJQ) *W U(Q) - hvl (9.73) 

AU(Q) = UJQ) - UJQ)9 (9.74) 

Pu(Q) = ap[-UJQ)lkT]/j dQ expi-U^lkT]. (9.75) 

The semiclassical approximation, under which (9.37) was derived, is 
called the Franck-Condon approximation. The physical implication of 
this approximation is intuitively clear. It shows that the electronic 
transition takes place so rapidly that the nuclear positions do not change 
during the transition. 
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In the treatment of the parity-forbidden transitions in the ligand-field 
theory, P^{Q) is calculated as 

PJQ) = / drWu(r : Q=0)*VM(r) Wp(r : 0 = 0 ) 

= Λ > (9-76) 

where F o d d ( r ) is the coefficient of odd-parity normal coordinate Q in the 
expansion of ^ β η . Assuming the adiabatic potentials* 

UJQ) = \KQ\ 

U,(Q) = U0 + hK(Q-Q0f, 

(9.77) 

(9.78) 

one can calculate the semiclassical shape function (9.73) which is now 
given in the form 

K>\*SdQQ*exp(-KQ*l2kT)8(U0 - KQ0Q + \KQ* - hv) 
fdQexp(-KQ*l2kT) 

By using the formulas for the delta function, 

8(ax) = (1/|«|)S(*), 

Γ f(x)8(x-b)dx=f(b), 
* —CO 

and performing the integration in (9.79), one obtains 

(9.79) 

(9.80) 

\P°ull\\U»-hvT 
UlTTfVKWQfikTfl* exp [-

(Uo - hvf 
*KQ0'kT •]· 

(9.81) 

in which U0 is the excitation energy at Q = 0 as shown in Fig. 9.7. The 
shape function obtained in (9.81) is schematically illustrated in Fig. 9.8. 

F(p) 

FIG. 9.8. The calculated line shape of a 
parity-forbidden transition. 

* Here, to make the calculation simple, the same force constant Κ is assumed for both 
the μ and β states. This simplification does not change any essential result of the calcula­
tion. 
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The spectral shape thus calculated has a deep dip at hv — U0 . This 
reflects the fact that the parity-forbidden transitions are allowed only at 
the moment when an instantaneous odd-parity distortion occurs: At 
Q = 0 where no distortion occurs the intensity should be zero. 
The separation of the two peaks is given by AQ^lKkT)1!2, which is 
proportional to s/T. If the shape function is integrated over v, it is 
proportional to Tin agreement with (9.68) at high temperatures. Although 
the calculated spectral shape exhibits a very interesting feature, it is 
premature to apply the result to real systems* which are subjected to the 
nuclear vibrations of even-parity modes as well as odd-parity modes. The 
inclusion of the even-parity modes will change the spectral shape, 
although it will not change the integrated intensity. Detailed theoretical 
studies of the spectral shapes of parity-forbidden transitions have not 
been worked out so far, and it is highly desirable to calculate the spectral 
line shapes in the systems having both even- and odd-parity vibrational 
modes. Moreover, in the systems with electronic degeneracy, the 
dynamical Jahn-Teller effect plays important roles in giving the spectral 
shapes. A brief account of the dynamical Jahn-Teller effect on the 
spectral shapes will be found in a later section. 

In concluding this subsection it is interesting to compare the shape 
function in (9.81) with that for the parity-allowed transition, μ -> μ. In 
the parity-allowed transition, the single vibrational mode to be considered 
is the even-parity mode and the main part of Ρμβ{0) is independent of Q; 

PJQ) = / ά τ ψ Μ •• β=0)*Ρ?Ρ„(Γ : Q = 0 ) . (9.82) 

We assume the same adiabatic potentials as those given in (9.77) and 
(9.78), although Q in the present case is the normal coordinate of the 
even-parity mode. Then, the shape function to be calculated is 

Β · ^ I \2idQeM-KQ*l2kT)S(U0 - KQ0Q + \KQ* - hv) 
™ = J ^ e x p ( - ^ T ) · ( 9 · 8 3 ) 

This integral function can be integrated in the same way as in the case 
of the forbidden transition. The result is given as 

f» M _ \p°u*\2

 e x p r ( ^ » - M 2 i ( 9 8 4 ) 

* If the system has inversion-symmetry, Q 0 in (9.78) is zero. Therefore, the argument 
mentioned here may be applied only to the systems without inversion-symmetry. 
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which is schematically illustrated in Fig. 9.9. If this shape function is 
integrated over vy it is | P° A | 2 and independent of temperature in contrast 
to the case of the forbidden transition. 

FIG. 9 . 9 . The line shape of allowed transitions. 

9 3 Static Jahn-Teller Effect 

9.3.1 JAHN-TELLER THEOREM 

In Section 9.2.1 we mentioned that the linear coupling between 
electrons and nuclear motion is absent in nondegenerate electronic states. 
However, tfiis is not the case for degenerate states. We consider the 
degenerate orbital wavefunction involving ΨΓν(Γ : Q 0 ) which is labeled 
with degenerate irreducible representation Γ. By using (6.89), the 
strength of the linear coupling in the Γ degenerate state is given as 

J ^ r v ( r : Q 0 ) * ^ r y / ( r : Q 0 ) 

= (iyv\r II Vf II ΓχΓγ \ Γγ'Γγ> (9.85) 

((Γ) > 1, and Γ Φ the identity representation) in which V^v\r) is a real 
function in the interaction terms in (9.52) except the term with the 
identity representation. In the case of O-symmetry, integral (9.85) is 
nonvanishing if Γ indicating a normal mode is neither A2 nor 7 \ , and if 
it appears in reducing Γ χ Γ. The first condition is derived from (6.93). 
More explicitly, (9.85) is nonvanishing in the following cases: 

Γ = Ε, Γ = Ε, 7 \ , Τ2, 
(9.86) 

Γ = Τ2, Γ=Τ19Τ2. 

The same result can be obtained in a more general way. Note that 
(9.85) may be reexpressed as 

(9.85) = i jdr[Wry(r : Q 0 ) Ψ Γ ν <Γ : Q 0 ) + f r v - ( r : Q 0 ) ΨΓν(τ : Q 0 ) ] V%{r), 
(9.87) 

because the orbital wavefunction may be chosen to be real. We will show 
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in Appendix IX that the function [ΨΓνΨΓν^ + Ψ^Γν] in (9.87) 
transforms like the base of the symmetric product representation [Γ χ Γ1], 
which is defined as 

Di^liR) = h[D%(R) D%{R) + D%{R) (9.88) 

In (9.88) R is a symmetry operation in the group of interest. Then, we can 
conclude that (9.85) is nonvanishing if Γ indicating a normal mode 
appears in reducing symmetric product representation [ Γ χ Γ]. In the 
case of O-symmetry, [Γ χ Γ] with degenerate Γ can be reduced as 
follows: 

[Ε χ Ε] = A1 + E, 

[Τχ xT1]=A1 + E+T2> (9.89) 

[T2 xT2]=A1 + E+T2. 

Therefore, we obtain the same result as given in (9.86). 
Jahn and Teller* have shown by examining the systems belonging 

to all the point-groups that in molecular systems, except in linear 
molecules, we can always find the normal vibrational mode with 
symmetry Γ which appears in reducing the symmetric product of any 
degenerate irreducible representation Γ. If (9.85) is nonvanishing for a 
certain normal mode P, at least a linear term with Γ appears in the 
adiabatic potential, which in turn tells us that the initially assumed 
nuclear configuration Q 0 is unstable because the adiabatic potential is not 
minimum at Q 0 . Therefore, Jahn and Teller's finding may be stated as 
follows; Except linear molecules, degenerate orbital states in molecules 
are unstable. This statement is called the Jahn-Teller theorem. 

Later Jahn § extended Jahn-Teller's work to the case in which spins 
are involved in the wavefunctions. He found that the degenerate states 

* H. A. Jahn and E. Teller, Proc. Roy. Soc. (London) A161, 220 (1937). 
§ H. A. Jahn, Proc. Roy. Soc. (London) A164, 117 (1938). If the system has an even 

number of electrons, the electronic state may be labeled with a single-valued irreducible 
representation of the group. Jahn has shown that in this case (9.85) involving spin is 
nonvanishing if Γ appears in [Γ χ Γ]. If the system has an odd number of electrons, 
the electronic state may be labeled with a double-valued irreducible representation ρ of 
a double-group. Jahn has shown that in this case (9.85) involving spin is nonvanishing 
if Γ appears in antisymmetric product representation {γ X p} which we will explain in 
Appendix IX. Thus, the problem is reduced to showing whether one can always find 
normal mode Γ which appears in [Γ χ Γ] for any Γ ((Γ) > 1) in the system with an 
even number of electrons and in {p χ p] for any ρ ((ρ) > 2) in the system of an odd 
number of electrons. When ρ is two-dimensional {ρ χ γ} involves only an identity 
representation. Therefore, in Kramers doublets (9.85) is always vanishing as ρ is not the 
identity representation. 
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including spin, which are not Kramers doublets, are unstable in 
molecules except linear ones. 

9.3.2 Î^-STATE IN A CUBIC SYSTEM 

As a simple example showing Jahn-Teller instability, we shall 
consider here the Z^-state in the system with 0^-symmet.ry. We ignore 
spin because the instability due to spin always occurs through 
the spin-orbit interaction and thus is a small effect. Since 
[Eg X Eg] = Alg + Eg , the interaction term linear to the Eg normal 
coordinates are nonvansishing. In this case the adiabatic potential 
U(Q1Q2) for normal coordinates, Q1 = QEu and Q2 = QEv is calculated 
from (9.56) by the use of formula (6.89) as 

u(Q£J = W(Qi* + Qt

i)i+A[-& g ] , (9.90) 

in which ω is the angular frequency of the Eg vibrational mode and 1 is a 
two-dimensional unit matrix whose bases are u and ν in this order. In 
(9.90) a constant term arising from the matrix element of is discarded. 
The constant A of the linear coupling is given as 

A=i(Eg\\VEg(r)\\Eg}. (9.91) 

It should be noted that, since the electronic state is doubly degenerate, 
the adiabatic potential is given in the form of a two-dimensional matrix. 
This adiabatic potential matrix can be diagonalized if one uses bases 
Ψχ and Ψ2 given as follows: 

Ψ1 = Ψη cos α — Ψν sin α, 
(9.92) 

Ψ2 = Ψη sin α + Ψν cos α, 
where 

tan 2ot=Q2IQ1. (9.93) 

If Q1 and Q2 are expressed in terms of the polar coordinates in the two-
dimensional space as 

Q1=P cos 0, Q2 = ρ sin 0, (ρ > 0, 0 < θ < 2ττ) (9.94) 

Eq. (9.93) shows that 
OL = 0/2. (9.95) 

With the bases given in (9.92) and (9.95), two surfaces of the adiabatic 
potential are given by 

ULTA>0) = W P * ± APy (9.96) 
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which is independent of Θ. The minus and plus signs in (9.96) are 
associated with U1 and U2 , respectively, and bases Ψχ and Ψ2 are 
associated with U1 and U2, respectively. These two surfaces are 
illustrated in Fig. 9.10. 

As shown in Fig. 9.10, the minimum of the lower surface occurs at 
Pmin = I A I/ω 2 with an arbitrary value of Θ. Therefore, the stable 
nuclear configuration of the system cannot be determined from (9.90). 
To determine the stable nuclear configuration, we have to go a step 
further and take into account the anharmonicity of the vibration. The 
anharmonicity may be expressed by the cubic term Σ BnmQ\Q™ w r t n 

η + m = 3 and should be invariant to any operation in the O^-group. 
By using the same method as that used for obtaining low-symmetry 
ligand fields (Section 6.1.1), the anharmonic term is readily obtained as 

Adding this anharmonic term to (9.96), one obtains three minima 
(maxima for Β > 0) at 

U (pB) 

FIG. 9.10. Two energy surfaces of the E„ state. 

Ι Δ Ι / ω 2 

B(Qia - 3 & & 2 ) = V cos 30. (9.97) 

(12 I AB I/o»4 < 1) 

η = 0 ,1 , 2 
for Β < 0 (9.98) 

and the maxima (minima for Β > 0) at 

for Β < 0. (9.99) 
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The stable nuclear configuration corresponding to these minima of the 
energy surface for Β < 0 are given from (9.98) as 

Ql (n=0) = pmin, 

Q1(n = l) = - ^ Pmin 

Ql (n=2) = - 2 Pmin 

Q2(n=0) =0; 

V3 
ft(»=l) 

ft (»=2) 

" Pminî 

(9.100a) 

(9.100b) 

V3 Pmm; (9.100c) 

and for Β > 0 by 

e,H) 

/>mln ι 

— Pmin j 

2 Pmin > 

V3 

& H ) = 0 ; 

ft(--D—^ Pmin 

(9.101a) 

(9.101b) 

(9.101c) 

The stable configurations for Β < 0 are illustrated in Fig. 9.11. The 
stable configurations for Β > 0 with η = f, and f are obtained, 
respectively, from those with η — 2, 0, and 1 for Β < 0 by changing the 
sign of the displacement vector, S. As seen in Fig. 9.11, three stable 
configurations correspond to the three equivalent tetragonal distortions 
along the x-> y-> and #-axes. 

2S 

η = 0 η = I n= 2 

FIG. 9.11. Three equivalent tetragonal distortions. 

Problem 9.3. Calculate the stable nuclear configuration of the 7 \ and 
T2 states in the cubic system. Ο 
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9.3.3 EXPERIMENTAL EVIDENCE 

One of the experimental evidences for the static Jahn-Teller effect has 
been provided by the paramagnetic resonance measurements* in a 
CuS iF 6 -6H 2 0 crystal. The unit cell of this crystal determined by x-ray 
experiments contains one [Cu(H 2 0) e ] 2 + complex ion. However, the 
observed paramagnetic resonance spectrum of the C u 2 + ion at low 
temperatures indicates the presence of three kinds of C u + 2 ions with 
different tetragonal symmetry axes; g± = 2.11 and^,, = 2.46. At high 
temperatures the spectrum shows an isotropic ^-value, g = 2.24. 

Since the ground state of the C u 2 + ion is t\Qe* 2Eg , one immediately 
notices that the low temperature spectrum may be explained by 
introducing the static Jahn-Teller distortions of the C u 2 + sites, which 
have to be tetragonal as discussed in the previous subsection. The 
presence of the three kinds of C u 2 + ions corresponds to the presence of 
three equivalent tetragonal distortions. The anisotropic £-value in the 
low temperature spectrum may be calculated by using the basic function 
Ψχ in (9.92) associated with the lower surface of the adiabatic potential, 
Ux . Taking into account the nondiagonal matrix elements of the spin-
orbit interaction and the Zeeman term as done in the example of 
Section 8.4.2, one may evaluate the £-values in three directions as 

*" = 2 + W (SIN \ ~ νΊ cos If · (9 ,102a) 

Λ = 2 + W (SIN I + V 3 0 0 8 if' ( 9 > 1 0 2 b ) 

^ = 2 + w ( s i n l ) 2 ' < 9 - 1 0 2 c > 

where ζ is the spin-orbit coupling constant for a single electron. If the 
system is stabilized at the potential minima at low temperatures, the 
insertion of 0 m i n given in (9.98) and (9.99) into (9.102) leads to the 
^-values, for example, 

_ ? , 6ζ 
gz-gv-g± — *-r 1 Q D q 

? , 2ζ 
gx -gy - g ± l 0 D q 

_ 9 , _ 8 ζ _ g z - g , - z - t - l Q D q 

* B. Bleany and D. J. E. Ingram, Proc. Phys. Soc. (London) A63, 408 (1950). B. Bleany 
and K. D. Bowers, Proc. Phys. Soc. (London) A65, 667 (1952). 

for Β < 0, 
(9.103a) 

(9.103b) 

for Β > 0, 
(9.104a) 

(9.104b) 
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corresponding to the distortion along the #-axis. At high temperatures 
the system begins to rotate taking all the possible values of Θ. Thus, the 
high temperature g-value is calculated by averaging (9.102) over Θ. The 
result is 

Λ = Λ = Λ = 2 + W/lODq). (9.105) 

The experimentally determined ^-shifts, Ag = g — 2, in the low-
temperature spectrum are Agl{

L = 0.46 and Ag±

L = 0.11 and the 
^-shift at the high-temperatures spectrum is AgH = 0.24, which is 
almost equal to \ Ag 1{

L and 2 Ag±

L in agreement with the results given in 
(9.104) and (9.105). The result in (9.103) is not supported by the 
experimental data. From this one may conclude that parameter Β is 
positive in this crystal. 

9Λ Dynamical Jahn-Teller Effect 

9.4.1 QUANTUM-MECHANICAL TREATMENT 

In the previous section we showed that in the Eg state the introduction 
of anharmonicity may bring the system into stable nuclear configurations. 
However, in the absence of such anharmonicity or in the case in which 
the zero-point energy of nuclear vibration exceeds the stabilization 
energy due to the anharmonicity, the system undergoes a motion from 
one equilibrium configuration to another. In this case the motions of 
electrons and nuclei are strongly coupled. This effect is called the 
dynamical Jahn-Teller effect. 

To illustrate the dynamical Jahn-Teller effect, we first consider a 
simple example of the Ε state in which the Jahn-Teller motion is 
confined to the lower surface of the adiabatic potential, Ux . This is the 
case in which the energy quantum of the oscillation, ftœ, is much smaller 
than the Jahn-Teller stabilization energy, Α2βω2

9 and only the lower 
lying vibrational levels are dealt with. For simplicity the anharmonic 
term will be neglected. 

It is convenient to express the basic functions in (9.92) in terms of 
the electronic wavefunctions u+ and u_ defined in (6.25): 

Ψ1 = \= {u+eiel2 - u_e~iel% 
V 2 

(9.106) 

ψ2 = -L (u+e*°J* + u_e-if)l2). 

These functions are considered to be the eigenfunctions of an equation 
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( w + w ) y i ( p : e ) x ( e ) w ι a 2 

2 

- -L W2(r : Q ) -jL + -L W,(r : Q) - ^ - ] X ( Q ) , (9.108) 

one obtains the equation for %(Q) similar to (9.4) as follows: 

/ Μ>Λτ : Q) [ - - f - (_*L + + tfl(Q)] y l ( r : Q ) *(Q) 

r # 2 / a 2 , ι e , ι a 2 ι \ , ω 2 , . ι / Λ Χ 

= £ * ( Q ) . (9.109) 

In deriving (9.109) the orthogonality relation between Ψ1 and Ψ"2 was 
used. By setting 

X ( Q ) = p-i/2F(p)eiWf ( 9 > 1 1 0 ) 

Eq. (9.109) gives the equation which F(p) satisfies: 

[-ψΓ-^Γ- "V + 2 A P + 2 E ] F(P) = ° · (9·11 !) 

Here, for simplicity, fi is taken to be unity. Furthermore, by changing 
the variable ρ into η which is related to ρ by 

η=ρ-(ΑΙω*) (9.112) 

and setting 
F(p) = Gfo), (9.113) 

similar to (9.2). Following the adiabatic approximation, we assume that 
the total eigenfunction of the electron plus nuclei system has the form 

Φ(ΓΟ) = ^ ( r : Q ) * ( Q ) , (9.107) 

because the motion is mostly confined to the lower surface. Then, using 
the relation 
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Eq. (9.111) can be reexpressed in the form 

r d2 I2 

- ω2η2 + 2£'] G(v) = 0, (9.114) 
L άη2 (η + Α/ω2)2 

in which 
Ε' =Ε + (Α2βω2). (9.115) 

Since we are dealing with the lower lying levels associated with the Ux 

potential surface, it is a good approximation to neglect η in the 
denominator of the second term of (9.114). Then, the approximate 
equation for G(^) is 

i — 

where 

o , y + 2E") G(v) = 0, (9.116) 

£" = £ ' - W F - ( 9 · 1 1 7 ) 

Equation (9.116) is the well-known equation for a simple harmonic 
oscillator with eigenvalues (n + -|) ftœ with n = 0, 1,2,... . Therefore, 
the eigenvalues of (9.109) are now found to be 

/ 1 \ Z2 A2 

£ = (« + - ) ^ + - ^ w - ^ («=0,1 ,2 , . . . ) . (9.118) 

In (9.118) possible values of / are determined from the condition that the 
total wavefunction Φ ( Γ Ο ) is periodic with respect to θ with the period 
2TT. It follows from (9.106) and (9.110) that if 

/ ± i = integers, ) 
or , (9.119) 

1 — I t 2 J I t 2 > 3 1 2 » · · · J 

0(rQ) is periodic with the period 2π. 
The energy eigenvalues given by (9.118) correspond to those of a 

one-dimensional harmonic oscillator whose center undergoes a rotatory 
motion in the circular orbit of radius | Α \/ω2 and with angular 
momentum / at the bottom of the U1 surface. The last term is the 
energy at the bottom of the U1 surface. The degeneracy of each level 
is twofold corresponding to the plus and minus signs of /. 

