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Preface

The purpose of this book is to introduce graduate students as well
as research physicists, chemists, and electronic engineers to the essence
of the theory of multiplets of transition-metal ions in crystals, more
simply known as ligand field theory. The reader is assumed to be
familiar with the fundamentals of quantum mechanics and, in particular,
with the theory of atomic spectra. This book may be used as a textbook
for a full-year course for graduate students.

Much effort has been made to present the material simply and clearly
without a sacrifice of depth. For clearness illustrative examples are
always given for each topic. The book is written in a self-sustaining
form; consequently it contains only a minimum number of references.
The reader who wants to know individual works related to the theory
and its application should refer to the books cited at the end of the
Introduction.

Throughout this book the formulation is based on the strong field
scheme, and no use will be found of the weak field scheme. The exclusive
use of one of the two schemes has been based on the hope that it would.
increase the readability of the book. A further discussion of this choice
will be found in the Introduction.

In order to keep a suitable balance among the chapters, several
important topics have been omitted which should properly be discussed
in Chapter IX. They include the broadening and shift of zero-phonon
lines, and effects of tunneling between Jahn-Teller distortions.

It is our great pleasure to express sincere thanks to Professor Masao
Kotani for guiding us to this field. We are also indebted to Professors
C. J. Ballhausen, C. K. Jorgensen, J. de Heer, and P. O. D. Offenhartz
for criticism and comments on the manuscript, and to Drs. R. G.
Shulman, J. H. Gallagher, and P. M. Maas for helpful discussions.
One of the authors (S. S.) is grateful to the National Science Foundation
for providing him with the opportunity of preparing the preliminary
manuscript at the University of Colorado.

Finally we should like to thank Miss E. Hidaka for her typing of
the manuscript and the staff of Academic Press for their cooperation.
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INTRODUCTION

It is well known that the spectral lines of atoms having many electrons
are classified into multiplets which are assigned to transitions between
terms. Each term that consists of almost degenerate discrete energy
levels is specified by SL. Here we are speaking of the case in which the
spin-orbit interaction is relatively small. For example, the lower terms
of a Cr3* ion, which has three electrons outside the closed shell, are
known as follows:

Term
Terms energies (cm™1)

iF 0

ap ~14,200
2p ~14,200
G ~15,200
2D ~20,400
:H ~21,200
F ~36,700

These terms are the quantum states in which three outer-shell electrons
are accommodated in the 34 atomic orbitals. Energy separation of these
terms are due to the Coulomb interaction between these outer-shell
electrons. Optical transitions between these terms are seen in gaseous
Cr3+ ions.

When a Cr3+ ion is incorporated as an impurity in a white sapphire,
an Al,Og crystal, the crystal exhibits a beautiful red or pink color. The
absorption spectrum of this crystal called ruby, in the visible spectral
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2 INTRODUCTION

region, is illustrated in Fig. 5.9 on p. 118. Inorganic complex salts in-
volving, for example, [Cr(H,0)4]>* molecular ions and antiferromagnetic
crystals Cr,O; also show qualitatively similar absorption spectra in the
visible region. As naturally expected, these absorption spectra in crystals
are quite different from the spectrum of gaseous Cr3+ ions.

However, in the past ten years, it has been established that the spectral
lines and bands in the insulating crystals involving d-electrons, such as
those described above, are also classified into multiplets which are
assigned to transitions between terms. The terms in this case have been
found to be the quantum states in which d-electrons are accommodated
in some orbitals relatively localized around the transition-metal elements.
Naturally, this theory for the crystal spectra is similar to the theory of
atomic multiplets, but it differs from it in that atoms in crystals do not
have spherical symmetry but approximately cubic or tetrahedral sym-
metry in many cases, because of their surroundings. This difference
brings a new aspect to the theory of multiplets. We call this theory of
crystal multiplets ligand field theory.

The original form of the ligand field theory can be found in the
crystalline field theory developed by Bethe,* in 1929. This theory deals
with the splitting of the atomic multiplets by the electric field arising
from regularly distributed charges and electric dipoles of the sur-
roundings, and can be shown to be equivalent to the ligand field theory
to some approximation. Therefore, some people, mainly solid state
physicists use the term, crystalline field theory, in place of the ligand
field theory. Strictly speaking, the ligand field theory is more general
than the crystalline field theory; this point will be discussed in detail in
Chapter X.