Next we consider the case in which the zero-point energy of the 
oscillation, \hoy, is larger than the stabilization energy Α2/2ω2. In this 
case the Jahn-Teller motion is no longer confined only to the lower 
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= <*Wl ,m+l I Ρ*™ I Xn,m> = [ " T ^ ( » + « + 1)J , 

Γ # τ 1 / 2 

= <Xn-l .m+l I pet& I Xn.m> = [ " ^ ( « ~ ^ - 1)J , 

surface of the adiabatic potential. For treating this case, we start with 
the zeroth order wavefunctions obtained by assuming A = 0. We use 
the electronic wavefunctions, u+(r : Q = 0 ) and u_(r : Q = 0 ) , and the 
vibrational wavefunctions # ( Q ) which satisfy the equation 

[- -τ (w + w)+τ<&'+ρ°2) ~ E\*(Q) = °· ( 9 · 1 2 0 ) 

As the solution of (9.120) we choose the form* 

Χηγη(ρθ) =Fn]m](p) ê™\ (9.121) 

Enm = Λωη, (9.122) 

where η = 1, 2,..., and m = n — 1, η — 3,..., — η + 1. For the function 
Fn\m\(p)> s e e Pauling and Wilson's book.* Thus, the zeroth order wave-
functions are given by 

0L=udr)x*m(p0), (9.123) 

and the corresponding energy level has 2«-fold degeneracy. 
The Jahn-Teller interaction, which is linear in Q and treated as a 

perturbation, is expressed as 

•^j-T=Vu(r)Q1 + Vv(r)Qi 

= ^ | WuSr) *ie ~ Vu+(r) r^]. (9.124) 

By using the matrix elements 

<u± I Vu+(r)\ u±y = <u± I Vu_{r)\ u±> = 0 
(9.125) 

<u* I Vu±(r)\ u±y = TV2A 

and the fact8 that the only nonvanishing matrix elements of pe±ie are 

<Xn.m I Pe~W I X*+l.m+l> 

<Xn,m I I Xn-l,m+l> 

(9.126) 
* L. Pauling and Ε. B. Wilson, "Introduction to Quantum Mechanics." McGraw-Hill, 

New York, 1935. 
* H. C. Longuett-Higgins, U. ôpik, M. H. L. Pryce, and R. A. Sack, Proc. Roy. Soc. 

(London) A244, 1 (1958). 
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L L L L 1 1 
2 ~ 2 "2 2 2 2 

ΓΤ1 = -3 -2 -I 0 I 2 3 

FIG. 9.12. The interaction scheme between the levels of . 

Now we are ready to construct the energy matrix with bases Φ^,τη for 
the total Hamiltonian including perturbation J*f?j_T. Because of the 
interaction scheme shown in Fig. 9.12, this energy matrix decomposes 
into the matrices labeled by quantum number /. For a certain value of /, 
m can take two values, m = I — 1/2 and / + 1 j2 corresponding to j = — 1 
and + 1 , respectively. For m = /— 1/2, the possible values of η are 
I / - 1/2 I + 1, I / - 1/2 I + 3, I / - 1/2 | + 5,..., and for m == / + 1/2 
they are I / + 1/2 I + 1, I / + 1/2 I + 3, I / + 1/2 I + 5,..., as seen from 
(9.121) and (9.122). We arrange the bases in the order, η = | / | + 1/2, 
I / I + 3/2, I / I + 5/2,..., irrespective of the sign of /. Then, from (9.122) 

* Note that this j is equivalent to —j in the paper by H. C. Longuett-Higgins et al., 
Proc. Roy. Soc. (London) A244, 1 (1958). 

§ For a more general argument, see W. Moffitt and W. Thorson, Phys. Rev. 108, 1251 
(1957). 

one obtains the matrix elements of as follows: 

= ii J - ^ - [n ± (m - 1)] j , (9.127a) 

= A [η ± (m + 1)] j 8 n U ± 1 8 m W l . (9.127b) 

The matrix elements in (9.127a and b) show that, if we assign the 
quantum numbers* j = ± 1 to 0ntm > «^j-r connects the states with the 
same quantum number, § I = m — (1/2) j (j = ± 1 ) · The interaction 
scheme between the Φ^,ηι levels due to « ^ _ r is indicated in Fig. 9.12, 
where the levels connected by broken lines interact with each other. 
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m0 + 1 k Vm0+1 

k VmQ + 1 m0 + 2 kVÏ 

kVJ m0 + 3 k Vm0 + 2 

k Vm0 + 2 m0 + 4 k VÏ 

kVl m0 + 5 

in which 
mo = \l \ — h 

k = Α/ωψω)1/2, 

(9.128) 

(9.129) 

and all the matrix elements are given in the unit of fiœ. 
In our case of (1/2) ϋω ^> (Α2Ι2ω2) which is equivalent to k2

 < C 1, the 
eigenvalues of (9.128) are obtained by using the second-order perturba­
tion theory as 

Ενι =p + I H - * - (I /1 + \)& (Ρ = 1, 3, 5,...), 
E^=p + \ l \ - \ + (\l\-\)k2 (p = 2,4,6,...). 

This result shows that the 2«-fold degeneracy of the nth level in the 
absence of the Jahn-Teller coupling is removed by J^j_T and only 
twofold degeneracy remains for all the energy levels. This twofold 
degeneracy corresponds to the same degeneracy found in the opposite 
case of k2 !> 1 [see (9.118) and (9.119)]. The energy of the lowest level, 
I = ± 2 » ί = 1, is given by 

£i.±(i/2) = 1 ~k\ (9.131a) 
or multiplying by ήω, 

ElMll2) = «ω - (A2/œ% (9.131b) 

which means that the zero-point energy of a one-dimensional oscillator, 
(^) is reduced by the amount equal to the Jahn-Teller stabilization 
energy, Α2/2ω2. 

For various values of A2, the eigenvalues of the secular matrices given 
in (9.128) with several values of / have been numerically calculated by 
Longuett-Higgins et al. 

and (9.127), one sees that the energy matrices with quantum member 
± 7 are identical (therefore the energy levels are always doubly degenerate), 
and are given by 

» = i / i + i m + i m + t , i ' 1 + î , m + t, -
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9.4.2 SPECTRAL LINE SHAPES OF ALLOWED TRANSITIONS 

As one of the observable phenomena in which the dynamical Jahn-
Teller effect plays an important role, we briefly mention here the spectral 
line shape of a parity-allowed transition in which the final state has orbital 
degeneracy while the initial state is an orbital singlet. 

The simplest problem of this sort is the parity-allowed A —• Ε 
transition in which only the Eg vibrational mode couples with the 
electronic states. The quantum mechanical calculation of the spectral 
line shape in this problem is possible if the eigenvectors of the secular 
equation obtained from (9.128) are known. For simplicity we assume 
that the same vibrational functions x n m ( Q ) in (9.121) are associated 
with both the initial and the final states, although in real problems there 
is no reason for the frequencies of the both states to be the same. Then, 
by using the orthogonality relations among the % n m ( Q ) ' s , it is straight­
forward to calculate the relative intensities of the Anm —> Epl transitions 
if the eigenvectors of the Epl levels are available. The calculation has been 
made by Longuett-Higgins, et al.y and the results for the A10 —• -Epd/2) 
transitions with k2 = 5, 10, and 20 are shown in Fig. 9.13. The intensities 
of the A10—>Epl transitions with | / | Φ 1/2 are zero, as χ 1 0 ( β ) is not 
mixed in the eigenvectors of the pi levels with | / | Φ 1 /2 as seen from 
Fig. 9.12. The appearance of two intensity maxima is a characteristic 
feature of the results, and reflects the existence of two energy surfaces 
in the final state. 

FIG. 9 . 1 3 . The calculated intensities of the κ2=ιο 
A10 -> Ev allowed transitions [H. C . Longuett- Α— Ε , ι I I I I I I I I ι 
Higgins, U.Opik, M. H. L. Pryce, and R. A. Sack, 
Proc. Roy. Soc. (London) A244, 1 ( 1 9 5 9 ) ] . 

Such a characteristic feature may also be reproduced in a much simpler 
calculation* by using the semiclassical Franck-Condon approximation. 
In the semiclassical calculation we assume that 

I I I ι 

k2 = 20 
A— Ε 

UE(iAQ) = u0 + hKP* ψ AP, 

UJQ) = \Kp*. 
(9.132) 

* Y. Toyozawa and M. Inoue, / . Phys. Soc. Japan 21, 1663 (1966). 
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Then the spectral line shape function as given in (9.73) is calculated as 

Δ 1,2 

_ \Ρ°ΛΕ\* Σι,2 ST άθ j ; dp ρ exp[-KP

2/2kT] S(U0 Τ Ap - hv) 

2STdeJZdppexp[-Kp*l2kT] 

\P°AE\2K\hv-U0\ 
2A2kT exp [- K(hv - u0f 

2A2kT •]· (9.133) 

in which PAE is the electric-dipole transition moment as given in (9.82). 
The shape function in (9.133) is plotted in Fig. 9.14. This shape function 
has two maxima corresponding to those found in the quantum mechanical 
calculation (Fig. 9.13). The central dip of the spectral shape comes from 
the mathematical nature of the adiabatic potential surfaces at Q = 0. 

FIG. 9 . 1 4 . The calculated line shape of the A —• Ε allowed transition [Y . Toyozawa 
and M . Inoue, / . Phys. Soc. Japan 21, 1 6 6 3 ( 1 9 6 6 ) ] . 

Toyozawa and Inoue* have shown that such splitting of the absorption 
band appears when the point Q = 0 is the branch point of adiabatic 
potential surfaces. When the point Q = 0 is the intersection point, no 
splitting is expected. It should be remarked that, if the degeneracies of the 
electronic state and the coupled vibration are the same, the point Q = 0 
is always a branch point and, if the degeneracy of the coupled vibration 
is smaller than that of the electronic state, the point Q = 0 is the 
intersection point. The splittings of the absorption bands due to the 
Alg —• Tlu transition have been observed in alkali halide phosphors with 
heavy metal impurities and they have been nicely explained on the bases 
of the dynamical Jahn-Teller effect described here. 

* Y. Toyozawa and M. Inoue, / . Phys. Soc. Japan 21, 1663 (1966). 



Chapter X MOLECULAR ORBITAL 

A N D HEITLER-LONDON THEORIES 

10.1 Strong- and Weak-Field Schemes 

In the ligand-field theory developed in this book, we started with 
accommodating a certain number of electrons in the one-electron orbitals 
which are the bases of the irreducible representation of the symmetry 
group of the system. However, as long as the physical quantities such as 
reduced matrices are left as parameters to be determined experimentally, 
it was unnecessary to know the detailed functional forms of these 
one-electron orbitals. To simplify the theory we sometimes used the 
^-function approximation in which the t2g and eg orbitals have only the 
^-character, and we estimated the values of the physical parameters by 
using the radial functions of free ions. In doing this the estimated values 
for some parameters are found to be in fair agreement with those 
experimentally determined, but, as we will show later, at the same time 
we meet serious difficulties: the sign of the calculated crystal-field 
splitting parameter is wrong and the calculated unpaired spin densities 
on the atomic parts of ligands differs by orders of magnitudes from 
that found by experiments. These difficulties show that the purely 
ionic model employed in Bethe's crystalline-field theory, in which the 
electron transfer between the metal ion and the ligand is completely 
ignored, cannot be the physical model of the ligand-field theory. In this 
circumstance it has become quite necessary to discuss further the detailed 
functional forms of the one-electron orbitals appearing in the ligand-field 
theory to provide a sound physical basis of the ligand-field theory. 

249 
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The ligand-field theory called a strong-field scheme is formulated in this 
book so that it gives a good description of the system with a very large 
cubic-field splitting, and its nature is similar to that of the molecular 
orbital (MO) theory: the t2g and eg orbitals may be regarded as one-
electron molecular orbitals with given symmetry. Therefore, the MO 
treatment of these orbitals makes it possible to go a step beyond the 
purely ionic model. 

On the other hand, a theory may be formulated so as to give a good 
description of the system with a very small cubic-field splitting, which, 
though not discussed in this book, is called a weak-field scheme. In the 
weak-field scheme the basic functions are those for free ions, dNSLMsML, 
while they are t2geg

mSTMsy in the strong-field approximation. Here L 
is the resultant orbital angular momentum and ML is its component. 
Naturally the weak-field scheme is faithful to the purely ionic model 
employed in Bethe's crystalline-field theory. In this scheme the matrices 
of the Coulomb interaction are already diagonal, and both the diagonal 
and nondiagonal matrix elements of the cubic-field potential appear in 
and between the SLT and SLT states with the same Γ. However, both 
the strong- and weak-field schemes are identical when, in addition to the 
rf-function approximation, all the configuration interactions between the 
t\\eg

mST terms and t^e™'ST terms are completely taken into account in 
the strong-field scheme, and all the nondiagonal matrix elements between 
the SLT and SLT states are taken into account in the weak-field scheme. 
This is because both methods use the same subspace spanned by different 
sets of basic functions and take into account the same interactions. 

We mentioned that in the strong-field scheme the MO treatment 
of the t2g and eg basic functions provides a natural way of getting out of 
the purely ionic model. Then, a question arises as to what kind of 
treatment will play the same role in the weak-field scheme. The answer is 
that the Heitler-London method provides a natural way of accounting 
for the deviation from the purely ionic model, when a small mixture 
of the excited configuration in which an electron is transferred between 
the metal and ligand ions is taken into account. 

Since the ligand-field theory discussed so far is formulated in the 
strong-field scheme, in this chapter we will mainly stand by the MO 
model and see how the physical quantities appearing in the ligand-field 
theory may be interpreted. However, we will show later that the MO 
model is identical to the HL model at a certain stage, so that the inter­
relationship between these two models will always be kept in mind and 
discussed in some detail. The next two sections will be devoted to a 
simple description of the MO method for the systems with closed-shell 
and open-shell electron configurations. 
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10.2 Simple Description of MO Theory 

10.2.1 MOLECULAR ORBITALS 

Molecular orbitals (MO) are one-electron orbitals in molecules. In 
the MO theory a single electron is considered to move in an average 
field of the nuclei and the electrons, and its motion is described by an 
MO. The theoretical foundation of this picture is provided by the self-
consistent field (SCF) theory of Hartree or Hartree-Fock, which we will 
discuss in the next subsection. 

As seen from the argument given in Chapter I, the MO's should be 
the bases of the irreducible representations of the symmetry group to 
which the system belongs. Apart from the symmetry property, the 
intuitively obvious characteristic of MO is derived from the consideration 
that when an electron is near one nucleus, the forces exerted on it are 
those chiefly from the nucleus and the other electrons near it. In other 
words, the most important terms of the Hamiltonian for the electron near 
nucleus A are those which comprise the Hamiltonian for an electron in an 
isolated atom A. Such a consideration leads us to the approximate method 
of expressing MO by a suitable linear combination of atomic orbitals 
(AO), called the LCAO (Linear Combination of Atomic Orbitals) 
method. 

For example, we consider a molecule consisting of two atoms A and Β 
with atomic orbitals φΑ and φΒ , respectively. The LCAO MO in this 
case is 

Φ = CA<PA + CJWB y (10.1) 

in which CA and CB are numerical coefficients. For simplicity we assume 
that φ has no orbital degeneracy, and that the molecule has two electrons 
accommodated in φ, i.e., it has a closed-shell configuration. In this case we 
will show in the next subsection that the φ with the lowest orbital energy 
satisfies the equation 

Η = €0, (10.2) 

where h is an appropriate Hamiltonian for a single electron and e is the 
orbital energy. In general, the occupied molecular orbitals of the system 
satisfy Eq. (10.2) in the case of a closed-shell electron configuration, but 
they do not when the system has an open-shell configuration. The 
open-shell case will be discussed in the next section. 

Now, e, CA , and CB are determined by the following secular equations 
derived from (10.2): 

C&A - «) + cBw - &) = o, 
CA(fi - Se) + Cfa - e) = 0, 
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FIG. 10.1. Formation of bonding and antibonding energy levels. 

The MO's, ψ* and ψα having orbital energies eb and e a , are called bonding 
and antibonding molecular orbitals, respectively. These names come from 
the fact that the system is stabilized by accommodating electrons in the 
bonding MO while its energy is increased by placing electrons in the 
antibonding MO. The bonding and antibonding orbitals are orthogonal 
to each other.* It should be noted that eA and eB are not the orbital 
energies of atomic orbitals φΑ and φΒ , but do correspond quite closely. 
Here β is called the resonance integral between φΑ and ψΒ and, together 

* Strictly speaking, since ψα is not the occupied orbital, it is not clear that ψα satisfies 
Eq. (10.2). As shown later, if ψα is assumed to satisfy Eq. (10.2) as done here, one can 
prove that ψ° is orthogonal to 0&. A theoretically rigorous way of introducing ψα is to 
assume the orthogonality between ψα and «/rb at the beginning and to derive ψα from ψ* by 
assuming that ψ* is given by a linear combination of the same set of AO's as in 0s. 

where 

U = <9x\h\ <PA>, eB = <<PB\h\ φΒ>> 

β = <ΨΑ I * I <PB> = <<PB I * I <PÀ>> S = <<PA\ <PB>-

From (10.3) one may obtain the equation to determine c, 

fc* - Φ Β - «) - (β - Se? = 0. (10.4) 
Since the second term of (10.4) is positive, the first term should also be 
positive. This means that the two roots of (10.4), e a and €6, are located as 

ea > €A and e a > eB , 
(10.5) 

€b < €A and eb < €B . 
Relation (10.5) is visualized in Fig. 10.1, in which eA < eB is assumed. 
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— 

(|8 - esSf 
(10.6) 

— U 

The MO's in this case are given by 

ψ» = N;V\<pA + γψΒ), 
(10.7) 

in which coefficients γ and λ are small compared with unity. From the 
orthogonality between φά and φα, λ is related to γ as 

> = TTW- <">·8> 

In (10.7) iVg"1/2 and Nâ1,2> are normalization constants. By inserting (10.6) 
into (10.3) and neglecting small quantities of higher order, the relation 

— β ~ € a S (10.9) 
*B — *A 

may be derived. To the same approximation λ is given as 

\ β — €BS 
*B — *A 

« γ + S. (10.10) 

Now, in the ground state of our two-electron system both electrons 
are placed in the bonding orbital. Therefore, the ground state is a singlet 
and the wavefunction is given by the Slater determinant 

Ψ= \φψ\, (10.11) 

in which a normalization factor is included as defined in (2.15) and the 
meaning of the upper bar was explained at the beginning of Section 2.1.3. 

. with overlap integral S, is responsible for the formation of the MO's; if 
β — S = 0, one has the relations, eb = eA , ea = €B, iffi = φΑ , and 
Φ Α = <PB > as s e e n from (10.4). 

If β/(€Β — €A) and 5 are small compared with unity, the amount of the 
energy gained by the molecular orbital formation, eA — e 6, is small 
compared to eB — eA . The same is true for ea — eB . Then, the bonding 
and antibonding orbital energies are simply calculated from (10.4) as 
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By substituting (10.7), (10.11) may be expressed in terms of the AO's as 

Ψ = Νΐ\\ ΨΑΨΑ I + γ{\ ΨΑΨΒ I + I ΨΒΨΑ I) + Y2 I ΨΒΨΒ \1 (10.12) 

In (10.12) the first term | ψΑψΑ | represents the state in which two 
electrons are located on atom A. This state corresponds to a purely ionic 
configuration. The second term, | φΑφΒ \ + | φΒψΑ l> represents the state 
in which one of the electrons on atom A in the ionic configuration is 
transferred to atom B. This term may be interpreted as corresponding to a 
covalent configuration in which the transferred electron makes a covalent 
bond with the other electron having the opposite spin. Parameter γ is 
determined so as to minimize the total energy. The third term, | φΒφΒ |, 
represents the state in which two electrons are transferred to atom Β and 
may be neglected if γ is much smaller than unity. Neglecting the third 
term, we may express (10.12) as 

Ψ = Ψΐοη + y^cov · (10.13) 

This is equivalent to the wavefunction used in the HL method in which 
the covalent configuration Ψ0ΟΥ is mixed with the dominant ionic 
configuration. 

To compare the present problem with the opposite case of a small 
ionic contribution to a predominantly covalent bond, we cite the example 
of a hydrogen molecule, in which atoms A and Β are identical. In this 
case eA = €B and (10.4) gives two eigenvalues, 

•± = = *A ± r , , ο · (10.14) 1 ± S Λ -1- 1 ± 5 

By inserting these energy eigenvalues into (10.3), the MO's ψ+ and φ~ 
associated with e+ and e~, respectively, are found to be 

Φ ± = [2(1 ± S)]-V*(<pA ± Ψ Β ) . (10.15) 

In this case the coefficients of the atomic orbitals are independent of 
β, S, and € A . They are determined by the symmetry of the molecule. 
Since β — €AS is negative according to a numerical estimate, ψ+ has an 
orbital energy lower than that of ψ~. Therefore, the wavefunction of the 
ground state is given by 

Ψ(Η2) = I φψ I 

= 2(i !|_ s) ^ ψΑ^Β ' + ' ψΒ^Λ ' + ' ψΛ$Α ' + ' ψΒ^Β '-'" ( 1 0·16) 
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The first two terms in (10.16) represent a covalent configuration and the 
last two a purely ionic configuration. Thus, the wavefunction in the MO 
theory contains the covalent and ionic configurations equally: 

ΨΜΟ(Η2) = Ψ,ον + Ψίοη. (10.17) 

On the other hand, in the HL theory without ionic configurations, the 
wavefunction of the ground singlet is given by 

Ψ^(Η2) = [2(1 + S 2 ) ] - ^ ( l ) < ^ ( 2 ) + Ψβ(1)Ψα(2)] 

Χ ^ Κ 1 ) « 2 ) - « 1 ) α ( 2 ) ] 

= [2(1 + S*]-i/2[| Ψ α Φ β Ι + ι ψΒφΑ |], (10.18) 

which corresponds to Ψ00Υ . The better wavefunction lies between 
(10.17) and (10.18) and is known to be rather close to (10.18). Therefore, 
in the hydrogen problem, the simple MO theory gives too much weight to 
the ionic configuration as a result of the coefficients of the linear 
combination being fixed by the symmetry. 