Although the origin of the ligand field theory is very old, it is only in
recent years that the importance of the theory has been fully recognized.
This was achieved by successful applications of the theory to the inter-
pretation of such optical spectra as those mentioned above as well as to
the interpretation of microwave absorption spectra and paramagnetic
susceptibilities in paramagnetic crystals.

Historically, it was Finkelstein and Van Vleck® who first applied the
crystalline field theory to interpreting optical spectra of paramagnetic
crystals involving d-electrons. They studied the absorption lines of a
chromium alum crystal located at 6700 A, which correspond to the
R lines of ruby, and concluded that the excited states responsible to these
lines are Stark split components, Kramers doublets, of the ®G term of a

* H. Bethe, Ann. Physik 3, 133 (1929).
§ R. Finkelstein and J. H. Van Vleck, J. Chem. Phys. 8, 790 (1940).



Introduction 3

free Cr3+ ion. This conclusion is in agreement with the result of recent
detailed studies by the use of the ligand field theory.

In 1951, Hartmann, Schlaefer, and Ilse* published a series of papers
in which they discussed the origin of broad absorption bands observed
in inorganic metal complexes. By using the crystalline field theory, they
concluded that these absorption bands were due to the transitions
between the crystalline-field split components of the lowest term of the
central metal ion, and showed that the number of broad absorption
peaks near the visible region could be explained by their theory, at least
when the central metal ion has no more than five d-electrons.

Since 1954 much work has been done on the optical spectra of
d-electron systems. Through this work, the ligand field theory has become
very successful in explaining both the absorption lines and bands
observed in many kinds of metal complexes and insulators involving
d-electrons. The most successful example of the application of the ligand
field theory is the analysis of the optical spectrum of ruby (see Chapter V).
It has recently been found that the theory is even applicable to those
excited states of ruby whose excitation energies are as high as
45,000 cm1. It has also been shown that the accuracy of the theory is
generally comparable to that of the theory of atomic multiplets.

In the ligand field theory there are two schemes, the strong-field
scheme and the weak-field scheme, which will be explained in detail
in Chapter X. In this book we exclusively use the strong-field scheme
for the following reasons: (1) The strong-field scheme, taking no account
of the configuration interaction, yields a good first~order approximation
for the problems of d-electrons in crystals. (2) There is a strong similarity
of the concepts between the strong-field scheme and the theory of
atomic multiplets. The latter smoothly goes to the former if one-electron
atomic orbitals are replaced by one-electron molecular orbitals. From
Chapter I through Chapter IV the derivation of terms and the calculation
of term energies in the d¥-electron systems in a cubic field are fully
discussed on simple theoretical bases. The results obtained in these
chapters are compared with experiments in Chapter V in order to show
to what extent the theory is successful.

From Chapter I through Chapter V, no account is taken of the spin-
orbit interaction and low-symmetry fields arising from a small distortion
of a cubic system. These interactions split terms in a cubic field, resulting
in fine structures of the multiplets. Fine structures of multiplets in
crystals, including additional splittings induced by external pertur-

* H.Hartmann and H. L. Schlaefer, Z. Phys. 197,115 (1951). F.E.Ilse and H. Hartmann,

Z. Phys. 197, 239 (1951). H. Hartmann and H. L. Schlaefer, Z. Naturforsch. 6a, 751,
760 (1951).



4 INTRODUCTION

bations, such as an external magnetic field and an electric field, attract
the interest of laser engineers as well as that of solid-state spectroscopists.
Chapter VI through Chapter VIII are devoted to the theory of fine
structures of the multiplets, Zeeman effects, and linear Stark effects
in crystals.

Up to this point in the book, the nuclear framework in crystals is
assumed to be rigid. However, in actual problems, it vibrates even at
0°K, and the interaction of electrons with the nuclear vibration brings
important effects on the multiplets. In particular, in degenerate electronic
states, the interaction induces static and dynamic Jahn-Teller effects.
Fundamental problems relating to such an interaction shall be dealt
with in Chapter IX.

Finally, Chapter X is devoted to the elucidation of the physical
picture of the ligand field theory. This starts with theoretical efforts
to explain from the first principle the values of physical parameters
appearing in the ligand field theory, such as a cubic-field splitting para-
meter, Coulomb interaction parameters, spin-orbit interaction para-
meter, and so forth. It is shown that the traditional picture of the
crystalline field theory introduced by Bethe is no longer applicable.
Instead, covalency or virtual electron transfer between a metal ion and
ligands, which is neglected in Bethe’s model, plays an important role
in producing ligand fields, and so forth. We might be able to mention
that, although applications of the ligand field theory have been very
successful, the physical model of the theory has not been firmly estab-
lished. For expanding the area to which the ligand field theory can be
applied, it is necessary to establish a rigid physical basis of the theory.

For reading the present text, the following books would be helpful
as general references:

Ballhausen, C. J., “Introduction to Ligand Field Theory.” McGraw-Hill, New York,
1962. Recommended as a reference book for beginners.

Condon, E. U. and Shortley, G. H., “The Theory of Atomic Spectra.”” Cambridge
Univ. Press, London and New York, 1957.

Di Bartolo, B., “Optical Interactions in Solids.”” Wiley, New York, 1968.

Griffith, J. S., “The Theory of Transition-Metal Ions.” Cambridge Univ. Press, London
and New York, 1964. Recommended as a reference book for detailed studies.

Hamermesh, M., “Group Theory and Its Application to Physical Problems.” Addison-
Wesley, Reading, Massachusetts, 1962.

Jorgensen, C. K., “Absorption Spectra and Chemical Bonding in Complexes.” Pergamon,
Oxford, 1962.
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McClure, D. S., “Electronic Spectra of Molecules and Ions in Crystals, Part II, Solid
State Physics” (F. Seitz and D. Turnbull, eds.), Vol. 9, p. 399. Academic Press,
New York, 1959.

Orgel, L. E., “An Introduction to Transition-Metal Chemistry.” Methuen (Wiley),
London 1960.

Watanabe, H., “Operator Methods in Ligand Field Theory.” Prentice-Hall, Englewood
Cliffs, New Jersey, 1966.

Wigner, E. P., “Group Theory and Its Application to the Quantum Mechanics of Atomic
Spectra.” Academic Press, New York, 1959.



Chapter | SINGLE d-ELECTRON
IN A LIGAND FIELD

1.1 Single d-Electron in a Cubic Field

In this section we consider a hydrogen atom surrounded by six point-
charges, —Ze, as indicated in Fig. 1.1. Here Z > O for the negative
charge and Z << 0 for the positive charge. The distance between the
hydrogen atom and each point-charge is a, so that the system has
cubic symmetry. In this case, in addition to the Coulomb field due to

Fic. 1.1. Hydrogen atom surrounded by six
point-charges; O, symmetry. ®, —Ze point
charge. O, hydrogen atom.

the hydrogen nucleus, the electron of the hydrogen atom is exposed to
the field due to the point-charges. The potential energy ¥V, of the electron
due to the field of the point-charges is given as

ViR =3 ZeY| R, —r], (L.1)

#=1



1.1 Single d-Electron in a Cubic Field 7

where r is the electron coordinate and R; is the position vector of the
ith point-charge. Then, the Schrodinger equation for the electron in this
system is

[—(#2m) 4 4 U(r) + V()] (r) = ep(r), (1.2)

where U(r) is the potential energy due to the field of the hydrogen
nucleus, ¢(r) the wavefunction, and ¢ the energy eigenvalue.

In what follows, the perturbation method will be used to solve (1.2)
by assuming V, to be a small perturbation on a free hydrogen atom.
For this purpose, it is convenient to expand ¥, in terms of Legendre
polynomials as follows:

V) =26 Y 3 () Piloos o) (13)

in which 7 _ is the lesser and 7 the greater of @ and 7, and w, is the angle
between vectors R, and r. When a is much larger than the radius of the
hydrogen atom, we may replace, to a good approximation, r_ and r_
in (1.3) by a and r, respectively, and obtain

Vr) = Ze? Z’ i a=Y(rja)P;(cos w)). (1.4)

Furthermore, the addition theorem for spherical harmonics shows

Py(cos w;) = [4n](2k + 1)] Y YVin(69)Yiu(Bips), (1.5)

m=—k

where Yy, (6¢)’s are the spherical harmonics, and (r, 0, ¢) and (a, 0;, ¢;)
are the polar coordinates of r and R;, respectively. Here, Y %.(0,9,) is
the complex conjugate of Y,,.(0,9;) and is equal to (—1)"Y,_, (6,p,).
From (1.5) and (1.4), V, is given as a function of the electron coordinate r
as follows:

© &
Vi) =Y Y rgnCi(byp), (1.6)
k=0 m=—k
where
47 12 7,2 8
Tem = (Zk +1 ) ak+1 Z.l Yim(Bips), (1.7)
and

CW09) = (grot) | Vom0 (18)



8 1. SINGLE d-ELECTRON IN A LIGAND FIELD

Since (0y9,), (8295),... are known to be

59 G-

respectively, the g, ’s are given as

9ro = (ﬁ)l/z :?;;iil [@ko(o) + 464, (127") + @ko(ﬂ')]: (1.9a)
o= () (5 0 () 4 9

+ exp (z' 37;” )] (m : even # 0), (1.9b)
G, =0 (m : odd), (1.9¢)

in which @,,, is defined by
Yim(0p) = (2m) 71120 (0)e’ ™. (1.10)

The explicit forms of @,,,’s are given in Table 1.1. By inserting the
explicit forms of @, into (1.9 a—c), the explicit form of ¥V (r) is obtained
from (1.9 a—c) and (1.6) as follows:

6Ze? 7Ze? 5\1/2
Vi == S gcg‘*’(oq;) +(5) " [C209) + cﬁ*i(o¢)]$
3Ze? T\1/2
+ 22 cPee) — (3) " 1C2(69) + C6RN|
+ - (1.11)

The first term in (1.11) represents the potential energy of the electron
located at the position of the hydrogen nucleus and elevates all the
energy levels of the hydrogen atom by the same amount, 6Ze?/a. The
other terms split some of the degenerate energy levels as shown later.
The field giving rise to the potential energy whose angular dependence
is given as (1.11) is called a cubic field. This angular dependence is due
to the geometrical arrangement of the point charges as shown in Fig. 1.1.

Before discussing the details of the perturbation calculation, let us
calculate the matrix elements of V, which are necessary in the following
arguments and estimate the order of magnitudes of their values. Since
the first term of V, which is independent of the electron coordinate
appears in all the diagonal matrix elements, to make the following
arguments simple we leave out the first term of V, and shift the origin
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TABLE 1.1

Expricit ForMs oF @,,(6)

o wm (DA —mhE dar
61.(6) = (—1) (——2(1 )l ) ¢ —( cos B Py(cos 6),
6, _(0) = (—1)" 8,,(0), m>0
640 1/\/5
6y, (\/ g/\/ 5) cos 6
6,4, %2(\/5/2) sin 6
840 (V512 V'2)(2 cos? § — sin? 6)
6,1, ?(\/1—5/2) cos # sin ¢
[ (V'15/4) sin? 8
(O (\/5/2 \/E)(Z cos® § — 3 cos 6 sin? §)
0,4, ?(\/5/4 \/5) sin 0(4 cos? § — sin? )
(O (\/ 1755/4) cos § sin2 6
51 F(V35/4v/2) sin® ¢
Ouo (3/8 V/2)(8 cost 8 — 24 cos? 8 sin? § +- 3 sint )
O4sy F(3v/5/4v/2) cos 0 sin 8(4 cos? § — 3 sin? §)
0,1, (3 V/5/8) sin® 6(6 cos? § — sin? §)
B,ss F@3 \/3/4 \/5) cos 0 sin® @
0,4, (3 V/35/16) sint ¢

of the energy by 6Ze?/a. Therefore, in what follows, we shall deal with
V2 given by
Vo =V, — (6Z¢a). (1.12)

Denote the hydrogen wavefunction as
Prum(r) = Ru(7)Y 1r(bp)- (1.13)

The matrix element of V2 between the states with quantum numbers
(nlm) and (n'l'm’) is given by

{Praml V| Purvrm?y = f dr (P:Zm(r) Vco(l') (Pn'z'm’(r)' (1'14)



10 I. SINGLE d-ELECTRON IN A LIGAND FIELD

For calculating (1.14), it is necessary to evaluate the integrals of the
following type:

Hl'm', I'm") = f dp d9sin 8 Y,,(6p) CP(0p) Yirm(Bp).  (1.15)

Integration over ¢ directly indicates that (1.15) is nonvanishing only
when
m=m —m' (1.16)

Then c¥(Im, I'm’) can be calculated by using the explicit forms of &,,’s;
their values are tabulated in Table 1.2. It should be noted that c*(lm, I'm")
is nonvanishing only when

k4141 = even, 1.17)
and
M-l <k<I41. (1.18)

Relation (1.18) tells us that the matrix elements of V.2 between the
p-states are vanishing, resulting in the absence of the cubic field splitting
of the p-levels. Equation (1.18) also shows that, in calculating the matrix
elements of ¥V, ? between the d-states, the terms proportional to r*
(k > 4) in V, give a vanishing contribution.