10.2.2 HARTREE-FOCK EQUATIONS 

The theoretical foundation for the concept of one-electron orbitals in 
a many-electron system is provided by the SCF (Self-Consistent Field) 
theory of Hartree-Fock, which leads us to the Hartree-Fock (HF) 
equations for one electron-orbitals. In order to describe this theory in 
a simple fashion, we consider the molecule having two electrons as 
discussed in the previous subsection, and assume that ψ is the MO of the 
lowest orbital energy with no orbital degeneracy. As given in (10.11), 
the total wavefunction is given by 

Ψ = I φφ |. (10.19) 

The H F equation is derived by minimizing the total energy by setting 

8(Ψ \^\Ψ}= 0, (10.20) 

with a subsidiary condition, 

<Φ\Φ> = 1, (10.21) 

which assures the normalization of Ψ. The total Hamiltonian in (10.20) is 

Σ (10.22) 
i=l,2 
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where fi is a one-electron operator acting on electron / including the 
kinetic energy and the nuclear attraction potential, and g12 is the Coulomb 
interaction operator between electrons 1 and 2. One obtains from (10.19) 
and (10.22) 

<Ψ\^\Ψ}= 2{φ\/\ψ> + <# Il #>, (10.23) 

in which the abbreviated notation for the Coulomb integral, (φφ || φφ}9 

was defined in (2.76). 
Now by using (10.23), our variation problem reduces to finding Ψ 

which satisfies the equation 

8[<Ψ \*\Ψ>- 2*(φ I φ}] = 4<8φ 1/1 φ) + 4 < δ # II #> - 4e<S</, \ φ} = 0 
(10.24) 

for an arbitrary 8φ and the normalization condition (10.21) at the same 
time. In (10.24) 2e is Lagrange's undetermined multiplier for the 
condition (10.21). It is clear that (10.24) is satisfied for an arbitrary 8φ if 
the following equation is satisfied: 

ηφ = εφ, (10.25) 

where 

η=ί+(Φ\\Φ\ (10.26) 

Here, we have used the abbreviation 

< Ψ Λ Φ ί > = jdr^Wg^V). 

Equation (10.25) is called the H F equation and has already been used in 
the previous subsection. Equations (10.25) and (10.26) show that an 
electron moves in the averaged potential (φ \\ ψ} due to another electron, 
in addition to the nuclear potential included in / . 

The present example for a two-electron system can easily be extended 
to the cases of closed shells containing more electrons. Also in such a 
many-electron problem, the H F equation like (10.25) for each occupied 
orbital may be derived by applying the variation principle. The H F 
Hamiltonian h in this case involves, in addition to / , the energy due to 
the averaged Coulomb and exchange potentials due to other electrons. 
Since the self-Coulomb and -exchange interaction energies cancel, one 
may formally include them in the H F Hamiltonian. Then, the H F 
equations for different orbitals are expressed by the use of the same H F 
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Hamiltonian. This assures the orthogonality between different orbitals.* 
For example, for the system of four electrons in nondegenerate orbitals 
φ1 and φ2 , the H F equations are given by 

H i = * A > ¥ 2 = ΗΦ2 > (10.27) 
where 

h = / + 2[<& II φ1> + <φ2 II <A2>] - [<φ1 II P 1 2 ^> + <0 2 II i V 2 > ] . (10.28) 

In (10.28) P12 is the permutation operator between electrons 1 and 2, so 
that 

< * < Ι Ι Λ Λ > = J ^ * ( 2 ) ^ 1 2 P 1 2 W 2 ) . 

By using the relation, < ^ | h \ φ2} = (ψ2 \ h | < / Ί > * , it follows from 
(10.27) that 

<Φι I 02>(«i - Ο = 0, (10.29) 
which shows that 

<Φΐ I 02> = 0 if C ^ C , . (10.30) 

Proèfcm 10.1. Derive (10.27) and (10.28). Ο 

103 MO Theory for Open Shells 

10.3.1 HARTREE-FOCK EQUATIONS 

The M O theory or the H F theory for open-shell systems is slightly 
different from that for closed-shell systems described in the previous 
section. In the ligand-field theory magnetic electrons or chromophoric 
electrons are placed in open shells, so that it is necessary to describe here 
the theory for open shells. 

For this purpose we consider a molecule having three electrons. 
Suppose in the ground state two electrons are spin-paired in a non-
degenerate φ2 and a remaining electron with an up-spin is in another 
nondegenerate orbital 0 X . The total wavefunction of this ground state 
is given by a Slater determinant as 

Ψ = I φ,φ2φ2 \. (10.31) 

* The orthogonality between different orbitals, as well as the normalization, is often 
imposed as subsidiary conditions in the variation problem. This variation procedure 
leads to the same result as ours if the system has a closed-shell configuration. In the 
present variation problem, the orthogonality conditions are not included in the subsidiary 
conditions, although the trial one-electron functions are assumed to be orthogonal to each 
other to retain the simple form of <Ψ \ Jf? \ Ψ}. 
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The variation procedure to be taken is similar to that for closed shells, 
but an important difference is that one has to impose an additional 
subsidiary condition 

<Φι I 02> = 0 (10.32) 
besides 

<Φι I Φι> = <Φζ1 <A2> = I- (10.33) 

It should be remembered that the orthogonality conditions between 
different orbitals are automatically fulfilled in the case of closed shells. 
The importance of the subsidiary orthogonality condition (10.32) in the 
case of open shells will be realized later. 

By using the total Hamiltonian for the present system, 

3 3 
* = Σ Λ + Σ ί « . (10.34) 

1=1 3>i=l 

it is straightforward to derive the following H F equations: 

*101 = €ιΦι + λθΦ2 > 

η2φ2 = €2φ2 + ^λ0φ1, 

where 

^=/+2(φ2\\φ2}~<φ2\\Ρ12φ2\ 

K=f+ <<Αι II Φυ + <Φ2 II Φυ - ΚΦι II Pieu-

Here 2e1 and 2e 2 are Lagrange's undetermined multiplier for conditions 
(10.33) and 4λ 0 for condition (10.32). Assuming that φχ and φ2 are real 
one can determine λ 0 from (10.35) and (10.36) as 

A0 = ~<ΦιΦι II Mz>- (10.37) 

Equations (10.35) are different from the H F equations for closed shells 
in two important points: (1) They are not Schrodinger type equations 
for one-electron orbitals because of the presence of the terms, ^λ0φ1 and 
λ0φ2; (2) The one-electron Hamiltonians, hx and h2, are different from 
each other while the same Hamiltonian can be employed in the case of 
closed shells. The first point seems to invalidate the orbital picture in 
which an electron moves in the average potential field coming from the 
other electrons and nuclei. Therefore, in this case the physical meaning 
of e1 and e2 is not clear. The second point together with the first does not 
assure the orthogonality between φ1 and φ2 . For this reason the 
subsidiary orthogonality condition (10.32) had to be imposed. 

(10.35) 

(10.36) 
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10 .3 .2 ORBITAL ENERGIES 

In the previous subsection a limitation upon the orbital picture in the 
open-shell case was pointed out. However, here we will show that a 
physical meaning may be given to €± and e 2 in ( 1 0 . 3 7 ) , which to some 
extent restores the validity of the concept of one-electron orbitals. 

In order to define orbital energies in the open-shell problem, we use 
Koopmans' theorem, which states that, if the orbitals are assumed not to 
change their forms by the ionization of the molecule, the ionization 
potential of an electron in a given orbital is equal to the negative of the 
orbital energy of that orbital. In our problem the total wavefunction of 
the state in which an electron in the φ1 orbital is ionized is given by 

Ψχ = I Φ2Φ21, (10.38) 

which represents a singlet ( 5 = 0 ) state. The energy difference between 
states Ψ and Ψ1 is related to the ionization potential, I1, as follows: 

-Ix = <Ψ I M> I Ψ) - I I (10.39) 

where Ψ is the wavefunction given in ( 1 0 . 3 1 ) , the Hamiltonian in 
( 1 0 . 3 4 ) , and the two-electron Hamiltonian in ( 1 0 . 2 2 ) . From the 
relations 

(W\jtr\W) = 2<<A2 l / l Φ2) + <Φ1\/\ Φυ + 2<feA2 II ΦιΦυ 
- <Φι<Ι>2 II Φ*Κ> + <φ2φ2 II Φ&>, (10.40) 

{Ψ, I I Ψ,} = 2 # 2 1 / 1 φ2} + <φ2φ2 II φ2φ2}, (10.41) 

and 

= (φ, I ΑΧ I φ,} = (φ, I /1 φ,} + 2<M* II ΦιΨυ - <ΦιΦ2 II Φ2Φι>> (10.42) 

one obtains 

- h = <Ψι 1/1 Φι> + ΚΦ1Φ2II 0ι02> - <ΦιΦ2 II Ά20ι> = *ι · (10.43) 

Thus, €χ turns out to be the orbital energy of φ1 . 
When an electron in φ2 is ionized, there appear a singlet and a triplet 

(S = I) state. The singlet state is given by the wavefunction 

^ i n g = ; ^ [ l ^ 2 l - I ^ A I ] , (10.44) 

and the triplet state with Ms = 1 is given by 

ï f l p = I Φ1Φ21- (10.45) 
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The negatives of the ionization potential for the singlet and triplet states 
are given as 

_ 7 sing = <xp\#>\Wy_ (ψ^ζ ι jf" ι y j t o * ^ ( 1 0 . 46 ) 

_ 7 t n P = < y j j f j y > _ <ψ^Ρ | jf» | y « P > . (10.47) 

From the relations 

< ¥ f n g I I f f η β > = l / l \/\Φ,}+<φ1φ2 II ΦιΦ2>+<ΦιΦ2 II 
(10.48) 

< y t r IP , , ¥ , t r i p > = ^ ( / ι ̂ >+<^ [/j || ̂  - < ^ 2 || fcfc>, 
(10.49) 

and 
e 2 = <0 2 I A2 I φ2} 

= I / 1 Ά2> + <^02 II 02<A2> + #102 II MÙ - ΚΦ1Φ2II ^ i > , (10.50) 

one may show the relation 

i ( _ 3 / f P _ / f * ) = e 2 > (10.51) 

in which the left-hand side is the average of — / 2 Γ ΐ ρ and — i | i n g taking 
into account the degeneracies associated with the states. In this way the 
physical meaning of e 2 is clarified. 

10.3.3 COVALENCY PARAMETER 

So far we have not mentioned the details of φ1 and φ2 . In the problem 
of transition metal compounds which we will mainly be concerned with, 
φ2 is predominantly of the character of the ligand orbitals with a small 
mixture of the rf-orbital of the central metal ion, and φ1 is predominantly 
of the character of the rf-orbital. The reason for this will be discussed in 
the next section. In this case φχ and φ2 have the following forms: 

Φι = N ? i \ 9 - λχ), (10.52) 

Φ. = Ν?/2(χ + γΨ), (10.53) 

where φ is the atomic rf-orbital of the metal ion, χ a suitable linear 
combination of the atomic orbitals of the ligands, and iVf 1 / 2 and N^1!2, 

normalization constants. We assume that φ1 and φ2 given by (10.52) and 
(10.53) satisfy the symmetry requirement of the system. Because of the 
orthogonality relation (10.32), λ and γ are related to each other as 

λ = (y + S)/(l + yS), (10.54) 
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where 
S = <<p\x> (10.55) 

is the overlap integral between φ and χ. Comparing (10.52) and (10.53) 
with (10.7), one notices that φ2 and φλ correspond to the bonding and 
antibonding orbitals, respectively. 

The physical meaning of y becomes clear when one inserts (10.52) and 
(10.53) into the total wavefunction (10.31) with the result 

Ψ = [ΛΓ2(1 - S*)]-V*[\ ψχχ\+γ\ ΨΧΨ |]. (10.56) 

In deriving (10.56), use was made of (10.54) and 

Nx = 1 - 2XS + λ2, 

N2 = 1 + 2YS + y\ 
(10.57) 

The first term | φχχ | in (10.56) represents the state in which two electrons 
are placed in the ligand orbital. This state may be considered to 
correspond to the purely ionic configuration. The second term | φχφ \ 
represents the state in which a down-spin electron of the ligand orbital 
in the ionic configuration is transferred into the metal rf-orbital. As 
mentioned in the previous section this corresponds to the covalent 
configuration. Therefore, the parameter γ measures the small degree of 
covalency in the ionic configuration. We should mention that (10.56) 
is equivalent to the H L wavefunction including a small admixture of the 
covalent configuration. The parameter γ is called covalency parameter. 

The covalency parameter γ is. determined by the variation principle 
as follows; Inserting the explicit forms of φ1 and φ2 given in (10.52) 
and (10.53) into the H F equations (10.35) derived from the variation 
principle, one obtains the equation to determine λ and γ as follows: 

(Ν,Ν^ΚΒ, - SA,) + λ(Α, - CO - λ'(β χ - SCt)] = ^(1 - XS), 
(10.58) 

2 ( Λ ν ν 2 ) - ^ [ ( β 2 - SC2) + γ(Α2 - C2) - γ\Β2 - SA,)] = λ^Ι + y S ) , 
(10.59) 

where 

Av = (.<p\hv\<py, Β, = (Ψ\Κ\Χ>, Cv = <x\hv\x> (v = l,2). 
Then, replacing λ 0 in (10.58) and (10.59) by (10.37) and using the 
expression Nx and iV2 given in (10.57) and the relation in (10.54), one is 
led, after some lengthy algebraic manipulation, to the equations 

(B - SÀ) + X(A - C) - λ*(Β - SC) = 0, (10.60) 

(B - SC) + γ(Ά -C)- γ*(Β - SA) = 0, (10.61) 
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where 
Α = {φ\η\Ψ\ Β = {Ψ\η\χ\ c = (χ Ι h Ι Χ > , 

and 
Κ = f + <ΦΛΦυ + <ΦΑΦυ- (10.62) 

It should be noted that Eqs. (10.60) and (10.61) are not independent of 
each other because of the relation (10.54). Expressing λ in (10.60) in 
terms of γ by using (10.54), one can show that (10.60) is automatically 
satisfied if (10.61) holds. 

Neglecting the higher order small terms proportional to λ 2 and y2 in 
(10.60) and (10.61), one obtains 

_ -B + SÂ -B + SC; ( i a 6 3 ) 

A-C 7 ' A-C ' 
hence 

λ ^ y + S. 

It is important to note that h in (10.62) is the H F Hamiltonian for the 
down-spin electron in the bonding orbital φ2 . 

Problem 10.2. Prove (10.60) and (10.61) and show that these equations 
are not independent of each other. Ο 

10.4 Covalency in Ligand-Field Theory 

10.4.1 THE t2g AND eg MOLECULAR ORBITALS 

At the beginning of this chapter we mentioned that the t2g and eg 

orbitals may be regarded as molecular orbitals with given symmetries. 
The purpose of this subsection is to derive the explicit forms of the t2g 

and eg MO's in LCAO. 
First assume that the distance between the metal ion and the neigboring 

ligand is large enough so that there is essentially no overlap of the 
electron clouds of the metal ion and the ligand. In this case no electron 
is transferred between the metal ion and the ligand, and the system is 
purely ionic. Then, the t2g and eg orbitals are given in terms of the 
rf-functions of the free metal ion as given in (1.31) and (1.32). 

Now we bring the ligands closer to the metal ion keeping the octahedral 
symmetry of the system. Then, the electron clouds of the metal ion and 
of the ligands overlap and some of the electrons are transferred or 
exchanged between them. Suppose that the ligand ion has a closed-shell 
configuration (Is)2 (2s)2 (2p)6 like an F - ion when the metal and the 
ligand ions are sufficiently far apart. At such a large atomic distance, the 
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energies of electrons in the atomic Is, 2s, and 2p orbitals of the ligand are 
lower than those in the rf-orbital of the metal ion. When the electron 
transfer begins to occur at a smaller distance, the metal and ligand 
orbitals are admixed and the energies of the electrons mainly in the 
ligand orbitals are depressed and those mainly in the J-orbitals are 
raised, resulting in the decrease of the total energy of the system. The 
stabilized orbital φυ is bonding and the destabilized orbital ψα 

antibonding. The bonding orbital has mainly the ligand character with 
a small admixture of the rf-orbital, and the antibonding orbital mainly the 
rf-orbital character with a small admixture of the ligand orbital. 

In order to obtain the explicit forms of the bonding and antibonding 
MO's, we first have to construct from the ligand atomic orbitals the 
functions which are the bases of irreducible representations T2g and Eg 

of the O^-group. In doing this we can use the same method used for 
obtaining the normal coordinates of nuclear vibrations. When the ligand 
atomic orbitals are restricted to the px , py , and pz type orbitals, we can 
consider a space similar to the displacement vector space but spanned 
by basic functions pki (k = 1, 2,..., 6 ; i = x, y, z) and calculate 
transformation matrix A corresponding to that in (9.10). Since the basic 
functions of the pki

9s transform exactly in the same way as the eki

ys do, 
it immediately follows that the Alg , Eg , Tlg , 2Tlu , T2g , and T2u 

irreducible representations are obtained by reducing representation A 
and the basic functions of these irreducible representations are simply 
given by replacing unit vectors eki in the normal coordinates in 
Section 9.1.2 by the ligand atomic orbitals pki. For convenience we 
denote the ligand atomic orbitals directed toward the central metal ion 
as <pko (k — 1, 2,..., 6) whose portions at the metal ion side are always 
positive, and the other pki atomic orbitals as <pki(k = 1, 2,..., 6 ; / = x,y, z) 
whose positive directions coincide with those of the x, y, and #-axes. 
Then, from (9.42), (9.43) and (9.44) the basic functions χ of irreducible 
representations T2g and Eg are constructed as follows: 

Xua 

Χνσ 

= (12 ) - 1 /2( 2 Φ 3 Σ + 2Ψβσ 

= \{ψΐα + <Ρ*ο — <Ρ2σ ~ 

— Ψΐσ — 9V — Ψ2α — 9V)> 

Ψδσ), 
(10.64) 

Χξττ = \{<P*y — <P6y + Ψ2ζ — Ψϊ>ζ\ (10.65a) 

Χνπ = ϋψΐζ — Ψ*ζ + Ψζχ — <Ρβχ)> (10.65b) 

Χζττ = 1{<Ρΐν — <Pày + Ψ2χ — Ψδχ)' (10.65c) 

As seen in (10.64) and (10.65) the basic functions xua and χνσ of irreducible 
representation Eg are constructed from the φ Λ σ orbitals and the basic 
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functions χξΊΤ, χηπ , and χζπ of T2g from the π orbitals directing perpen­
dicular to the ^ ' s . 

Similarly, when the ligand atomic orbitals are the s orbitals, we 
consider a space spanned by basic functions cpks (k = 1, 2,..., 6) and 
calculate transformation matrix A with these bases. In this case the small 
matrix corresponding to AilJe) is a one-dimensional unit matrix, so that 
the character of representation A is simply given by NR . Comparing NR 

given in Table 9.1 with the characters in Table 1.7, one sees that A is 
reduced to irreducible representations, Alg , Eg , and Tlu . Furthermore, 
considering that the transformation properties of <pka for symmetry 
operations in the O^-group are the same as those of the <pks

9s, one can 
obtain the basic functions xus and χν8 of Eg from χηα and χνσ by replacing 
<Pko by <pks. 