‘Now let us calculate the matrix elements in (1.14) with z = »’ and
I = 1" = 2. The calculation is straightforward and the nonvanishing
matrix elements are given as follows:

{Praza | Voo | Pratey = Dy, (1.19a)
{Praz1 | V® | Prazry = —4Dg, (1.19b)
{Pnao | Ve | @raoy = 6Dg, (1.19¢)
<‘Pnd:t2 l Vco { ‘Pnd‘F2> = 5D9, (l‘lgd)

where
D = 35Z¢%/4ab, (1.20)
g = (2/105)X7*>a , (1.21)

and

g = [ dr 177 | Ryl (1.22)

It should be remarked that D in (1.20) depends upon the point-charges,
and that ¢ in (1.21) reflects the properties of the electron of the central
atom. The physical meaning of D may easily be understood if V.0 is
reexpressed in the form

VO = Dt + yt + 58— §A) 4 oo (1.23)
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TABLE 1.2
NumericaL VALUES® OF c*(im, I'm’) = (—1)""™c*('m’, lm) ror Il < 3,1’ < 3
Il ! m wm|k= 3 5
1+ = odd
s p 0 +1 —1)V3
0 o0 +1/v3
s f 0 43 —1
0 —
+2 +1 x 11v7
0 +1 -
0 o0 +1
p d +1 42 Vs +v3
+1 41 +V/3 -3
41 0 -1 +3v2
0 +2 0 +v15 -
- Px1V15 Z 0 x1/7
0 +1 _v3 (Y —2vs[” s
0 o0 +2 +3v3
+1 F2 0 +3V'5
+1 TFI1 0 -v30
d f +2 43 —V15 +v10 -1
+2 42 +v'5 -2v5 +v/5
42 +1 -1 +2v6 _‘/E
+2 0 0 —2V5 +V/35
41 43 0 +5 —\/7~
+1 42 —v10 —V15 +2v6
+1 +1 +2v2 +v2 -5v2
+1 0 V3 +v2 +4v'5
0 =+3 0 — 45 -2v7
0 2 o x1/v/35 0 x1/3v/35 3T x 1/6v/254
0 +1 -6 -3 -3v/10
0 0 +3 +4 +10
+2 T3 0 0 —v/210
+2 F2 0 0 +3v14
+2 F1 0 +v10 -v70
+1 T3 0 0 -2v21
+1 T2 0 +5 +4v/7
+1 F1 0 -V15 —/105

¢ Unlisted ones are zero.
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TABLE 1.2 (continued)

1V m m E=0 2 4

‘1 + 1 = even

s s 0 0 +1

s d 0 +2 +1
0 +1 -1 x1/V'5
0 o0 +1

p p +1 %I +1 -1
+1 0 0 +v3

x1/5

0 o0 +1 +2
+1 F1 0 -V

p F 1 3 +3V/5, -1
+1 +2 —v30 +v3
+1  +1 +3v2 RV
+1 0 —3 +v10
0 +3 0 -7
0 +2 +vV15yx1/5V7 +2v3 Sx1/3v21
0 +1 —2v'6 -v15
0 o +3v3 +4
+1 F3 0 —2v7
+1 F2 0 +v21
+1 F1 +v3 —V1s

d d +2 +2 +1 -2 +1
+2  +1 0 +v6 -5
+2 0 0 -2 +V15
+1 +1 +1 +1 —4
+1 0 0 +1 x 1/7 +v30 Y x1j21
0 o +1 +2 +6
+2 F2 0 0 +v70
+2 F1 0 0 —V35
+1 F1 0 -6 -2v10
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TABLE 1.2 (continued)