Now the MO's of the system are obtained by combining <py and 
χγκ (K = s, σ, π) with the same γ as follows; 

where φν

α and ijjy

b are the antibonding and bonding MO's. For simplicity 
we denote N"tb, φ"*, ψν , and χνκ for γ = u and v as iV"'5, φ"*, <pe, 
and χκ (κ = s, σ), respectively, and those for γ = ξ, η, and ζ as Na

t

tb> 
ι /τ? , δ , ψ t and χπ , respectively. Then, to the approximation in which only 
one kind of the s orbitals (for example, 2s in F - ) and only one kind of the 
p orbitals (for example, 2p in F~) are taken into account, the antibonding 
orbitals are given as 

(10.66) 

Φ** = (Ne")-il2(9e - KXS -

Φια = Φ?Υχι\ψχ-Κχ*\ 

Κχο), 
(10.67) 

where 
NE" = 1 - 2λΑ - 2XASA + λ.» + λΛ 

(10.68) 

and the bonding orbitals are given as 

Ψ Ι = (Nb

esrM(XS + WE + γ,αχο), 

ΦΙ = (ΝΐΓ1,2(χσ + y<Pe + yASXS), (10.69b) 

(10.69a) 

φ» = (Nft-iftb. + yj>t), (10.69c) 
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where 

Nb

es = 1 + 2YsSs + γ* + 2ysYsaSa , (10.70a) 

Ni = 1 + 2γβσ + y2 + 2yoYasSs, (10.70b) 

TV? = 1 + 2y,A + y 2 . (10.70c) 

In these expressions, the following overlap integrals are used: 

Ss = <<Pe I Xs>, Sa = < 9 e I χσ\ Sn = <φ, | χπ>. (10.71) 

Assuming that λ, y, and .S"s are small quantities of the order of e (e<^ 1) 
and neglecting small quantities of higher order, one obtains the relations 

Κ ** Ys + Ss, Ασ κ γσ + Sa , λ π ^ γ π + S„ (10.72) 

from the orthogonality relations 

<Φ/ I ΨΙ> = <φβ

α I Φΐ> = <0*α I &δ> = 0. (10.73) 

From the remaining orthogonality relation 

<Φΐ I ΦΙ> = 0, (10.74) 
one obtains 

Yso + raS = ~ ( λ λ - SJSa) 0, (10.75a) 
which shows 

Yso —Yas · (10.75b) 

In the purely ionic bonding where 

Ys = Yo = Y„= 0, (10.76) 

one has the relations 

K = S89 Xa = Sai λ π = 5 π (10.77) 
and 

Yso = Yos = 0. (10.78) 

In this case the antibonding orbitals are simply the rf-functions 
orthogonalized to the ligand orbitals. 

10.4.2 CUBIC-FIELD SPLITTING PARAMETER lODq 

In the ligand-field theory the cubic-field splitting parameter, lODq, is 
introduced as the difference of the eg and t2g orbital energies. Let us first 
consider a one-electron system. Since the energy of the antibonding 
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orbital where an electron is placed is defined in Section 10.3.2 as the 
negative of the ionization energy of this electron, the energy required 
to excite one t2g electron in the t2g electron configuration to the eg orbital 
is given by the difference between the ionization energy of an eg electron 
in the eg electron configuration and that of a t2g electron in the t2g 

configuration. This, of course, is the difference of the eg and t2g orbital 
energies in the one-electron system. In this case, lODq is given by 

lODq = (φ« \η\ψ«[)- I h I (10.79) 
in which 

ί = / + 2 χ <ΨΛΦυ- Σ <Ψί\\Ρ«Φυ· (10-80) 
core core 

orbitals orbitals 

We next consider the three-electron system in which paired electrons 
are placed in the t2g orbital and an up-spin electron in the eg orbital. 
The energy required to excite the down-spin electron to the eg orbital 
is given by the difference of the ionization potential of the down-spin 
eg electron in the t2geg

2 configuration and that of the down-spin t2g 

electron in the t\geg configuration. Therefore, lODq in this case is 
given by the same expression as (10.79) with the one-electron 
Hamiltonian 

*=/+<φί\\Φυ + <Φ.\\Φ.>+2 Σ <ΦΛΦ<>- Σ < & Ι Ι Λ Α > . 
core core 

orbitals orbitals (10.81) 

which corresponds to neither hx nor h2 in (10.36) but to the H F 
Hamiltonian acting on the down-spin t2g electron which is involved in the 
excitation. 

After all, one can show that in any case the cubic-field splitting 
parameter is given by the expression (10.79) with the H F Hamiltonian 
acting on the electron involved in the excitation. This conclusion is 
intuitively understandable from the viewpoint of the MO theory. It is 
also possible to show that our expression of lODq in terms of one-
electron energies is identical to the expression 

lODq = <We\je\ Ψ6} -<Wg\je\ Ψβ), (10.82) 

in terms of the energies of a many-electron system. In (10.82) Ψ° is the 
ground state wavefunction of the iV-electron system with the t2geg

m 

(n + m = Ν) electron configuration, and Ψ6 is the excited state wave-
function with the ig^e™*1 electron configuration which is obtained by 
exciting one t2g electron to the empty eg orbital without rearranging the 
other electrons. 



10.4 Covalency in Ligand-Field Theory 267 

Now, if molecular orbitals φ6

α and ψ(

α are assumed to have the forms 
given in (10.67), the cubic-field splitting parameter can be calculated 
numerically. In what follows we will cite an example of the numerical 
calculation for ( N i F 6 ) 4 _ cluster in a K N i F 3 crystal to point out the 
importance of the convalency. For this purpose we first consider the case 
in which the overlap integrals and the covalency are zero. In this case the 
cubic-field splitting parameter which will be denoted as ^ d i a g is given by 

d̂iag = <<Pe I * I <Pe> ~ <<Pt \ * \ <Pt\ (10.83) 

with the appropriate H F Hamiltonian h. It is instructive to divide J d i a g 

into three parts: 
d̂iag = p̂oint + Δκ + Jexch · (10.84) 

Here, ^ p o i n t is the contribution obtained by shrinking the ligand-electron 
clouds into their nuclei, and treating the ligands as point charges as done 
in Section 1.1. Here Δκ is the correction applied to ^ p o i n t when the finite 
spread of the ligand electron clouds is taken into account. Therefore, this 
term represents the effect of the imperfect screening of the ligand nuclear 
charges by the ligand electrons. This term which was first discussed by 
Kleiner* is called Kleiner's correction. Here, ^ e x c h § represents the 
contribution from the exchange interaction between the rf-electron and 
the ligand electron. Therefore, it has a quantum-mechanical origin. The 
calculated values of these contributions for K N i F 3 are listed in 
Table 10.1. In the calculation use was made of the H F 3rf-wavefunction 

TABLE 10. I e 

CONTRIBUTIONS TO lODq FROM VARIOUS SOURCES 

^point 1390 cm- 1 

AK —2080 
^ e x c h —2880 

^diag —3570 cm- 1 

lODq (obs) 7250 

a S. Sugano and R. G. Shulman, Phys. Rev. 130, 517 (1963). 

of a free N i 2 + ion and the H F 2s- and 2/>-wavefunctions of a free F~ ion. 
The Is orbital of the F~ ligand is shrunk into the ligand nucleus and the 

* W. H. Kleiner, / . Chem. Phys. 20, 1784 (1952). 
§ Y. Tanabe and S. Sugano, / . Phys. Soc. Japan 11, 864 (1956). 
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Is electrons are treated as'a part of the ligand nuclear charges. As seen in 
T A B L E 10.1, the point-charge contribution gives a small value with a right 
sign, but this is canceled by the negative contributions of Δκ and ^ e x c h . 
As a result ^ d i a g is negative in qualitative disagreement with the observed 
\0Dq. Although the values in Table 10.1 are given for a specific system 
K N i F 3 , it has generally been admitted that such a qualitative disagree­
ment between the calculated ^ d i a g and the observed lODq is always found 
in any cubic system. 

The next step in the calculation of lODq is to take into account the 
effect of the nonorthogonality between the rf-orbital and the ligand 
orbitals but still neglecting the covalency. The calculation at this stage 
corresponds to the exact calculation based on the purely ionic model. 
Denoting the contribution from the nonorthogonality to lODq as 
n̂onorth > o n e m a Y divide the cubic-field-splitting parameter in the 

purely ionic model Aion into two parts: 

îon = d̂iag + n̂onorth · (10.85) 

The detailed calculation*'§ for KNiF 3 shows that the calculated value of 
n̂onorth *s m t n e range, 5000-6000 c m - 1 . Therefore, J i o n turns out to be 

~2000 c m - 1 which is much smaller than the observed lODq ~ 7000 c m - 1 . 
It is interesting to note that the negative contributions from Δκ and d e x c h 

are almost canceled by ^n o north > a n d Δίοη is close to ^ p o i n t , as was 
predicted on theoretical grounds by Phillips.^ 

In our covalent model, the unexplained part of lODq, which amount to 
~5000 c m - 1 for KNiF 3 , should be ascribed to the covalency. Denoting 
this part of lODq as AC0Y , one expects that 

lODq = z ) i o n + J c o v . (10.86) 

Actually, if one uses the convalency parameters determined by the 
experiments on the transferred hyperfine interaction (see next 
subsection), one may hope to explain the observed lODq.^ 

10.4.3 TRANSFERRED HYPERFINE INTERACTION 

Fortunately, there is an almost direct way of measuring the covalency 
in predominantly ionic complexes of transition metal ions. It is to observe 
the transferred hyperfine interaction (THFI) at the ligands. The T H F I 

* R. E. Watson and A. J. Freeman, Phys. Rev. 134, Α1526 (1964). 
§ S. Sugano and Y. Tanabe, / . Phys. Soc. Japan 20, 1155 (1965). 
IF J. C. Phillips, J. Phys. Chem. Solids 11, 226 (1959). 
* J. Hubbard, D. E. Rimmer, and F. R. A. Hopgood, Proc. Phys. Soc. (London) 88, 

13 (1966). 
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arises from the unpaired spin density in the ligand atomic orbitals which 
interacts with the magnetic moment of the ligand nucleus. Neglecting 
small contributions to the unpaired spin density from the other sources 
for simplicity, the unpaired spin density in the ligand molecular orbital 
is given as 

<Ψ\Δ*\ Ψ>, (10.87) 

where Ψ is the total wavefunction of the system. In (10.87) Δ8 is given as 
a sum of operators 8 / acting on electron i: 

Λ 8 = Σ V> (10.88) 
i 

in which, by using orbital operator ps, 8 / is defined as 

8/ = 2pt

8szi, 
<x\Ps\x> = 1, (10.89) 

<<p\Ps\x> = <x\P8\<p> = <<p\Ps\<p> = 0. 

For example, in the three-electron system described by Ψ in (10.56), 
(10.87) can be evaluated as follows: By introducing orbital φ0 which is 
orthogonal to χ, 

φ 0 = (1 - S V ^ f o - S X ) , (10.90) 

Eq. (10.56) is reexpressed as 

Ψ = ( 1 + 2γΞ + y V / 2 [ ( l + yS)\ΨΟΧΧ \ + yQ - S'f'21 ΨοΧΨο I]· (10.91) 

Then, by using the formulas given in Section 3.2.1., we can show that 

Σ j d T I w I* Δ ° I ΨΟΧΧ I = Σ / < * W 0 ) «ΛόΟ) «(i) 

+ Σ ίΛιΧ*(1)«*(1)*Λ(1)«(1) 

+ Σ Γ rfT!X*(l) β*(1) S^X(1) )8(1) 

= - S 2), (10.92) 

Σ f d r I W f t I * 4 · I 9 W o 1 = 1, (10.93) 

Σ / * I «PoXX l*^ s I W o I = ( 1 _ % ) ι μ • (10.94) 
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From these results one obtains 

(W\A'\r>= ( y + S f = - = — (10 95) 
s 1 1 ' (1 - S2)(l + 2yS + y2) 1 - 2XS + λ2 Ni ' { > 
The same result is obtained simply by using the one-electron orbital 
picture. Since orbital φ2 is occupied by both up- and down-spins, no 
unpaired spin density is found in ψ2 . Therefore, the unpaired spin 
density comes from the electron only in ψ± and it is given by 

Σ j ^ T A*(1) <l) SiVi(l) <*(1) = XWi. (10.96) 

in agreement with (10.95). 
As seen from (10.64) and (10.65), the unpaired spin densities f8 , / σ , and 

fw in the ligand atomic orbitals s> σ, and π are related to the unpaired spin 
densities in the ligand molecular orbitals as 

/.=A,»/3JV.«, / σ = χ σ ψ Ν Λ a n d fn = XJj4Nt

a. (10.97) 

Therefore, the observation of the T H F I is able to determine λ or y, 
directly. 

So far two different kinds of magnetic resonance experiments have 
been performed to measure the THFI : One is the nuclear magnetic 
resonance* (NMR) of the ligand nuclear spin and another is the electron 
spin resonance 8 (ESR) of unpaired electrons. These experiments 
determine fs and fa — f„ separately. According to the NMR experiment 
by Shulman and Knox, 

fs~ 0.5% for KMnF 3 and KNiF 3 , (10.98a) 

/ σ - Λ ~ 4 % for KNiF 3 , (10.98b) 

Λ - Λ ~ 5 % for K 2 NaCrF 6 . (10.98c) 

The observed f8 is almost explained by assuming Xs ~ Ss which shows 
that the covalent mixing of the ligand 2s orbital is small. In the ground 
state of N i 2 + ions the t2g shell is completely filled, so that no unpaired 
spin density f„ is expected. Therefore, we may conclude that fa ~ 4 % 
for KNiF 3 . In the ground state of C r 3 + ions in a strong-cubic field, the 

* R. G. Shulman and K. Knox, Phys. Rev. Letters 4, 603 (1960). R. G. Shulman, Phys. 
Rev. 121, 125 (1961). R. G. Shulman and S. Sugano, Phys. Rev. 130, 506 (1963). 

§ J. Η. E. Griffiths, J. Owen, and I. M. Ward, Proc. Roy. Soc. (London) A219, 526 
(1953). T. P. P. Hall, W. Hayes, R. W. H. Stevenson, and J. Wilkins, / . Chem. Phys. 
38, 1977 (1963); 39, 35 (1963). 
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eg orbital is empty, so that we may conclude that f„ ~ 5 % for 
K 2 NaCrF 6 . These observations clearly show that the covalent mixing 
of the ligand 2pa and 2pn orbitals are relatively large. For example, in 
KNiF 3 , the observed values of the spin densities give 

ys = 0.04, XS = 0 .12 (SS = 0.08), 
(10.99) 

7 Σ = 0.23, λσ = 0 .34 (5 σ =0.11) . 

The fact that γσ is larger than Sa emphasizes the importance of the 
covalency. It is important to point out again that we may hope to explain 
the observed cubic-field splitting parameter only when we use relatively 
large covelency parameters such as those determined by the observed 
THFI . 

Theoretically the covalency parameter (or λ) may be calculated from 
( 1 0 . 6 0 ) , ( 1 0 . 6 1 ) , or ( 1 0 . 6 3 ) . However, at the present stage such a 
theoretical calculation cannot account for the observed large covalency 
and exposed to a fundamental difficulty related to the effect of the 
electron correlation. We will discuss this problem in the last section of 
this chapter. 

10 .4 .4 ORBITAL ANGULAR MOMENTUM REDUCTION FACTORS 

As shown in Section 7 .1 .1 the diagonal matrix element of the orbital 
angular momentum in the t2g orbital and its nondiagonal matrix element 
between the eg and t2g orbitals are nonvanishing, and these matrix 
elements have been expressed by using the two orbital angular 
momentum reduction factors k and k' defined as 

<*2 II ι II *a> = V6 (ΐ2ξ ι /, ι t2Vy = V6 iky (10.100) 

<*2 II I \\*> = -VÏ <ί2ζ I /, I ev} = -2 λ/3 ik'; (10.101) 

to the J-function approximation we have k = k' = 1 . In this subsection 
we examine the effect of the covalency on k and k'. 

If the t2g and eg molecular orbitals in ( 1 0 . 6 7 ) are used, the matrix 
elements of lz in ( 1 0 . 1 0 0 ) and ( 1 0 . 1 0 1 ) are given as 

<ht I /. I t2V} = (Νΐ)-*[<φξ I /, I 9„> - λπ<Ψξ\ I, I χη> 
- Κ<χξ I /, I φ*> + λΑχ* I /. I x„>], (10.102) 

<ί2ζ I /, I ev) = {Nt«N«)-il*[(<pt I /, | <pv} 
— Κ<ψζ I h I Xsv> — Κ<ψζ I h I Xov> — Κ<Χζ I h I <Pv> 

+ ΚΚ<χζ I /, I xs*> + *A<xc I I Χσ·>]· (10.103) 
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In these expressions, it has already been shown that 

<<Pt I h I <Pv> = *> 

(10.104) 
<ψζ I h I <Pv> = 2*. 

By using the fact that the matrix of lz with real bases is Hermitian and 
purely imaginary and also using the relations 

Ιζψξ = —i<Pr> y ΙζΨτ, = i<Pe y 
(10.105) 

h<Pc = —2ίφν , Ιζφν = 2ίφζ , 
one may show that 

<ψξ I /. I Xv> = <Χξ I /. I <PV> = iS„ , (10.106a) 

<<PC I h I Xsv> = 2tS8, <Ψζ I lz I Χσυ> = 2iSa , (10.106b) 

<Xt\h\9v> =2iS„. (10.106c) 

The matrix element of lz between ^'s are calculated by expressing lz as 
follows: 

= (r X p), = [(R* + rk) X p], 
= lkz - i(Rk X Vk)z, (10.107) 

in which rfc is the electron coordinate whose origin is the kth ligand 
nuclear position, lhz == (rk X p)0 is the # component of the angular 
momentum around the kth ligand nucleus, R^ is the position vector of 
the kth ligand, and 

where î, j , and G are the unit vectors along the y-, and #-axes. By 
the relations, 

hz<Pkx = i(Pky > (10.108a) 
Ikz<Pkv = -i<Pkxy (10.108b) 
hz9kz = hz<Pk* = 0, (10.108c) 

and assuming for simplicity that any integral involving atomic orbitals of 
different ligands is zero,* the use of (10.107) gives 

<Xt I /. I *„> = *72, (10.109a) 
<χζ I /, I Xsv> = -iA, (10.109b) 
<Χζ I 4 I Xov> = -iy (10.109c) 

* This approximation is examined in detail by A. A. Misetich and R. E. Watson, Phys. 
Rev. 143, 335 (1966). 
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in which 
A = R0(<px I d/dx I φ8). (10.110)* 

In (10.110) R0 is the atomic distance between the metal ion and the 
ligand. From (10.104), (10.106), and (10.109) one finally obtains 

<h( I /. I hi) = i(Nt°)-\l - 2XJS9 + V/2) 
^ i ( l - V/2) , (10.111) 

<ί2ζ I I, I ev) = 2i{Nt«N«)-^[\ - XSSS - λ σ 5 σ - XnSn - Χπ(Χσ + AXs)/2] 
« i[2 - (V + V + V ) - λπ(λσ + ^λ,)] . (10.112) 

Comparing (10.111) and (10.112) with (10.100) and (10.101), one 
arrives at the expression of k and k' as 

* ~ 1 - \K2 

(10.113) 
*' ~ 1 - « V + λσ

2 + V ) - ΐλπ(λσ + Λλ,), 
in which the higher-order small quantities are neglected by assuming 
that the covalency parameters and the overlap integrals are small. As seen 
from the example of Section 8.4.2, these parameters appear in the 
^-values, often together with the spin-orbit coupling constant in the 
^-values of ground states. Therefore, the detailed examination of the 
^-values may provide the useful information about the covalency. 

Problem 10.3. Confirm the results in (10.109). Ο 

10.4.5 SPIN-ORBIT COUPLING CONSTANT 

In Section 7.4.1 the matrix elements of the spin-orbit interaction have 
been expressed by using two parameters ζ and ζ', defined as 

<t2 II *>(17\)|| h) = 6(t2 U I *ον(1ϊ\)Ι h bl> = 3ίί, (10.114) 

<t2 II «<1Γι)ΙΙ e) = - 3 V2 <*2 Κ I »ον(1Γι)Ι Φ> 
= -3V2îÇ; (10.115) 

to the d-function approximation one has the relation, ζ = ζ'. Here, we 
examine the effect of the covalency on these parameters. 

According to Misetich and Buch, § the spin-orbit interaction for a single 
electron in our polycentric system is approximately given as 

^ 8 0 = f0(r) I · s + Σ Ur*) h · sk (10.116) 
k 

* Here, A/R0 has been calculated by Misetich and Watson to be —0.431 for F~. 
§ Α. A. Misetich and T. Buch, J. Chem. Phys. 41, 2524 (1964). 



274 X. MOLECULAR ORBITAL AND HEITLER—LONDON THEORIES 

instead of (7.1). In (10.116) rk and 1̂  have already been introduced in 
(10.107). We assume that £0(r) and èk(r^) are extremely localized 
functions around the origins of their variables so that any integral 
involving ^(r^) and the atomic orbital localized at/(z φ j) is zero; to the 
first approximation £0(r) and £k(rk) are considered to be those for a free 
metal ion and a free ligand ion. Then, by using the explicit forms of the 
MO's given in (10.67), it is straightforward to obtain the following 
expressions for the matrix elements of the spin-orbit interaction: 

<h i f Ι«ον(ΐΓι)Ι h ¥ ù 
= (2ΛΓΛ-1 \<Ψ€ I £ 0(r) /, | Ψη> + V < * I Σ hz \ χ Λ (10.117) 

L k J 

= WNsyv* \<Ψι I W) 41 Ψν> + W x { I Σ &(»•*) 4*1 χ , Λ 
k 

(10.118) 
in which the obvious relation lkzx^ = 0 is already used. It is evident that 

<<Ρξ I fo( r) h I <PV> = iid y 
(10.119) 

<<Ρζ I £ο(Ό h I <Pv> = 2ιζα , 
where ζα is considered to the first approximation to be the spin-orbit 
coupling constant for a rf-electron in a free-transition metal ion. By using 
(10.64), (10.65), and (10.108), one may calculate the remaining matrix 
elements as 

<xe I Σ £*(r*) *** I Xv> = ¥Lv y 
k 

<Χζ I Σ &(r*) 4* I Xov> = . (10.120) 
k 

in which lLp is considered to the first approximation to be the spin-orbit 
coupling constant for a />-electron in a free ligand ion. Now, by using 
(10.119) and (10.120), (10.117) and (10.118) are expressed as 

= ϊ(2Ν,«)-\ζα + 
« M l + - r.2)] U + fVW> (10.121a) 

(h&\vJ\Tx)\e\vy 

<* + i W - y.') + i(^ 2 - y<?2) + iOV - γ/)] ζα - RAW-
(10.121b) 
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Then, comparing (10.121) with (10.114) and (10.115), one finally obtains 

ζ « [1 + ( 5 , 2 _ 2)] k + ^VÎLp, 
(10.122) 

Γ * [i + \{S2 - YS2) + i W - Ύο2) + ï(s„2
 - y . 2 ) ] U - * W l p · 

When the ligand ion is a light element such as F - , ζίρ (^220 c m - 1 for F~) 
is much smaller than ζα (~640 c m - 1 for Ni 2+) so that the terms involving 
ζΣρ are almost negligible. Then, (10.122) shows that, if the covalency 
parameters are larger than the overlap integrals, both ζ and ζ' are smaller 
than ζα . 