IV m m k=0 2 4 6
I+ 1" = even
ff £3 £3| +1 -5 +3 -5
+3 42 0 +5 —v30 +5v7
+3 41 0o —v10 +3v'6 ~10v'7
+3 0 0 0 —3v'7 +10v/21
+2 42| +1 0 -7 +30
+2  +1 0 +V15 +4v2 —5v/105
+2 0 0 —2vs -3 +20v/14
+1 41| +1  +3 +1 ~75
+1 0 0 4vz (XU Lyt X33 asyig (X 1AB
0 0| +1 +4 +6 +100
+3 F3 0 0 0 —10v/231
+3 F2 0 0 0 +5vV/462
+3 FI 0 0 +vaz —5v/210
+2 T2 0 0 +v70 +30v14
+2 F1 0 0 -v14 —15v/42
+1 F1 0 -2V -2v/10 —10v/105

The values of the matrix elements in (1.19) are of the order of magnitude
of Ze?(r*),4/a®, which is ~10~2 atomic unit (~0.027 eV) when Z = 1,
{r*>,s = 1 au, and @ = 4 au. This value is much smaller than the energy
separation, ~0.6 eV, between the levels with » = 3 and 4 of the
hydrogen atom. This justifies the perturbation calculation within the
3d-states neglecting the nondiagonal elements between the n = 3 and 4
states. It should, however, be noted that this argument on the values of
the matrix elements and the energy separation of the energy levels of
the central atom are valid only in our model problem. In the real problems
of 3d-electrons in insulating crystals, the quantities corresponding to
the matrix elements of ¥ ® and the energy separation between the
n = 3 and 4 states are much larger than those discussed here.

Problem 1.1. Derive (1.23). O

Now, according to the perturbation theory, the perturbed energies
of the 3d-level of the hydrogen atom due to the presence of the point-
charges are given by solving the secular equation,
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&’ + Dg—«¢ 0 0 0 5Dq
0 &' —4Dg— € 0 0 0
0 0 &' + 6Dg— ¢ 0 0 =0,
0 0 0 & —4Dg - € 0
5Dq 0 0 0 &+ Dg—el (1.24)
where
&° = €; + (6Z¢%[a), (1.25)

and e, is the energy of the 3d-state of the hydrogen atom. The bases of
the secular matrix for (1.24) are arranged in the order, m = 2, 1, 0, —1,
—2. As easily seen, (1.24) splits into three one-dimensional and one
two-dimensional determinantal equations and the energy eigenvalues
are obtained as

eV = & + 6Dg, (1.25a)

€? = & — 4Dqg, (1.25b)

where eV and '® are, respectively, doubly and triply degenerate. It is
customary to call the states with energies €' and ', the ¢, and t,, states,
respectively, and to denote €1 € as ¢(e,) and e(t,,), respectively. The
reason why these notations are used will be explained later. ‘The result
given in (1.25) shows that, by the effect of the point-charges, the 3d-level
of the hydrogen atom, which has fivefold degeneracy, is split into doubly

j— € (eg)
,I

1

; 6Dq
! Fic. 1.2. Splitting of the 3d-level of a
" —*- hydrogen atom in a cubic field.

0

2 i

y

&/ I \
—_—3 ; . 4Dq

Z € (tyg)

and triply degenerate levels as indicated in Fig. 1.2. The magnitude of
the splitting is given as

e(e;) — e(ty;) = 10Dgq. (1.26)

That the center-of-mass of the energy levels does not change by the
effect of V2 can be seen from (1.25) as

H2e(e,) + 3e(tar)] = <. (1.27)
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Diagonalizing the secular matrix, we can also obtain the wavefunctions
associated with the split levels as follows:

P340 » (P3az + Psa—2)/ V2, for the ¢,-state,

P3d1 » P3d-1 > (P3az — P3a-2)/ \/Z for the t,,-state.