10.4.6 SLATER INTEGRALS 

In Section 5.3.3 we showed that the experimentally determined values 
of Slater integrals or Racah parameters appearing in the ligand-field 
theory are smaller than those of the free ions in many cases. In principle, 
it is possible to calculate these Slater integrals by using the MO's given 
in (10.67). However, such a calculation involves the evaluation of many-
center integrals, and therefore is very difficult. Any reliable calculation 
has not been done so far. The only conceivable way of explaining the 
reduction of the Slater integrals is to assume that any term involving the 
ligand orbitals is zero.* Then the reduction factor is simply given by the 
normalization factors of the MO's. Since the integrals contain four MO's, 
the reduction factor is given by {Ν6

α)~ηΙ2 X (Nt

a)-2+nl2 in which η is the 
number of the eg orbitals contained in the integral. As seen from the 
relations 

( iV/)-V2 « ι _ fa» - s*) - Ky„ 2 - 5 Λ 
(10.123) 

« 1 - fas - S/), 

the reduction could occur if the covalency parameters are larger than the 
corresponding overlap integrals. 

This type of argument was first given by Koide and Pryce. § To 
introduce the covalency effect in the analysis of the optical spectra, they 
used covalency parameter e. To our approximation, this parameter may 
be interpreted as the parameter given by 

1 - e = Nt

ajNe

a . (10.124) 

* Actually the value of each of these terms is very small. However, the number of 
these terms is very large so that this assumption cannot be justified without a detailed 
calculation. 

§ S. Koide and M. H. L. Pryce, Phil. Mag. 3, 607 (1958). 
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The values of parameter e for M n 2 + ions have been experimentally found 
in the range 0.03-0.05. 

10.5 Calculation of Covalency 

The nonempirical calculations* of the covalency parameters γσ and γπ , 
which employ (10.63), have been performed for KNiF 3 . The calculations 
use the H F 3rf-wavefunction of a free Ni 2+ ion for φ and the H F 2s- and 
2/>-wavefunctions of a free F~ ion for the ligand atomic orbitals. The 
calculated values of the covalency parameters turned out to be very small 
in disagreement with the experimental ones: 

Calc Exp 

ya 0.074 0.23 (10.125) 
γη 0.030 — 

The failure of these calculations have been ascribed to the nature of the 
approximation characteristic of the simple MO theory. This point will 
be discussed in some detail in this section. 

For this purpose we first examine the denominator of the expression 
for γ in (10.63). As shown in (10.62), h to be used for calculating A and C 
is the H F Hamiltonian for a down-spin bonding electron. Therefore, 
to the first approximation in which both the covalency parameters and 
the overlap integrals are assumed to be zero in hy A = <φ | h | φ} may 
be regarded in the problem of KNiF 3 as the energy of a down-spin 
electron in φ in the ionic configuration Ni+(F 6 ) 5 - and C — <χ | h \ χ) 
as that in χ in the ionic configuration Ni 2 + (F 6 ) 6 ~. This is clearly seen in 
the example of the three-electron system described in Section 10.3. To 
the first approximation fi in (10.62) is given as 

fto=f+<9\\9> + <x\\x\ (10.126) 

and by using (10.126), one may show that 

<<p I h I <p> — <x I ΚI x) = [<9 1/1 <P> + <w II ψφ> + <<PX II ΨΧ>] 

— [<x \f\x> + <xx II xx> + <χψ II χψ>1 (10.127) 

The three terms in the first square bracket represent the energy of a 
down-spin electron in ψ in the configuration ψ φ χ and the three terms 

* R. E. Watson and A. J. Freeman, Phys. Rev. 134, A1526 (1964). S. Sugano and 
Y. Tanabe, / . Phys. Soc. Japan 20, 1155 (1965). 
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in the second bracket that of a down-spin electron in χ in the configura­
tion ψ χ χ . Actually in the HL scheme with the excited covalent 
configuration, where the total wavefunction is assumed to be 

V = ^ i o n + y « W , (10.128) 

the denominator of the expression determining γ is given by the energy 
difference of the excited covalent configuration and the ionic configura­
tion. The excited covalent configuration is Ni + (F 6 ) 5 ~ for K N i F 3 . Since 
this H L scheme is equivalent to the MO scheme if the same φ and χ are 
used in Ψίοη and ΨΟΟΎ as shown in (10.56), the denominator Λ — C in 
our simple MO scheme may be interpreted as the energy required for 
the transfer of the down-spin ligand electron to the metal ion without 
readjustment of the distribution of the electrons. From this physical inter­
pretation of the denominator, one sees that the failure of the simple MO 
treatment would be due to the neglect of the readjustment effect in the 
electron-transferred configuration, Ni+(F 6 ) 5 _ in the case of K N i F 3 . 

Although it is very difficult to take into account the readjustment effect 
on a purely theoretical basis, the H L picture may provide us an intuitively 
reasonable way of estimating the readjustment effect. According to 
Hubbard et al.y

% the main readjustment effects are as follows: 

(i) The readjustment of the ^-electron distribution (the expansion 
of the rf-orbitals); 

(ii) The polarization of the ligand electron clouds. 

By using the observed ionization potential of a N i + ion, they have 
estimated the first effect to reduce the denominator by 0.29 a.u. and by 
using optical polarizability data of the ions in K N i F 3 the second effect to 
reduce the denominator by 0.17 a.u. Since the denominator calculated 
without taking into account the readjustment effect is 0.76 a.u., the 
denominator including the readjustment effect is now about 0.3 a.u., 
( ~ 8 eV). They also have estimated the numerator in (10.63) and found 
that the readjustment effects in the numerator are not as important as in 
the denominator. The covalency parameters thus calculated are 

ya = 0 . 2 1 5 , γπ = 0.132. (10.129) 

The calculated γσ is in fair agreement with the experimental one, 
y a (exp) = 0.23. 

* J. Hubbard, D. E. Rimmer, and F. R. A. Hopgood, Proc. Phys. Soc. (London) 88, 
13 (1966). 
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Quite recently this intuitive method of taking into account the 
readjustment or correlation effects has been criticized by Simanek et al.,% 

who have used the HL wavefunction containing two excited configura­
tions as 

Ψ = αΨ10η + bWG0Y + cW'Q0Y , (10.130) 

and applied the variation principle to determine b and c. In (10.130) 
Ψοογ is the state in which a down-spin electron is transferred to the 
empty 3rf-orbital of the metal ion without the readjustment of the 
distribution of the other electrons and If 7 ^ an excited state of ¥ /

c o v , i.e., 
it contains one-electron excitation in addition to the electron transfer. 
The correlation effect may be considered to be accounted for to some 
extent by the inclusion of Ψ'00Υ . For example, the expansion of the 
df-orbital is accounted for to some extent by the inclusion of Ψό0Υ in 
which the 3d —> 4d excitation is considered in addition to the electron 
transfer, and the polarization of the ligands by the inclusion of Ψ'οογ in 
which the 2s —>» 3p excitation is included. Solving the secular equation 
by assuming b and c to be small, they have found that the method of 
estimating the correlation effect by Hubbard, et al., is questionable. For 
example, the effect of the ligand polarization cannot be calculated by 
using the polarizability of the ligand, which measures the degree of 
mixing Ψ^0Υ into Ψοογ due to the electric-field perturbation when the life­
time of the Ψοογ state is longer than the time needed for the virtual 
electron excitation, Ψοογ —> Ψ'οογ · This time is inversely proportional to 
the energy difference ( ^ 1 0 eV) of the Ψοογ and WC0Y states. In terms of 
the time-independent perturbuation theory, the polarizability in this case 
is proportional to H,2j{E'C0Y — EC0Y) where Η' is the matrix element of 
the electric field perturbation and EC0Y and E'C0Y are the energies of the 
Ψοογ and ^ c o v states, respectively. However, in our problem in which 
Ψοογ is a virtually excited state of a short lifetime, it is shown that the 
ligand polarization responsible for the correlation effect has to be 
calculated by using a different polarizability proportional to 
H'2I(E'C0Y — Eion) where Eion is the energy of the Ψίοη state. Simanek 
and Tachiki's interpretation 8 for this fact is that if the Ψοογ state has a 
lifetime shorter than the time needed for the excitation Ψοογ — > ^ c o v > 
the polarization process cannot be fully developed. A similar argument 
may be applied to the readjustment effect of a ^-electron distribution, 
although it is uncertain if the inclusion of a single configuration ^ é o v 

* Ε. Simanek, Ζ. Sroubek, and M. Tachiki, / . Phys. Soc. Japan 22, 547 (1967). 
§ E. Simanek and M. Tachiki, Phys. Letters 21, 625 (1966). 



10.5 Calculation of Covalency 279 

with a relatively low energy is sufficient to account for this readjustment 
effect. 

So far the readjustment effects have been discussed in the HL scheme. 
However, in view of the MO theoretical nature of the ligand-field 
theory in the strong-field scheme, it is highly desirable to make efforts 
along the line to take into account the readjustment effects within the 
MO scheme in a way as simple as possible. 



Appendix I CHARACTER TABLES FOR THE 

THIRTY-TWO DOUBLE POINT-GROUPS, G 

For brevity we do not include those groups which may be obtained 
from those listed here by taking the direct product with group Ci 

consisting of two elements Ε and / . These groups are as shown in the 
tabulation. The character tables of these unlisted groups are easily 
obtained from those of listed ones by following the arguments given 
in Section 1.2.5. 

In the tables the /Vs are Bethe's notations for irreducible representa­
tions and A, By Ey T y G with appropriate suffices and primes are 
Mulliken's notations. The half-integral suffices of Ε and G for two-valued 
irreducible representations come from Herzberg's book.* In the text, 
however, we have used notations E1, E2, and G in place of E1/2 , E5/2, 
and G 3 / 2 , respectively, for group (3, and notations Ε and Â1 + A2 in 
place of E1/2 and £"3/2 , respectively, for group Dz ; These notations are 
also popular. 

* G. Herzberg, "Molecular Spectra and Molecular Structure III," Van Nostrand, 
Princeton, New Jersey, 1966. 

C 2 x C t - , 

C 4 χ d , 
C 3 x Ci , 

c 6 χ Ci , 

Τ x d , 

D2 x d , 
Bi x Ci , 

D3 x d , 
D6 x d , 
Ô x d. 

280 
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GROUP C X GROUP C< 

Ci E R I IR 

A A 

-B1/2 A 

ι ι Λ A + 

Au Α­
ι —1 

1 1 1 1 
1 1 — 1 — 1 

1 — 1 1 — 1 
1 — 1 — 1 1 

Lx y Ly , Lg 

-°l/2.0 1 2^ 
^l/2,u A~ 

1 1 1 1 
1 1 — 1 — 1 

1 — 1 1 — 1 
1 — 1 — 1 1 

Lx y Ly , Lg 

GROUPS C2 AND C8 

c 2 c 2 C2 C2R c 2 

c, c e R a aR C, 

A' A A 1 1 1 1 z, Lz 
A" Β A 1 1 - 1 - 1 X, Y,LXfLy Z y Lx y Ly 

(A 1 - 1 i —i 
£l/2 #1/2 L 1 - 1 —i i 

GROUPS D2 AND C2v 

β, R 
c 2 

C 2 JR C2'R 
el 

C[R 

C2v C2v R 
c 2 

C2R ovR ov'R 
C2v 

Ax A A 1 1 1 1 1 ζ 
Bt A 1 1 1 - 1 - 1 ZyLz 

B* A 1 1 - 1 1 - 1 yfLv XyLy 
B 2 Bs A 1 1 - 1 - 1 1 Xy Lx ytLx 

Ε1/2 A 2 - 2 0 0 0 
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GROUP C 3 

c 3 
C3 C 3 i * c 3

2 c 3

2# 

A A 1 1 1 1 1 1 

Ε 
(Α 1 1 ω 2 ω 2 — ω — ω 

xtyfLa9Lv 

(A 1 1 — ω — ω ω2 ω 2 ) 

1 - 1 ω — ω ω 2 - ω 2 

Eut 1 - 1 - ω 2 ω 2 — ω ω 

•Β3/2 1 - 1 - 1 1 1 - 1 

ω = βχρ(ίπ/3) 

GROUPS JD3 AND C 3 1 

Ε R c 3 c3* 
3 C 2 ' 3CY-R D3 Ε R 

C 3

2 i * C 3 i ? 

r Ε R c 3 c 3

2 

3σν 3σ„# R 
C9

2R C 3 i ? 
3σ„# 

A 1 1 1 1 1 1 z 

A 1 1 1 1 - 1 - 1 L, 

Λ 2 2 - 1 - 1 0 0 Xy y>LXiLv 
X> y y LX y Ly 

1 - 1 - 1 1 i —i 

* 4 / a U ) A 1 - 1 - 1 1 —i i 

Λ 2 - 2 1 - 1 0 0 

GROUPS C 4 AND St 

Ε c 4 CiR C4 

2 CfR c 4

3 CJR 

s. Ε SfR s* 

Λ A 1 1 1 1 1 1 1 1 Lz 

B A 1 1 - 1 - 1 1 1 - 1 - 1 u z 

1 1 i i — 1 - 1 —i —i ) χ ±iy ) x ±iy 
£ ! a 1 1 —i —i — 1 - 1 i i ) LX ± tLy ) Lx ± ÏLy 

1 i l ω — CO i —i ω 3 - c o 3 

Ia 1 - 1 - ω 3 ω 3 --i i — co ω 

(A 1 _ J — ω co i —i - ω 3 ω 3 

*3, 2 ^ 1 - 1 ω 3 - ω 3 --i i ω — co 

co = exp(iV/4) 
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GROUPS Dt, CAv , AND D2d 

C 4 C 4

3 C 4

2 2C 2 ' 2C 2 

<? 4

3# CV* 6 Υ # 2C 2 '# 2C 2i? 

C\v 

C 4 C 4

3 C 4

2 2σ ν 2a d 

C 4

3 iÎ C 4i* d2R 2ovR 2adR 
Civ 

D2d 

S* S** C2 2C2

f 2ad 

S^R SAR C2R 2C2

fR 2adR As* 

A1 A 
A2 A 
b1 r 3 

Β, r 4 

^ Λ 

1 1 1 1 1 1 1 
1 1 1 1 1 - 1 - 1 
1 1 - 1 - 1 1 1 - 1 
1 1 - 1 - 1 1 - 1 1 
2 2 0 0 - 2 0 0 

Z y Lg 

Xy y y LX y Ly 

ζ 
Lg 

X> y y LX y Ly 
Ζ 

xy y y Lx y Ly 

Ε3/2Γ7 

2 - 2 a/2 -VI 0 0 0 
2 - 2 -VI V2 0 0 0 

GROUPS D9, C6v , AND Dzh 

De D* 
C 2 C3 C3 2 Ce Ce5 3C 2 3C 2 

C2i? C3

2R C3R CJR C«R 3C2'R 3C2R 

C$v C$v 

^ C 2 C 3 C 3

2 C e C e

5 3σ ν 3a d 

C 2i? Cs2R C3R C6*R CeR 3avR 3odR 
Cqv 

D» A* Ε R °h ^3 "*^2' ^ 
σ Α # C 3

2 iÎ CZR S3

2R S3R 3C2'R 3ajl Art 

At' Ax A 
A2 A2 Γ2 · 
a I bx a 
a'2 b2 a 
ΈΤ E1 A 
E' E2 A 

1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 - 1 - 1 
1 1 - 1 1 1 - 1 - 1 1 - 1 
1 1 - 1 1 1 - 1 - 1 - 1 1 
2 2 - 2 - 1 - 1 1 1 0 0 
2 2 2 - 1 - 1 - 1 - 1 0 0 

Z y Lg 

\LXyLy 

Ζ 

Lz 

\LX y Ly 

L, 

Ζ 

LX ,Ly 

xty 

El/2 E1/2 A 
Eq/2 Eq/2 A 
E5/2 E5/2 A 

2 - 2 0 1 - 1 V3 -V3 0 0 
2 - 2 0 1 - 1 -V3 V3 0 0 
2 - 2 0 - 2 2 0 0 0 0 
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** 
•6 
-H 
H 

41 

KS 
•S J 
-H 41 

CO 

co 

ι—1 

1 
et ο 

3 3 
1 

3 3 
1 

3 3 

1 
7 ~ % 3 

3 1 

irt ta 
CO 

CO 

i-H 

1 
01 « 
3 3 
1 

4· 01 

3 3 
1 

3 1 *~ 7 
ta a 

3 3 

1 

ο" 
1 

04 ^« 

3 3 
1 

04 

3 3 
1 

1 1 
*3< 04 

3 3 
1 

5 "3 °3 
1 

o> 
3 3 
1 

•<JI 04 

3 3 
1 

04 

3 3 
1 

co 

υ* 1 7 7 7 
co co 
3 3 
1 

*~ 7 
co eo 
3 3 

1 

CO 

υ* 7 7 7 
co co 
3 3 

1 
7 '** 

co co 
3 3 
1 

Ο 
co 

υ 
04 * 
3 3 
1 

•tf 04 

3 3 
1 

04 « 

3 3 
1 

OJ « 

3 3 
1 

«4 

Ο 
S5 

CO 

ο 

IN *Jt 

3 3 
1 

« 04 

3 3 
1 

04 ^ 

3 3 
1 

7 7 
04 

3 3 
1 

ft! 
Ο 

1 
>* Ο) 

3 3 
1 

04 

3 3 
1 

a ta 

ι 3 7 ~ 
a ta 
3 3 

1 

Ο 7 
01 

3 3 
1 

01 
3 3 

1 

3 "3 
1 

7 f * 3 

«S 7 7 7 7 7 7 

«ο 

Ό c e c e 
0 

Ό* C »! co c 

c 
04 
co 
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GROUP Τ 

Τ Ε 
3 C 2 

3 C 2 i ? 
4 C 3 4 C 3 i * 4 C 3

8 4 C 3

2 R 

A A 1 1 1 1 1 1 1 

Ε 
(A 1 1 1 co CO ω 2 ω 2 

Ε 
I a 1 1 1 CO2 CO2 CO CO 

Τ A 3 3 - 1 0 0 0 0 x> y> z> A yLy,Lz 

El/2 A 2 - 2 0 1 - 1 1 - 1 

G3/2 Ia 
2 

2 

- 2 

- 2 

0 

0 
CO 

CO2 

— CO 
- c o 2 

CO2 

CO 
- ω 2 

— CO 

co = exp(27ri/3) 

GROUPS 0 AND Td 

0 
^ 4 C 3 4 C 3

2 3 C 4

2 3 C 4 3 C 4

3 3 C 2 ' 

4 < ? 3

2 # 4 C 3 J R 3 C 4

2 i ? 3 C 4

3 i * 3 C 4 i * 3C2'R 
Ô 

Tt 

E R 4 C 3 4 C 3

2 3 C 4

2 3S, 3 S 4

3 6 a d 

4 C 3

2 i ? 4CZR 3C4

2R 3 .S 4

3 i ? 3 . 5 4 # 6adR 

A2 Γ2 

Ε Γ 3 

A A 
A A 

1 1 1 1 1 1 1 1 

1 1 1 1 1 - 1 - 1 - 1 

2 2 - 1 - 1 2 0 0 0 

3 3 0 0 - 1 1 1 - 1 

3 3 0 0 - 1 - 1 - 1 1 

Xy y y Z y LXy Lyy Lg Lx,LyyLz 

χ, y>z 

(Ex) El/2 r e 

(Z? 2) A/2 A 
(G) G 3 / 2 Γ 8 

2 - 2 1 - 1 0 V2 - \ / 2 0 

2 - 2 1 - 1 0 -V2 V2 0 

4 - 4 - 1 1 0 0 0 0 



Appendix II TABLES OF CLEBSCH-GORDAN 

COEFFICIENTS, <Γ ι Υ ι Γ 2 γ 2 1 Γγ>, W I T H CUBIC BASES' 

A» x Aç> 

Α» χ Ε 

A2 χ Ti 

YI 72 

e2 e2 

Γ Ax 

Γ Ε 

YI γ u ν 

u 0 - 1 
e2 

V 1 0 

\ Γ τ2 

YL Y2 \ y { V Ζ 

OL 1 0 0 
e* Β 0 1 0 

Y 0 0 1 

* The C-G coefficients in Griffith's book (J. S. Griffith, "The Theory of Transition-
Metal Ions." Cambridge Univ. Press, London and New York, 1964 ) are different from 
ours only in phase. The comparison of Griffith's phase and ours is given in the book 
by J. S. Griffith, "The Irreducible Tensor Methods for Molecular Symmetry Groups." 
Prentice-Hall, Englewood Cliffs, New Jersey, 1962. 
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Clebsch-Gordan Coefficients, (Γ^Γ^γ^ I -Γκ) 

A2 X T2 

i 
«a V 

ζ 

Τι 
Où β y 

- 1 0 0 
0 - 1 0 
0 0 - 1 

Ε χ Ε 

Γ Αχ 

γ e1 

Α2 Ε 

u ν 

u 
u ν 

11VI 
0 

0 
1/V2 

- 1 / V 2 
0 

0 
11VI 

u ν ν 
0 

11VI 
-11VI 

0 
0 

11VI 
11VI 

0 

Ε χ Τ! 

\ Γ Τι 
Ύι γ α 15 y ί ν ζ 

α - 1 / 2 0 0 V5/2 0 0 
u 0 - 1 / 2 0 0 - V 3 / 2 0 

y 0 0 1 0 0 0 

Où V3/2 0 0 1/2 0 0 
ν β 0 - V 3 / 2 0 0 1/2 0 

y 0 0 0 0 0 - 1 

Ε χ Τ2 

\ Γ τ 2 

Ύι γ α β y e ν ζ 

ξ -vm 0 0 - 1 / 2 0 0 
u 0 V5/2 0 0 - 1 / 2 0 

ζ 0 0 0 0 0 1 

- 1 / 2 0 0 λ/3/2 0 0 
ν ν 0 - 1 / 2 0 0 - λ / 5 / 2 0 

ζ 0 0 1 0 0 0 
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Τχ Χ Τι 

\ Γ Αχ Ε Τχ τ 2 

Ύι y ei u ν Οί β y f 

α - Ι / λ / 3 \ 1IV6 --11VI 0 0 0 0 0 0 
α β 0 0 0 0 0 --U VI : 0 0 -11VI 

y 0 0 0 0 1/λ/2 0 0 -11VI 0 

α 0 0 0 0 0 1/V2 0 0 - 1 / V 3 

β β - 1 / \ / 3 ; 1/V6 Il V2 0 0 0 0 0 0 
y 0 : 0 0 0 0 \ -HV2 0 0 

α 0 : 0 0 0 -11VI 0 0 -11VI 0 
y β 0 0 0 11VI 0 0 ; -1/V2 0 0 

y -1 /V3 [ -21V6 0 0 0 0 0 0 0 

τχ χ Τ2 

\ Γ Α2 Ε τ 2 

Ύι y u ν α β y e ζ 

- 1 / V 3 - 1 / V 2 -UV6 0 0 0 · 0 0 0 
α 0 0 0 0 0 1/V2- 0 0 -H VI 

0 0 0 0 1/V2 0 ; ο ι/VI 0 

f 0 0 0 0 0 1/λ/3; 0 0 

β - 1 / V 3 1/V2 -HVê 0 0 0 · 0 0 0 
ζ 0 0 0 11VI 0 0 · -- Ι / λ /2 0 0 

0 0 0 0 1/λ/2 ο : 0 HV2 0 

y ν 0 0 0 1/λ/2 0 0 · 1/V2 0 0 

ζ - 1 / V 3 0 2/λ/6 0 0 0 · 0 0 0 

τ* χ τ 2 

\ Γ Ε Τχ 
Υι y u ν α β y f ζ 

i 1/V3 ; 11VI 0 0 0 • 0 0 0 
i ν 0 ; 0 0 0 0 11V2 • 0 0 H VI 

ζ 0 ; 0 0 0 -11VI 0 : 0 11VI 0 

0 · 0 0 « 0 0 -HV 2 '· 0 0 1/V2 

ν -11VI 0 0 0 : 0 0 0 

ζ 0 ; 0 0 11VI 0 0 • 11VI 0 0 

ί 0 \ 0 0 0 11VI 0 • 0 HV2 0 

ζ ν 0 · 0 0 -11VI 0 0 \llV2 0 0 

ζ 2/λ/δ 0 0 0 0 : 0 0 0 
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Appendix III W IGNER COEFFICIENTS* 

< j i m i A m i li»"> 

A general formula for calculating Wigner coefficients is given as 
follows: 

< y i w 1 ; > 2 \jm) = 8 ( 7 ^ + m2, m)(2j + l)1/2^(/i/2/) 

Χ [Ui + %)! Oi - 0". + m2V- Ut ~ 0" + »)! 0" - ™)Ψμ 

Χ X (-1)*[«! (A + / , -j - *)! 0i - « 1 - *)l (/, + « 2 - * ) ! 
Ζ 

X ( / - ;Ί + (/ - h -™2 + z)l]~\ (AIII-1) 

where 

*UJJ) = tt/i + / . - » ! (J + Λ - Λ ) ! 0" + Λ -Λ)1/(Α + Λ +J + i ) ! ] 1 / 2 

* Here we use notations 7Ί , j % , 7, and m in place of s x , s2 , 5 , and Μ, respectively. 
Wigner coefficients (JIMXJ2M2 \ jmy. are related to the 3-j symbol 

/JL J2 J \ 

\m1 m2 ml 
as 

( - (y + 1 ) , / 2 ο > ι ; > 2 ι y - * > = ( Λ * ' )· 

Numerical values of the 3-j symbol with various sets of parameters can be found in 
the book: M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr., "The 3-.; 
and 6-j Symbols." Technology Press, MIT, 1959. 
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In (AIII-1) summation parameter ζ takes on all integral values which 
make none of the factorials meaningless. Note that 0! = 1. 

Simplified formulas* for calculating Wigner coefficients with j 2 = ^, 
1, | , 2 are given as follows: 

Λ = 2 

j = m2 = \ m2 = - 1 

Jl + \ Jl + \ 
jh + m + \ 

V 2 Λ + 1 
jji - m + \ 

V 2 Λ + 1 
Jl + \ 

jji - m + \ 

V 2 Λ + 1 
jji + m + i 

V 2 Λ + 1 

w 2 = 1 

/ O'i + mX/i + m+1) 
V (2Λ+1Χ2Λ + 2 ) " 

2Λ(Λ+ΐ) 

ν ΟΊ-^)ΟΊ-^+ΐ) 
2j1(2y1 + l) 

Λ = 1 

ra2 = 0 

V Gh + Dt/'i+l) 

m 

V (/i-"*XA + m) 
Λ(2Α+ΐ) 

w 2 = — 1 

(2Λ + 1)(2Λ+2) 

V Oi-^X/i + m+l) 
2ΑΟΊ+1) 

/ (A + m+lXA + m) 
V 2Α(2Λ+1) 

* These formulas are taken from the book: E. U. Condon and G. H. Shortley, "The 
Theory of Atomic Spectra," pp. 76 and 77. Cambridge Univ. Press, London and 
New York, 1964. 
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J = m2 = § m2 = \ 

Ji-

-4-
(2 / ι +1)(2Λ+2)(2Λ+3) 

2Λ(2Λ+1)(2Λ + 3) 

3 0 Ί + « - - w + - m+1) 
( 2 Α - 1 Χ 2 Λ + 1 Χ 2 Λ + 2 ) 

(A - « - èXA - M+£)(Α - «+1) 
2λ(2Λ-1Χ2Α+1) 

3(Λ + >η+|Χ/ 1 +»«+|ΧΛ->η+|) 
(2Λ+1Χ2Α+2Χ2Λ+3) 

-(A-Sm+f). ' V 2Λ(2Λ 
/l + IW + l 

+ 1Χ2Λ+3) 

+ 1X2A+2) 

/ 3(y1+m-̂ )(yi-m-̂ )Q1-m+|) 
V 2Α(2Λ-1Χ2Α+1) 

m2 = — \ 

h-i ! 

3(/i + m + fXji - m + jXA - m+f ) 
(2Λ+1Χ2Λ+2Χ2Α + 3) 

0 \ + 3>η+§). 
M 2^(2,,+1X2/, 

l - 3 W - W ( 2 Â yj + m + J 
1Χ2/. + 1Χ2Λ + 2) 

- V 2 / i (2/ 1 - lX2y 1 + l) 

V 

V 

4 

ΟΊ - « - jX/i - w+|)ΟΊ - m + f ) 
(2yi + lX2y 1 +2X2A+3) 

3(yt + m + f ΧΛ - m - ^(jt - m+1) 
2Λ(2Λ + ΐχ2Λ + 3) 

3Q'i + m+$)ΟΊ+m+f X/ t - w - \) 
(2Λ-1Χ2Λ + 1Χ2Λ + 2) 

(A + m-IXA+m+iXy. + m+f)" 
2yi(2A-lX2y1+l) 
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Appendix IV MATRIX ELEMENTS 

OF C O U L O M B INTERACTION 

In order to satisfy the phase relation between the L- and i?-states as 
given in (4.29), the phases of the base functions for the states indicated 
below are chosen to be opposite to those in the reference cited:* 

/ 4 3 T / 4 I T / 4 17? L2 1 1 > L2 1 2 > l2 •Ly> 

ttfTJe *T2 , t2*?T2)e *T2 , t2\*Tx)e *TX , 

t2^E)e *A2 , i ^ r . y 4 Γ ι | Î 2 4 ( 3 T i ) , 4 ^ 2 β 

Accordingly, the signs of some matrix elements listed here differ from 
those in the original table.* 

When each matrix listed here is diagonalized, its eigenvalues give the 
energies of the terms of the free ion indicated in brackets above the 
corresponding matrix. 

* Y. Tanabe and S. Sugano, / . Phys. Soc. Japan 9, 766 (1954). According to such 
phase change of the base functions, we should reverse the signs of the CFP involving 
tfSr(Sr = 3 T X , , λΕ) which are tabulated in Table II of this paper. Furthermore, 
we should reverse the signs of the reduced matrix elements <ί 2

4 XAX \\ Χ(Γ)\\ £2

4.ST> 
(SΓ = 3 7 \ , *Τ2 , λΕ) which are tabulated in Table la of the paper by Y. Tanabe and 
H. Kamimura, / . Phys. Soc. Japan 13, 394 (1958). The signs of the reduced matrix 
elements of the spin-orbit interaction are corrected in Appendix VII. 
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Matrix Elements of Coulomb Interaction 

1 0 5 + 5 C ^ 6 ( 2 5 + 0 
8 5 + 4 C 

^ ( I D , *G) 
i 2

2 e2 

J5+2C - 2 V 3 B 
2C 

^ . P A *G) 
i 2

2 i2e 

5 + 2 C 2V3B 
2C 

ί 2

2 i2£ 

- 5 5 6 5 
4 5 

he ΐΓχ PG) 4 5 + 2 C 
*2e 3 T 2 - 8 5 
e 2 M 2 (*F) - 8 5 

(i) d* 

M 1 ( 1 G, 1 5 ) 
t2* e* 
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(ii) * 

2T2(a 2D, b 2Dy

 2F, 2G, 2H) 
*2 3 h^TJe t2

2?T2)e ^ O ^ ) 

5C - 3 V 3 5 - 5 V 3 5 4 5 + 2 C 2B 
- 6 5 + 3 C 3 5 - 3 V 3 5 - 3 V 3 5 

4 5 + 3 C -VÏB VÏB 
6 5 + 5 C 105 

- 2 5 + 3C 

2 7 \ ( 2 P , 2Fy

 2G, 2H) 
i 2

3 *2 2( 37\)e i 2

2 ( 1 7 ,

2 )^ ^ 2 ( 3 Λ ) t2e2(}E) 

- 6 5 + 3C - 3 5 3 5 0 - 2 V 3 5 
3C - 3 5 3 5 3 V 3 5 

- 6 5 + 3 C - 3 5 - V 3 5 
- 6 5 + 3 C 2 V 3 5 

- 2 5 + 3 C 

2E(a 2D, b 2D, 2G, 2H) 
t2

2?Aùe ί2ψΕ)β 

- 6 5 + 3 C - 6 V 2 5 -3V2B 0 
8 5 + 6C 105 \ / 3 ( 2 5 + C ) 

- 5 + 3 C 2 V 3 5 
- 8 5 + 4 C 

4 Τχ( 4 Ρ, *F) 
h\*Tx)e t2e\*A2) 

- 3 5 6 5 
- 1 2 5 

t2**A2 ( 4F) - 1 5 5 , 
t%H*Ti)e*T% (*F) - 1 5 5 , 
ί 2

2 (^ )β «4 X ( 2G) - 1 1 5 + 3 C , 
ί2ψΕ)β2Α2 ( 2F) 9 5 + 3 C , 
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(iii) & 

-15B+5C 

*Τχ(α 3 P, b 3 P, a *F, b 3Ft

 3 G, *H) 
t2VT1)e t2\*T2)e tWTJeVAJ h^^e^E) 

V6B 
- 1 L B + 4 C 

3V2B 
5V3B 

- 3 B + 6 C 

- V 2 ( 2 B + 0 
V3B 
-3B 

- B + 6 C 

2V2B 
-V3B 

-3B 
-10J3 

- 9 B + 4 C 

t2VT2)e^A2) t2e* 

0 
3B 

5VÎB 
0 

-2λ /3 £ 
- 1 L B + 4 C 

0 
V6B 

V2(B+C) 
3V2B 

-3V2B 
V6B 

-16B + 5C 

-9B + 1C 

iT^a *£>, b ID, a *G, b *G, */) 
ί 2

3 ( 2 Α > hVT2)e t2\*Tx)e\*A2) ί2ψΤ2)βψΕ) 

-3V2B 
-9B + 6C 

5V6B 
-5V3B 
3 B + 8 C 

0 
3 5 

- 3 V 3 J 5 
-9B+6C 

2V2B 
-3B 

5V3B 
-6B 

- 3 B + 6 C 

t22(1T2)e%1A1) t2ez 

-V2(2B + C) 
-3B 

-5V3B 
0 

- 1 0 B 
5 B + 8 C 

Ο 
- \ / β Β 

V2(3B + C) 
- 3 \ / 6 B 

V6B 
V6B 
1C 
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1A1(a *S, b !S, a *G, b XG, H) 
t2* ί2ψΕ)β t^AJe^AJ t%*?E)*?E) 

IOC - 1 2 V 2 B V2(4B+2C) 2V2B Ο 
6C - 1 2 5 - 6 5 Ο 

1 4 5 + 1 1 C 205 \ / 6 ( 2 5 + C ) 
- 3 5 + 6 C 2 V 6 5 

- 1 6 5 + 8 C 

Ή , b a *G, b *G, */) 
ί 2

4 i 2

3 ( 2 £)e tW^e^AÙ ttVAtWfE) t^Ey^E) 

- 9 5 + 7 C - 6 5 - V 2 ( 2 5 + C) 2 5 4 5 
- 6 5 + 6 C - 3 V 2 5 - 1 2 5 0 

5 5 + 8 C 10V2 5 - 1 0 V 2 5 
6 5 + 9 C 0 

- 3 5 + 6 C 

«•"(•Ti)* 

3T2(3Dya3Fyb3Fy

3Gy*H) 
hs(2T2)e ί,ψΤ^βψΑ,) ί,ψΤ^βψΕ) 

-9B+4C -5V3B 
- 5 5 + 6C 

V6 5 
- 3 V 2 5 

- 1 3 5 + 4 C 

V3 5 
3 5 

-2V2B 
- 9 5 + 4 C 

V6 5 
V2(35+C) 

- 6 5 
3V2 5 

- 8 5 + 5 C 

iT^F, a XG, b *G, U) 
h\2T2)e t2VT2)e*?E) t2es 

- 3 5 + 6 C 5V3B 
- 3 5 + 8 C 

3 5 
- 5 V 3 5 

- 3 5 + 6 C 

V6B 
V2(5 + C) 

-V6B 
- 1 6 5 + 7C 

3E(3Dy

 3G, 3 i ï ) 
* 2

3(M 2)e * 2

3 ( 2 £ > ί2ψΕ)βψΑ2) 

- 1 3 5 + 4 C - 4 5 0 
- 1 0 5 + 4 C - 3 V 2 5 

- 1 1 5 + 4 C 
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- 8 5 + 4 C - 1 2 5 
- 2 5 + 7 C 

t2\*E)e ί^Ε^ψΕ) 

- 1 2 5 + 6 C 6B 
- 3 5 + 6 C 

t2*(*A2)e *E (»£>) - 2 1 5 , 
t2\zTx)e^A2YT2 (*D) - 2 1 5 , 
t2\2E)e M x ( 3G) - 1 2 5 + 4 C , 

(iv) d* 

2T2(a 2 F, b 2 F, α 2G, 6 2G, 2 # , 2 / , a 2D, b 2Z), c 2D) 
t2* t2\*Tx)e t2VT2)e t2\2Tx)e\zA2) ί,ψΤ^βψΕ) 

- 2 0 5 + I O C - 3 λ/6 5 -V6B 0 -2V3 Β 
- 8 5 + 9C 3 5 - λ / 6 5 / 2 3 λ/2 5 / 2 

- 1 8 5 + 9 C - 3 λ/6 5 /2 3 a/2 5 /2 
- 1 6 5 + 8C 2 V 3 5 

- 1 2 5 + 8 C 

f 2

3 ( 2 T 2 )e 2 (Mi) ί 2

3 ( 2 Τ 2 )^ 2 ( 1 Ε) ί Λ 1 ^ ί 2

2 ( 3 Τ 1 > 3 

4 5 + 2 C 2 5 0 Ο 0 
- 3 λ/6 5 / 2 - 3 λ/6 5 /2 0 - 4 5 - C Ο 
- 5 V6 5 / 2 5 V6 5 / 2 - C O Ο 

Ο Ο - 3 λ/6 5 / 2 - V 6 5 /2 Ο 
- 1 0 V 3 5 Ο 3V2B/2 3 V 2 5 /2 - 2 V 3 5 
2 5 + 1 2 C Ο - 5 λ/6 5 / 2 - 3 λ/6 5 / 2 4 5 + 2 C 

- 6 5 + 1 0 C - 5 λ/6 5 /2 3 λ/6 5 /2 - 2 5 
- 1 8 5 + 9 C 3 5 - V 6 5 

- 8 5 + 9 C - 3 V6 5 
- 2 0 5 + 1 0 C 

zA2(a 3 F, b 3 F) 
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%ΤΧ{*Ρ, a 2 F, b 2 F, a 2G, b 2G, 2H, 2J) 
t2VT1)e t2*?T2)e tWT^AJ t^TJe^E) t2*(?T2)e\*A2) 

- 2 2 B + 9 C -3B 
-W+9C 

3V2 Β β 
-3V2 Β12 
-4B+10C 

- 3 Λ/2 Β12 
-3V2 Β12 

Ο 
- 1 2 B + 8 C 

3 V 2 Β12 
-15 V2 Β\2 

Ο 
Ο 

- 1 0 B + 1 0 C 

t2\*T2)e\*E) ί 2

2 ( 1 Τ 2 )β 3 t2VT1)e* 

3V6 Β β 
- 5 Λ/6 Β/2 

10 Λ/3 Β 
Ο 

2V3B 
- 6 B + 1 0 C 

Ο 
- 4 B - C 
3 V 2 Β/2 

- 3 Λ/2 Β/2 
15 Λ/2 Β/2 
5 Λ/6 Β/2 
- 8 B + 9 C 

- C 
Ο 

- 3 Λ/2 Β/2 
- 3 V2 Β/2 
- 3 Λ/2 Β/2 
- 3 Λ/6 Β/2 

- 3 Β 
- 2 2 B + 9 C 

2 £(α 2Ζ), 6 2£>, c 2£>, α 2G, 6 2G, 2 Η, 2 / ) 
h\%Ax)e t2VE)e / . « ( « ^ ( ^ ι ) ί 2

8 ( 2 £)* 2 ( 3 Α) t2\2E)e\*E) 

- 4 B + 1 2 C - 1 0 B 6B 6 V 3 B 6 V 2 B 
- 1 3 B + 9 C 3B - 3 V 3 B 0 

- 4 B + 1 0 C 0 0 
- 1 6 B + 8 C 2V6B 

- 1 2 B + 8C 

-2B 4 B + 2 C 
-2B-C -2B 

-3B - 6 B 
- 3 V 5 B 6 V 3 B 

0 6 V 2 B 
- 1 3 B + 9 C - 1 0 B 

- 4 B + 12C 



Matrix Elements of Coulomb Interaction 

-3B + 9C 3V2B 0 -6B-C 
- 1 2 B + 8 C -4V3B 3V2B 

-19B+SC Ο 
- 3 B + 9 C 

*A%(a*F,b*F,*I) 
t2^E)e t2*(*E)e*?E) ttfE)* 

-23B+9C -3V2B 2B-C 
- 1 2 B + 8 C -3V2B 

-23B+9C 

4 7 \ ( 4 P , 4 F, 4G) 
*2 4 ( 3 Τ > * 2

3 ( 2 T 2 )e 2 (M 2 ) t2\*Tx)e* 

-25B+6C 3V2B -C 
- 1 6 5 + 7 C -3V2B 

- 2 5 B + 6 C 

4 T 2 ( 4 P, 4G, 4 D) 
t2VT1)e t^TJe^A,) t2*(*Tx)e* 

- 1 7 P + 6 C - \ / g P - 4 P - C 
- 2 2 P + 5 C - \ / 6 £ 

- 1 7 B + 6 C 

4£( 4£>, 4 G) 
i 2

3 ( 2 £)e 2 (M 2 ) i 2

3 (M 2 ) e

2 ( 1 E) 

- 2 2 5 + 5C - 2 \ / 3 5 
- 2 1 P + 5 C 

ΐ2ψΑ2)βψΑ2) «A± (e.S) 
i 2

3 (M 2 )e 2 (M 2 ) *At ( 4G) 
« 4 Λ ) ^ ι ) 4 Λ ( 4P) 

- 3 5 P , 
- 2 5 B + 5C, 
- 1 3 5 + 7 C , 

M^ 2 .? , a 2G, b 2G, 2J) 
t2*?E)e t2\*E)e*(}E) ί2ψΑ2)βψΑ2) ί2ψΕ)β* 
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Appendix V COMPLEMENTARY STATES 

IN THE (t 2,e) SHELL 

Here, we will give the proof of (4.27). First note that, by using (4.25) 
and (4.26), Eq. (4.24) can be reexpressed as follows: 

= [i„cv]- 1 / 2 Σ ( - i ) " ' m ' Σ Σ 
^ i r i ^ a r2 M i M 2 -ViySa ' jy 

SrMy γχγ2 Mx'M2'yx'y2' 
n' ,m'(n'+m'=N) 

X ( - l ^ c w i ^ A , S2r2 : ^ T / , S.7Y) 

X <5 1 M 1 5 2 M 2 1 S M X ^ ' -M^SÎ -M2' \ S - M > 

x (ΓιΥιΓζΥΐ I Α'ΧΛ'ηΆ'η' I ΓΥ~> 

Χ Κ - ^ 4 - Λ ( ί Γ " ' £ ι ' Λ ' - M/y / ) Ψ Λ ( ^ - ' 5 2 ' Γ 2 ' - MM)], 
(AV-1) 

in which sén> m> and «β^_Η',4_™' are operators antisymmetrizing, respec­
tively, the functions in the first and second square brackets with respect 
to the exchange of electrons in each of the t2 and e shells. Operators 

m ' and sé§_n< 4 _ m ' involve normalization factors 

[ N CV ] -V2 and [10-NC^]-y\ 
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respectively. It should be remarked that 

ΨιΜ^Γ^γά Ψ^82Γ2Μ2γ2\ 

«V*i~"SiTi' -MM and WR(e*-™'S2T2' -MM 

are, respectively, the antisymmetric function of electrons 1,2,..., ri\ 
that of electrons n' + 1, n' + 2,...,N; that of electrons N+l, 
Ν + 2,..., 6 + m': and that of electrons 7 + tn',8 + m',..., 10. 

On the other hand, by using (4.16), W(t2

6e* 1A1) can also be expressed as 

y ( f a V - ^ i ) ^ 4 ^ i ) 

χ K , A ( ' 2 V A v i ) n ( i r V i 

χ Ψ ^ ( ^ 5 8 Γ 2 Μ 2 7 2 ) Ψ Λ ( ^ - ^ 2 Γ 2 -M 2 y 2 ) ] 

= [«Cn X 4 C T O ] - V 2 ^ (_1)»««(_1)*+*Η>Ί-". 

MiViMaVa 

Χ Κ . 4 ^ ( ^ ι Λ Μ ι 7 ι ) ^ 5 2 Γ 2 Μ 2 7 2 ) 

X - Ψ^Ξ,Γ, - M 2y 2)], (AV-2) 

in which stf^ 4 is the operator with η = 6 and m = 4. We should 
mention that in the third expression ^ ( ^ " ^ ι Α — M^) and 
WL(emS2r2M2Y2) are, respectively, the function of electrons, η + 1, 
w + 2,..., 6, and that of electrons, 7, 8,..., 6 + my but in the last 
expression they are, respectively, the function of electrons iV + 1, 
Ν + 2,..., 6 + m', and that of electrons, η + 1> w + 2,..., iV. 

Now, multiplying the last expressions of (AV-1) and (AV-2) by 

Ψ^ΆΓ,Μ,γ,) WL(emS2r2M2Y2) Ψ^η'Γ,' -MM 

X WR{e^S2T2' - MM, 

integrating over all the electron coordinates, and then using the 
orthogonality relations between the wavefunctions, one obtains 

a w O V i , S2r2 : S i ' / y , S2T2') = a°nm 8 ( 5 ^ ' ) 8(S2S2') 3 ( 7 ^ ' ) δ(Γ 2Γ 2 '). 
(AV-3) 
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Use of (AV-3) simplifies (AV-1) into the following form: 

n',m'(n'+m'=N) 

X ^•mi-ir'm'[K',M4'Sir1MlYl) WL{em'S2r2M2V2)} 

(AV-4) 

In deriving (AV-3), use was made of the relation, 

(S^S^Mz I SM) = ( - l ) ^ . - ^ ! - M ^ -M21 5 - M > . (AV-5) 

Now, again multiplying the last expressions of (AV-2) and (AV-4) by 

Ψ^^Γ,Μ,γ,) Ψ^Ξ2Γ2Μ2γ2) 

X -MlYJ Ψ^β^Γ, -Μ2γ2) 

and integrating over all the electron coordinates, one obtains 

< * L = 1. (AV-6) 

In deriving (AV-6) we used the relation 

10^Ν Χ N^-n X = ΙΟ̂ β Χ «Ρη X «Fm · (AV-7) 



Appendix VI TABLES OF CLEBSCH-GORDAN 

COEFFICIENTS W I T H TRIGONAL BASES, 

<Γ1Μ1Γ2/Μ2 I ΓΜ> = <ΠΜ I ^MJT^* 

At χ Ε 

At χ ΤΊ 

A2 X T2 

Γ 
M «_ 

e2 

u+ i 

0 
0 
t 

Γ 
M2 M x+ X0 

1 0 0 
e* a_ 

\ Γ 

0 
0 

1 
0 

0 
1 

M 1 M 2 \ M a+ <*o 

x+ - 1 0 0 

e2 
x_ 

XQ 

0 
0 

- 1 
0 

0 
- 1 
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Ε χ Ε 
\ Γ A, A2 E 

M e1 e* u+ u_ 

u+ 0 0 0 - 1 
u_ -HV2 -il VI 0 0 

11+ -HV2 il VI 0 0 
U- 0 0 1 0 

Ε x Τχ 
\ Γ Τχ T2 

M a+ α_ x+ XQ 

0 1/V2 0 0 il VI 0 
u+ a_ 0 0 - 1 / V 2 0 0 -il VI 

a0 1/V2 0 0 ί / \ /2 0 0 

<*+ 0 0 - 1 / V 2 0 0 il VI 
a_ - 1 / V 2 0 0 il VI 0 0 
«0 0 1/V2 0 0 -il VI 0 

£ x T2 

\ Γ Τχ τ 2 

Μχ M 2 \ . Μ α + α_ α0 χ+ χ_ χ0 

*+ 0 — Λ / 2 0 0 Ι/λ/2 0 
χ_ 0 0 ί/λ/2 0 0 - Ι / λ / 2 
XQ -HV2 0 0 11VI ο 0 

χ+ 0 0 -il VI 0 0 - Ι/λ/2 
Μ­ X- -fVV2 0 0 - Ι / λ / 2 0 0 

XQ 0 if VI 0 0 Ι/λ/2 0 

Τχ Χ Τχ 
\ Γ Α1 Ε Τχ τ 2 

Μχ M ex u+ u_ α_ * + XQ 

«+ 0 0 - 1 / V 3 0 0 0 0 λ/2/λ/3 0 
α_ Ι/λ/3 0 0 0 0 ί/λ/2 0 0 -1 /V6 

0 -Ι/Λ/3 0 • il VI 0 0 Ι/Λ/6 0 0 

Ι/λ/3 0 0 0 0 -fVV2 0 0 -1 /V6 
0 Ι/Λ/3 0 0 0 0 V2/ V3 0 0 

«0 0 0 -Ι/Λ/3 0 -ί/λ/2 0 0 1/λ/δ 0 

0 -Ι/Λ/3 0 -il VI 0 0 1/V6 0 0 
α_ 0 0 -1 /Λ /3 0 *7V2 0 · 0 1/ν^δ 0 
«0 - 1 / V 3 0 0 0 0 0 0 0 -λ/2/V3 
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Tx x T 2 

\ Γ A2 Ε Tx T2 

Mx M e2 u+ w_ a_ x+ X- XQ 

x+ ο : 0 0 V2IV3 0 0 0 0 
<*+ X- 1/V3 0 0 0 0 HVë 0 0 

XQ 0 i/V3 0 -We 0 0 •7V2 0 0 

x+ 1/V3 0 0 0 0 1/V6 0 0 -i/V2 
a_ X- 0 -i7V3 0 - V 2 / V 3 0 0 0 0 0 

XQ 0 0 -ί/λ/3 0 -HV6 0 0 -il VI 0 

X+ 0 HV3 0 - 1 / V 6 0 0 -*7V2 0 0 
X- 0 0 - / / V 3 0 - 1 / V 6 0 0 il VI 0 
XQ - 1 / V 3 • 0 0 0 0 V2 /V3 0 0 0 

T 2 χ T 2 

\ Γ AX Ε Tx T2 

Mx M ex u+ a_ x+ x_ #0 

x+ 0 0 11V3 0 0 0 0 V2IV3 0 
x+ X- - 1 / V 3 0 0 0 0 -ί / \ /2 0 0 1/V6 

XQ 0 11V3 0 -HV2 0 0 - l / \ / 6 0 0 

X+ -Il V 3 0 0 0 0 i\V2 0 0 HVê 
X- x_ 0 -H V3 0 0 0 0 - V 2 / V 3 0 0 

XQ 0 0 11V3 0 il VI 0 0 -live 0 

X+ 0 11V3 0 • HV2 0 0 - 1 / V 6 0 0 
XQ X- 0 0 1/V3 0 0 0 -HVê 0 

XQ Il V3 0 0 0 0 0 0 0 VIIV 3 



Appendix VII TABLES OF REDUCED MATRICES 

OF SPIN-ORBIT INTERACTION' 

\~d~\ <ί2 II υ(1TOH t2> = 3 « <t2 II v(l Γ0ΙΙ e> = - 3 V2i{' 

p 2 "! ^srwvdTjwtfST'y 

ST' Μχ 3 Τ 2 

ST - V 2 / V 3 
- 1 

Ι/Λ/3 
1/V2 

-Ι/λ/3 - Ι / λ / 2 
x <t,|| «<1Τι)ΙΙί.> 

<t2eSr\\ VilTJW t2eST> 

S T ' 3 7 \ 3 Τ 2 
χ Τ 2 

1/2 V3/2 1/2 Λ/2 V3 /2V2 
Λ/3/2 - 1 / 2 Λ/3/2 Λ/2 - 1 / 2 Λ/2 
- 1 / 2 V2 - Λ / 3 / 2 Λ/2 

χ τ 2 - Λ / 3 / 2 V2 1/2 Λ/2 

χ <*«ΙΙ*(1Γι)||ί2> 

* The signs of some reduced matrix elements in the original table [Y. Tanabe, Progr. 
Theor. Phys. (Kyoto), Supplement No. 14, 52-65 (I960)] are changed according to the 
phase change of the twelve wavefunctions of the t2 and t2e configurations given in the 
note of Appendix IV. Misprints found in the original table are also corrected. 
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Reduced Matrices of Spin-Orbit Interaction 309 

wsr\\V{\Tx)\\ t*s'r> 

ST' *τχ 
3 T 2 iTj 

sr 

lE 

1/V3 
- l / \ / 2 V3IV2 1/2 - V 3 / 2 
V 2 / V 3 
- 1 / 2 V3/2 

<t2eSr\\ FdTOII 

. S T ' ^ ^ 2 

ST 3Τχ - 1 / V 2 -1 /V2 
1/V2 

-1 /V2 

d* I (1) <i2

3.ST|| VdTJWtfST'} 

ST' *A2

 2E 2Τχ 2 T 2 

S T M 2 

2 # 
2Τχ 
2 T 2 

2/V3 
- V 2 / V 3 

- 1 
x < * 2 N d T i ) | | i 2 > 

-2/Λ/3 -V2IVÏ - 1 

(2) <!, W \ ) e . S r II F(l Τχ)|| t2*(S3r3) eST'} 

(a) <ί 2

2 ( 3 Τχ) e.SrH V(\ Τχ)|| i 2

2 ( 3 7 \ ) *ST'> 

S T ' 4Τχ 4 Γ 2

 2Τχ 

5 Γ 4Τχ 

2Τχ 
2 T 2 

Λ/5/3 V2 V 5 / V 6 1/3 V2 1/V6 V5/ Λ/6 -V5I3V2 1/V6 - 1 / 3 Λ/2 
- 1 / 3 V 2 - 1 / V 6 1/3 1/V3 
- Ι / Λ / 6 1/3 Λ/2 1/Λ/3 - 1 / 3 

χ <ί 2||^(1Τχ)||ί 2> 

(b) <fa»(Mi) eSr H V{\Τχ)|| ί 2

2( 3Τχ) eST> 

ST 4Τχ 4 Τ 2

 2Τχ 2 Τ 2 

sr *Ε -2V2/3 -2V2/3 - 2 / 3 - 2 / 3 χ <*21| ν(\Τχ)\\ ί2> 

-V3/2 
Χ <ί2 II φ Τ $ \ ey 

VI 

V 2 χ <ί 8 HedTJII *> 
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(c) <ί22(3Τ1) eSrH V(l TOH ί2ψΕ) eST> 
ST *Αλ

 2Α2

 2Ε 

sr 4 Τ Χ 

2 Τ 2 

• V2/3 Λ/2/3 
V2/3 - V2/3 

1/3 -1 /3 
-1 /3 1/3 

x <*2II*>(1T0IU2> 

(d) <ί 2

2 ( 3 Τ 1 ) eSr H V(l Tt)\\ ί2ψΤ2) eST> 

ST 2 7 \ 2 T 2 

Sr 4 T ! 
4 T 2 

2 T 2 

-1 /V2 1/V6 
1/V6 Ι /Λ /2 

1/2 - 1 / 2 V 3 
- l /2 \ /3 - 1 / 2 

x </.|| ϋ(17\)||ί β> 

(3) <*2e2(.s2r2) .sr h F(i roil ̂ 2(.s2r2) 5 r > 
(a) ΟζβψΑχΥΤ, H F(l 7\)|| ί,βψΑ^Τ,) = <ί21| v(l TJW t2> 

(b) <ν2(3Λ) II v(i ron / 2 e 2 ( 3 ^ 2 ) 5 r > 

ST 4 r x

 2 r x 

.sr 4 Τχ 
2 T I 

VlO/3 - 2 V 2 / 3 
2 Λ/2 /3 1/3 

χ < * 2 i k i t o i u 2 > 

(c) <t2eVE) Sr\\V(l roll ί2βψΕ) ST} 

ST 2 r x

 2 r 2 

.sr «7\ 
2 r 2 

1/2 V3/2 
V3I2 - 1 / 2 x <i,|| vdTOH it> 

(4) <i2

3.sr \\v(\ roil *2

2(.s3 A) e.s'r'> 
(a) <*2

3 2 T 2 II V(l TOI! i 2

2(M!) e 2 £ > = ( Λ/2/ V3)<i21| v(l TOII e> 

(b) <*2

3.sr u v{\roil *2

2(3ro e.s-r-> 
.s'r' 4 r x

 4 r 2

 2 r x

 2 r 2 

.sr m 2 

2 £ 

2 r 2 

Λ/10/3 
2 Λ/2/3 

-2 V2/3 

-1 /3 
-1 - Ι / Λ / 3 1/2V2 1/2V6 * < * Ι Ι * ™ · > 

1 1 / \ / 3 - 1 / 2 Λ / 2 -1/2 Λ/6 
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sr 2TX 

2 T 2 

- 1 / V 2 - 1 / V 2 
1/V6 - 1 / V 6 

x <i2ll^(lT1)lk> 

(d) (t2*sr n F(i TOW ί2ψτ2) eS'ry 

ST' 2τλ

 2τ2 

sr 2 E 

2T2 

1 
- 1 / 2 V2 V3 /2V2 x <t2 \\v(lTx)\\e> 

1/2 Λ/2 - Λ/3/2 \ /2 

(5) <i 2

2(.5iA) II ̂ (1 T^W t2e\Siri) ST'} 

s 4 A XAX 

ST' 2T2 
2 T I 

2 Τ 2 

s1r1 sr 
M x

 2E 
s1r1 sr 
M x

 2E -11 Ve 2/3 1/3 V2 1/V6 - Ι / Λ / 6 

- 1 - V 5 / 3 1/3 2 /V3 
4 T 2 - 1 / V 3 V 5 / V 3 - 1 / V 3 2/Λ/3 

- 1 / 2 V2 1/3 - 5 / 6 Λ/2 1/V6 
2T2 - 1 / 2 V6 - 1 / V 3 5/2 V6 1/V6 

*E 2AX 2/3 1/3 V2 1/V6 
2A2 

1/V6 
2E -live - 2 / 3 - 1 / 3 Λ/2 - Ι / Λ / 6 - Ι / Λ / 6 

λτ2

 2TX 1/2 V2 - 1 - 1 / 2 V2 - Ι / Λ / 2 
2T2 - V 3 / 2 V 2 -UV3 - 1 / 2 Λ/6 1/V2 

χ <ί,||ϋ(1Γ1)||«> 

(6) <t2e2(S2r2) S ΓII V(l TOW e* 2Ε> 

2Ε 
s2r2 
χΑχ 

*Α2 

sr 
2 τ 2 

2 Τ Ι 

il VI 
- 2 / Λ / 3 

HVe 
Il V! 

-11VI 

x <*2IK17\)|k> 

(c) <i 2

3 Sr II V(l TJII t2

2?E) eST')} 

ST' 2AX

 2A2

 2E 
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& I (1) <tfSr\\V{XT$WS'ir> 
ST *AX *ΤΎ 

XE 

Sr iAx 

XE 
XT2 

V2/V3 
-V2IVÏ 1 1/V3 1/V2 

- 1 / V 3 
- Ι / Λ / 2 

x <*ιΙΙ»(1Γι)ΙΙ<»> 

(2) <ί2

8(£ΊΛ) eSr H Γ(17\)|| i 2

3 ( . S 3 r a ) eSTy 

(a) < i 2

3 (M 2 ) eSr II F(l TOII i 2

3 ( 2 T 2 ) eST'} 

ST 3 Ti 3 T 2 ^ 

5 Γ δ £ 
3 £ 

V 5 / V 3 V 5 / V 3 
- 1 / V 3 - 1 / V 3 V 2 / V 3 V 2 / V 3 x <î.||w(1Ti)IIî.> 

( b ) < * 2

3 ( 2 £ ) * . S r H F(l TOII * 2

3 ( 2 Τ 2 ) e .S 'r '> 

ST' 3TI 3TZ l T i 

ST *AX 

ZA2 

m 
XAX 

XA2 

*E 

1/V3 1/V6 
- 1 / V 3 - 1 / V 6 

Ι / Λ / 3 - 1 / V 3 l / \ / 6 - 1 / V 6 
Ι /Λ/6 

1 / V 6 
-1 /V6 1/V6 

x <ί.ΙΙ«(1Τι)ΙΙ*·> 

(c) <ί 2

3 ( 2 Τ 1 ) e.ST H F(l Γχ)|| t2*(*T2) eST> 

ST *Tt

 3 T 2 ^ 

. s r 3 r x 

3 r 2 

*r 2 

- Λ / 3 / 2 1/2 - Λ / 3 / 2 Λ/2 1/2 Λ/2 
1/2 Λ/3/2 1/2 Λ/2 Λ/3/2Λ/2 

Λ/3/2 Λ/2 - 1 / 2 Λ/2 
- 1 / 2 V2 - Λ / 3 / 2 Λ/2 

χ < ί 2 ΐκ ιτο ΐ ΐ* 2 > 

(3) <i 2

2 ( .s 1 r 1 ) e 2 ( .s 2 r 2 ) . s r n v(\roil * 2

2 ( .s 3 A) e 2(.s 2r 2) sTy 

(a) <i2

2(.s1r1) e2(^x) s1r1 n F(i roil * 2

2 ( .s 3 A) ^ 4 ) s 3 r 3 > 

s 3 r 3

 3 r x i £ *r 2 

. s ' r 7 3 τ χ ^2 
.SxA . s r 

3 T i 

*E XE 
χτ2

 j r 2 

- Λ / 2 / Λ / 3 
- 1 - Ι / Λ / 3 - Ι / Λ / 2 

1/V3 
Ι /Λ /2 

χ < ί 2 « « α r o i l t 2 y 



<a ll(\Z l)<* II zi> x £ A /I £A /£A - JS* 

3 ε 3g /J/S* 

C J,S** ll(\z DA II J S ^ > (*) 

Cj,s* (*JzsWi \\(xx i)A II JSS*> te) 

<βί ll(lj;i)«llei> χ 

ΙΛΖΙ\ ΖΛΖΐίΛ- ζΧχ 
ΖΛΖΐίΛ- ΖΛΖΐϊ- τΧτ 

2 A 2 / I - 2A2/£A zli- Ζΐ£Λ Ζ Τ 

2A2/£A ZA2/ I ζΙίΛ ζΐι lXz JS 
Ζ Τ 

<,J,Ss*zi\\(lXl)A\\JSs*zl> to 

<?*\Κιχι)*\\**> χ 

2ΑΖ/£Α 2 Α 2/1 
SA 2/ϊ 2Α2/£Α-

^ 1 

9 Α / ϊ - 9Α / Ι 
9Α / ι 9Α /1 -

2Α2/£Α- 2Α2/ Ϊ -
2Α2 / Ι - 2ΑΖ/£Α 

9Α/ ΐ 
9 Α / 1 -

ζΐι-
ΖΐίΛ 

ίΛίΖΛ-

9 Α / ϊ -

9Α / Ι 
ΖΐίΛ 
ζΐι 

ίΛίΖΛ-

ίΛίΖΛ 
ίΛΙΖΛ 

τΧτ 
ζΧτ 

Ξτ zVi Ψτ 
Ξτ 

τΧζ 
τΧζ 

ιΧχ 
Ξι 

Vi 
ζΧζ 
lXe 
Ξτ 

Ξτ 

τΧ$ 

Ξτ ,J,S 
Ψτ *J*S 

JS lJlS 

<nI,S(Hx)t> (*J«S)zzt \\(lX l)A II JS (Ξτ)ζ* (lJlS)zz*> (*) 

<zl ΨΧ\)Λ\\%Ϊ> X 

9 A / t - £A/I-
2A/T £A/l 
9 Α / ί Α - ε/£Α-

9A / I 2Α / ϊ 9A/£A 
ill £A/t e/£A 

£A / I - ε/2Α 
£A/i zli ίΛζΙςΛ- ίΛίΖΛ-

£A2/£A zl£A e/oï/v 
ilzA - £Α /2Α - ε / ο ι / ν -

ζΧτ 
3 ε 

3 ι τΧζ ν , 

3ι 

τΧ$ 
3 ε 

Χτ 
zXs 
zXq τΧ ε 
τΐ̂ ε ΤΚι 

ειε 
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(g) <hVT2) eSrII V(lΓΟΙΙ ttfAJ e^SSJ ST'} 

ST' irfx 'Ε 

S Γ 3 ΙΊ -Ι/Λ/3 - 1 / Λ / 3 
Λ/2/Λ/5 1/V3 

- Ι / Λ / 3 

χ < * , il w(l β> 

(H) <I 2

3( 2RA) «SR n ν(\ROIL Ί 2

2 ( 3 ^ ) £

2 ( 5 4 R 4 ) st'> 

S±r± 1AX

 3A2 

ST 3 T a 

.ST 3 Τ Χ 1/2 V2 V5/2 - 1 / 4 - Ι / Λ / 2 
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*TX 1/4 Λ/3/2 Λ/2 - 1 / 2 
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x <ί.ΙΙ»(1Γι)ΙΙ«> 
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(7) < * . » ( 5 Ί Λ ) e\S2r2) S Γ H F(l TOII t^STy 

(a) < i 2
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= <f.a(SiA) ftSTH F d r O H ί 2
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*Ε 2rp 1 V2/V3 -1/2 λ/3 
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Appendix VIII CALCULATION OF <aSr || L || a'Sr> 

The calculations of matrix elements of the orbital angular momentum 
L9 (γ = oc(x)y β{γ), γ{ζ)) are reduced to those of reduced matrices 
(ocSr\\ L y oc'Sry by using the relation 

(ocsrMy ι L9 ι (x'ST'Myy = 8(ss') s(mm') 
x (r)-i/\otsr\\ l ii a'srxry ι ry^y), 

(AVIII-1) 

as L9 transforms like the γ base of the 7\ irreducible representation of 
the O-group. Since L is a one-electron operator, it is evident that, 
corresponding to (6.117), (6.118), and (6.119), respectively, one has the 
relations 

(t2

nemSr II L y t%-kem+kSr'} =0 for | k | > 2, (AVIII-2) 

<t2

nemSr II L H t r ^ S r } = C0<*2 II III e\ (AVIII-3) 
and 

(tf**Sr II L H t2"e™Sry = d < i a IIIII i a >. (AVIII-4) 
In (AVIII-4), we used the fact that the orbital angular momentum is 
completely quenched in the estate. In (AVIII-3) and (AVIII-4) C 0 and 
Cx are numerical coefficients depending upon the states of interest, and 
are calculated by using the explicit forms of the wavefunctions in the 
same way as was done in the case of low-symmetry fields. It is convenient 
to express <f2 II ' Il *2> a n Q l (h II ' II m terms of k and k' defined as 

<*2 II ι II t2y = V6 <t2t ι /, ι t2Vy = v s ik (aviii-5) 
323 
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and 
<t2 II III *> = - V3 (ί2ζ I lz I ev} = -2 λ/3 ik'. (AVIII-6) 

Comparing (AVIII-5) and (AVIII-6) with (7.5), one sees that k = h! = 1 
in the rf-function approximation. 

Now let us examine the reduced matrices of L in the complementary 
states. Since the matrices of L is Hermitian and purely imaginary for real 
bases, the matrix elements of L9 in the complementary states are related 
to each other as 

<i a

w (S 1 A) em(S2r2) STMy IL-y \ ζ ' ^ Τ / ) em'(S2T2') ΞΓ'Μγ') 

= <ί?Γ Λ(5 1 Γ 1 ) e*-m(S2r2) SrMy | L9 \ t\~n {S^T-^) e*-m'(S2T2') ΞΓ'Μγ') 

(n + m =n' + m' φ 5). (AVIII-7) 

Note that all the diagonal elements are zero. In deriving (AVIII-7) we 
used the fact that, if the one-electron operator is L, (4.48) should be 
replaced by 

FllrN=F^. (AVIII-8) 

This is because (4.44) is now given as 

FlPN = -<ocN+g I l9 I = (oc, I /, I «^>. (AVIII-9) 

Equation (AVIII-7) tells us that 

« em(S2r2) Sr\\ L y if tS/JY) em'(S2T2') ΞΓ') 
= < * Π ^ ι Α ) e'~m(S2r2) Sr\\ L II ί ^ ' φ ' / γ ) é~m\S2T2

f) ST'} 

(η + m = n' + m' φ 5). (AVIII-10) 

For the states of a half-filled subshell configurations, it would not be 
difficult to show by following the arguments given in Section 6.3.2 that 

(tçfSr II L II f2»Sr'> = 0 (AVIII-1 la) 

for the combinations 
Sr = 2E, 2 T X , Sr = 2T2, (AVIII-1 lb) 

and vice versa. Equation (AVIII-10) can be shown to hold even for 
n -\- m ~ n' -\- m' = 5 if η Φ 3 and η' Φ 3, and, if η = η' = 3, one has 

< f a W \ ) e%S2r2) Sr II L II e*(S2T2') Sr'} = 0 χ τ 

(AVIII-12) 
for S^, S2r2, Si Γι, and S2T2 giving μχμ2μχμ2 = — 1, etc. 



Appendix IX SYMMETRIC A N D 
ANTISYMMETRIC PRODUCT REPRESENTATIONS 

Let ψί(Γγ) (t' = 1, 2) be the γ base of irreducible representation Γ of 
group G. We consider function φ([Γ χ Γ] γγ') given by 

φ([Γ Χ Γ]γγ') = ft(ry) % ( Γ / ) + ψΑΓγ') φ2(Γγ). (ΑΙΧ-1) 

For symmetry operation R of group G, this function transforms as 
follows: 

m.r x Π Υ Υ ' ) = Σ φι(Γγι)ψ2{Γγΐ) 
v i v 2 

χ 0 $ ( Λ ) + <? ' (Λ) 

VlV 2 

= Σ ^ Χ *W) 4 f v * f v V ( * ) , (ΑΙΧ-2) 
VlV 2 

where 
# n v f v V ( # ) = Μ < ν ( ^ ) < v ' ( ^ ) + < ν ' ( Λ ) < ν ( ^ ) ] · (ΑΙΧ-3) 

Therefore, φ([Γ χ .Γ] γγ') is the base of representation ZH r x r J whose 
matrix elements are given by (AIX-3). We call ZH r X J 1] the symmetric 
product representation of D{r). 

3 2 5 
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Similarly, one can show that function ψ({Γ χ Γ} γγ') defined as 

φ({Γ Χ Γ)γγ') = Ψι(Γγ) <ρ2(Γγ') - ψ^Γγ') <ρ2(Γγ) (ΑΙΧ-4) 

is the base of representation ΖΚΓΧΓ> whose matrix elements are given by 

D®$AR) = W%(R) D$(R) - D%(R) D%(R)]. (AIX-5) 

Representation Z)^ r x r> is called the antisymmetric product representation 
of D<rK 

The characters of Z H r x r l and Z)^ r x r> are obtained as follows: 

γγ' 

y y' y 

=
 l2[x(rW + X(r\R% (AIX-6) 

and 
Xirxr)(R) = Λ - Λ * 2 ) ] · (AIX-7) 

From the relation 

x

( w ) ( t f ) = + χ { Γ χ Γ>(*), (AIX-8) 

we see that a product representation can always be decomposed into a 
symmetric and an antisymmetric representation. By using (AIX-6) and 
Table 1.7, (9.89) can easily be derived. 



SUBJECT INDEX 

A 

Absorption coefficient, 118, 230 
Accidental degeneracy, 26 
Adiabatic approximation, 213-215 
Adiabatic potential, 215 

surface 
branch point of, 248 
intersection point of, 248 

Al 2 O s , 1 
Angular behaviors of wavefunction, 16 
Angular frequency, 220 
Anharmonicity of vibration, 238, 241 
Antibonding orbital, 252, 261, 263, 264 
Atomic unit (a.u.), 13, 39 
Avogadro number, 118 

Β 

Bethe's cyrstalline-field theory, 2, 249 
Bethel notation for irreducible representa­

tions, 280 
Bohr magneton, 115, 196 
Bonding orbital, 252, 261, 263, 264 
Born-Oppenheimer aproximation, see 

Adiabatic approximation 
Breathing mode, 117 

C 

c\lm, I'm'), numerical values of, 11-13 

Character, 27 
Character table 

for Cj-group, 36 
for cubic double-group, 164 
for D 3-group, 131 
for £>4-group, 34 
for double D 3-group, 166 
for double £)4-group, 165 
for O-group, 30 
for O f t-group, 37 
for thirty-two double point groups, 

280-285 
Chromium alum, 2 
Circular polarization, left and right, 139 
Class, 20 
Clebsch-Gordan coefficient, 46-49 

with cubic base, 286-288 
with trigonal base, 305-307 

Closed-shell configuration, 86, 251 
Closure approximation, 139, 228 
Closure relationship, 232 
Complementary states, 

in t2 shell, 86 
in (f2 , e) shell, 91-93, 302-304 

Configuration interaction, 250 
Configuration mixing, 60, 83, 120 
Coulomb integral, 56, 256 
Coulomb interaction, 39 
Covalency, 262-279 

calculation of, 276-279 
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paramters, 260-262 
β, 275 
ya and γπ , 276 

Covalent bond, 254 
Covalent configuration, 254 
C r 3 + ions, gaseous, 1 
[Cr(H 20) ep+, 2 
C r 2 0 3 , 2 
Crystal-field splitting parameter, 249 
Crystal quantum number, 207 
Crystalline-field theory, 2 
Cubic field, potential energy of, 8, 127 
Cubic-field splitting, 14 

parameter lODq, 106, 265-268 
Cubic harmonics, 143, 191 
Cubic symmetry, 6 
CuSiF 6 · 6H 20, 240 

D 

^-character, 62, 249 
^-function approximation, 62, 249, 250 
J-orbital, 260 
dy orbital, 111 
de orbital, 111 
Degeneracy, accidental, 26 
Delta function, 231, 233 
Dipole strength, 230 

temperature dependence of, 230 
Dirac equation, 154 
Direct product of groups, 35 
Displacement vector space, 216 
Double group, 160-168 

cubic, 162-165 

Ε 

eg orbital, 249, 262-265 
eg shell, 38 
eg state, 14 

wavefunctions for, 15 
Effective Hamiltonian, 187-196 

for λΕ in D2 , 194 
for ^Ein £> 3, 193 
for 2Em Z>3, 194 
general, 192 

Electric-dipole moment, 113 
Electric-dipole transition, 113 

effective moments, 138-142 
parity-forbidden, 138 

Electric-quadrupole moment, 115 
Electric-quadrupole transition, 115 
Empirical values of Β and lODq, 123 
Energy level diagram, 107-111 
Energy matrices, 102-105 

for 2E, 83 
Exchange integral, 56 
Exchange potential, 256 
Extinction coefficient, 118 

F 

Fine structure, 154, 179-212 
Franck-Condon approximation, 232, 247 

G 
£-shift, 202 
g-value, 201 

calculation of, 202-204 
covalency effect, 273 
of CuSiF e · 6 H 2 0 , 240 

Gaussian shape, 119 
Generating element, 21 
Group, 20 

Ci, 35 
continuous rotation, 30 

Dlh , 37 
elements of, 20 
finite, 20 
O a , 3 6 
order of, 27 
point-, 20 

H 
Half-filled configuration, 90 
Half-width, 119 
Hamiltonian operator, 26 
Harmonic oscillator, 220, 243 
Hartree-Fock equation, 255-257 

for open shells, 257-258 
Hartree-Fock theory, see Self-consistent 

field theory 
Hartree-Fock (HF) Hamiltonian, 256 
Heitler-London theory, 249-279 
Hermite polynomial, 221 
Hermitian conjugate, 88 
Hermitian matrix, 96, 188 
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High-spin system, 112 
Hole, 86-105, 97 
Hund rule, 58 

break down of, 112 
Hydrogen atom, 6 

wavefunction, 9 
Hydrogen molecule, 254 

I 

Identity operation, 18 
Initial splitting, 207 
Inner-shell electrons, 38 
Intersystem combination, 115 
Intrasystem combination, 113 
Inverse operation, 20 
Inversion symmetry, 35 
Ionic configuration, 254 
Ionic model, purely, 250 
Ionization potential, 259 
Iron-group metal complexes, 124 
Irreducible representation, 21-26 

J 

Jahn-Teller effect 
dynamical, 241-248 
static, 235-241 

Jahn-Teller instability, 237 
Jahn-Teller motion, 241 
Jahn-Teller theorem, 235-237 

Κ 
^-electron jump, 116 
K M n F 3 , 270 
K 2 NaCrF e , 270 
KNiF 3 , 267 
Kleiner's correction, 267 
Koopman's theorem, 259 
Kramers degeneracy, 179-182, 209 
Kramers doublet, 185, 192, 236 
Kramers theorem, 181-182, 185 
Kronecker product, 44 

L 
L-state, 90 
Lagrange's undetermined multiplier, 

258 

Laplace equation, 130 
Laplace's expansion, 75 
LCAO method, 251 
LCAO MO, 251 
Legendre polynomials, 7 
Ligand, 38 
Ligand-field potentials, derivation of, 126-

135 
Ligand-field theory, 2, 249 
Linear polarization, 142 
Line width, 117 
Low-spin system, 112 

M 

Magnetic-dipole moment, 114 
Magnetic-dipole transition, 114 
Matrix element 

in complementary states, 93-102 
of Coulomb interaction, 294-301 
of one-electron operator, 77-78, 94^97 
between Slater determinants, 55-56 
of two-electron operator, 79-81, 97-102 

M n F 2 , 117, 122-123 
absorption spectrum of, 124 

Molecular orbital (MO), 251 
Molecular orbital (MO) theory, 249-279 

for open shells, 257-262 
Mulliken's notation for irreducible repre­

sentations, 280 
Multiplet, 1 

in optical spectra, 106-125 
theory of atomic, 2 

Ν 
Normal-coordinate, 221 

of XY e molecule, 223 
Normal mode of vibration, 215-222 

Ο 
Octahedral group, 20 
Odd-parity field, 113, 120 
Odd-parity potential 

of D3y 135 
of Diy 129 

One-electron jump, 120 
One-electron orbital, 249 
Operator equivalent, 168-173 
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Orbital angular momentum, 155-156, 202 
reduction factor, 271 

Orbital energy; 259-260 
Orbital function, 39 
Orbital picture, 259 
Orthogonality relation 

of first kind, 28 
of second kind, 28 
of spherical harmonics, 127 

Oscillator strength, 113, 118 
Overlap integral, 253, 265 

Ρ 

Paramagnetic resonance, see Spin resonance 
Parity, even and odd, 36 
Parity-allowed transition, 113 
Parity-forbidden transition, 113 

intensity of, 227-230 
Pauli principle, 40, 58 
Permutation operator, 257 
Perturbation method, 7, 13 
π-orbital, 264 
Point-charge model, 6 
Point-dipole model, 17 
Polar coordinates, 237 
Potential 

of axially symmetric field, 129 
of D2) 142 
of D 3 d , 133 
ofDih, 128 

Product representation 
antisymmetric, 236 
symmetric, 236 

symmetric and antisymmetric, 325-326 

R 
instate, 90 
Racah parameters, 64, 106, 275 

for free ions, 107 
Radial function, 9 

expansion of, 125 
Slater type, 106 

Reduced matrix, 143-146 
in complementary states, 152 
of orbital angular momentum, 323-324 
of spin-orbit interaction, 308-322 

Representation, 24 
bases of, 24 
degree of irreducible, 28 

double-valued, 163 
equivalent, 25 
identity, 29 
irreducible, 25 
product, 43, 44 
reducible, 25 
single-valued, 164 
unitary, 28 

Resonance integral, 252 
Rotation 

in coordinate space, 17, 160-162 
in spin space, 160-162 

Rotation-inversion, 217 
Rotational operation, 17 
Ruby, 1 

absorption spectrum of, 118 
multiplets in, 117-122 
iUines, 178, 185 
Stark effect of, 212 
Zeeman effect of, 200, 204 

Rutile structure, 112 

S 

s-orbital, 264 
Sapphire, white, 1 
Schrôdinger equation, time-dependent, 179 
Schrôdinger-type equation, 258 
Selection rule, 205 

configuration, 116 
parity, 113 
spin, 116 

Self-consistent field (SCF) theory, 251, 255 
Shur's lemma, 27 
σ-orbital, 264 
Slater-Condon parameters, 64 
Slater determinant, 38, 40 
Slater integrals, 62, 64, 275 
Small determinant, 75 
Spectral line shape, 230-235, 247-248 
Spectral shape function, 231 
Spherical harmonics, 7 

addition theorem for, 7 
Spin-coordinate, 39 
Spin density, unpaired, 249, 269 
Spin-forbidden transition, 116 
Spin function, 39 
Spin Hamiltonian, 187 

for D2, 190 
for A*, 191 
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Spin-only value, 201 
Spin-orbital, 39 
Spin-orbit coupling constant, 273 
Spin-orbit interaction, 154-178 

in complementary states, 175 
operator equivalent of, 172 
reduced matrix of, 308-322 

Spin-orbit splitting, 156-160, 171 
first order, 172 

Spin resonance, 204-208, 240 
Splitting of t2g and eg , 62 
Stark effect, linear, 209-212 
Stark shift, 211 
Stark splitting, pseudo, 212 
Stark term, 209 
Strong-field scheme, 249-250 
Subgroup, 31 

Symmetry operations, 17-21 

Τ 
t2a molecular orbital, 262-265 
t2g orbital, 249 
t2g shell, 38 
t2g state, 14 

wavefunctions for, 15 
Tensor operators 

irreducible, 142 
irreducible spin, 191 

Term, 1, 40, 42 
Term energy, 1, 54 

of Cr3+ ion, 1 
of e2, 59 
of * 2

2, 56 
of i 2

3 , 81-82 
of t2e, 59 

Term shift, 135-138 
Term splitting, 135-138 
Tetragonal splitting, 136, 146 
Time-reversal, 179 

degeneracy, 182 
invariance, 189 
operator, 94, 161, 179-181 
pair states, 182 
Wigner's, 180 

T-P equivalence, 156 

Trace, 27 
Transferred hyperfine interaction (THFI), 

268-271 
Transformation 

of function, 21 
of points, 18 
similarity, 25 

Transition moment operator, effective, 205 
Transposed matrix, 88 
Trigonal bases, 132, 133 
Trigonal field, 118 
Trigonal invariant, 198, 210 
Trigonal splitting, 137 
Tsuchida's spectrochemical series, 125 
Two-electron integrals, 62, 64 

U 

Unitary matrix, 87 
Unitary transformation, 15 

V 

Variation principle, 256 

W 
Wavefunctions 

of e2

y 53 
of * 2

2, 53 
of i 2

3 , 66-71 
of t2e, 54 
of t2

2e, 72 
of t2

nem, 71-76 
two-electron, 43-54 

Weak-field scheme, 249-250 
Wigner coefficient, 49-50, 289-293 
Wigner-Eckart theorem, 142-149, 145, 169 
Wigner's time-reversal, 180 

Ζ 
Zeeman effect, 196-208 
Zeeman pattern, 178, 204-208 
Zeeman splitting, 196 
Zeeman term, 196 
Zero-point vibration, 114, 213 
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