The functions for the t,,-state are not real, but can be made real by
applying a unitary transformation within the subspace belonging to the
t,,~state: Any unitary transformation within a degenerate subspace does
not change any physical situation. Let the unitary transformation be
defined as

qu = Z quUi‘y ; (1-28)
where @,’s are
P1 = Pza1 > P2 = Pza-1 Pz = (‘P:mz - 9’3d—2)/ \/5 (1-29)

By using the unitary transformation matrix,

2 1
V2 V2
u=|i 1 .l (1.30)
V2 V2
0 0 —i
real wavefunctions for the ¢,,-state are obtained as follows:
P = (i/V2)@sm + Pra1) = (15/4m) /2 sin 6 cos 6§ sin @ Ry(7)
= (15/4=)1/% yz[r?) Ry (1), (1.31a)
@y = —(1/V2)(Paar — Paa1) = (15/4m) /2 sin 8 cos 6 cos ¢ Ryq(r)
= (15/4n)/2(zx/r) Ryglr), (1.31b)
¢ = —(i/V2)Psaz — Paa—s) = (15/4m)}/2 sin? § cos @ sin @ Ry (r)
= (15/4m)1/%(xy[r%) Ry(r). (1.31¢)

Similarly, the wavefunctions obtained in (1.28) for the e,-state may be
written as follows:

Pu = Paap = (5/16m)!/%3 cos® § — 1) Ry(r)
= (5/16m)'2[(32% — 7#)[r*] Ry(r), (1.32a)

Pv = (Paaz + Paa—s)/ V2 = (15/16m)1/2 sin? § cos 2 Ryy(r)
= (15/16m) 2[(x* — y)[r] Roy(r).  (1.32b)
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For intuitive discussions, it is useful to know the behaviors of these
wavefunctions in real space. The most convenient way of illustrating
the wavefunctions is to fix the value of r and plot the angular dependence
of the wavefunctions representing their magnitude at angle (6p) by a
radial length. This method is particularly useful to know the angular
behaviors of the wavefunctions. The wavefunctions obtained in (1.31)
and (1.32) are illustrated in Fig. 1.3 by using this method. From Fig. 1.3

¢

()
N

u Fic. 1.3. Angular behaviors of wavefunc-

tions, ¢, ¢, , P7, Pu, and ¢, .

%
N

S
IN
A P e
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W
C/

it is clear that ¢, , ¢, , ¢, have the same energy, whereas it is not why ¢,
and ¢, do. However, if one makes linear combinations of ¢, and ¢, as

oW — 3/2_3% _ %% o« 2t — (1.33b)

it is clear from Fig. 1.4 that ¢, , ™, and ¢{¥’ have the same energy. Note
that ¢, and ¢{*' are linearly independent. This tells us that the ¢, and
@, are the functions of a degenerate state. Since ¢, and ¢, extend toward

Fic. 1.4. Angular behaviors of wavefunc-
tions, @y, %, and oM.

the point-charges while ¢;, ¢,, and ¢, avoid them, it can easily be
understood that the energy of the e -state is higher than that of the
t,,-state if the point-charges are negative (Z > 0).
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In this section we have used notations #,, and ¢, for the states in a
cubic field. The meaning of these notations will be explained in the next
section in the light of the group theory. Although the wavefunctions of
the Z,,- and ¢;-states have been given in terms of the d-functions of the
hydrogen atom, a more general interpretation of these wavefunctions
will also be given in the next section.

Problem 1.2. Show that D in (1.19) is given by
D = 175de/4a®

when six point-dipoles with dipole moment d pointing outward (the
positive poles are outside) are placed at the places of the point-
charges. O

Problem 1.3. By using the perturbation method, calculate the splitting
of the 4f-level of the hydrogen atom in the cubic field due to the point-
charges. Also obtain the wavefunctions associated with the split
levels. &

1.2 Group Theoretical Preliminaries

In this section it will be shown that, considering the symmetry of the
system alone, we can predict the qualitative nature of the splitting of the
energy level and the angular behavior of the wavefunctions, which were
discussed in the previous section by the use of a particular model.

1.2.1 SymMETRY OPERATIONS IN O-GROUP

Let us again consider the system of a hydrogen atom surrounded by
six point-charges as shown in Fig. 1.1. Suppose that this system is
rotated around the x, ¥, and 2 axes by angles 27/4, 47/4, and 67/4. The
rotated system is identical to the original one, as all the point-charges
are identical. We call these rotations symmetry operations, and denote,
for example, the rotations around the z-axis by 2#/4, 4n/4, and 67/4 as
Cy(2), C4¥(2), and C3(2), respectively. Here, the direction of the rotation
is defined as the same as that of a right-hand screw which is progressing
toward the positive direction of the rotation axis. Note that for Cy(%)
the positive direction of rotation axis is the negative direction of the
z-axis. It is clear that successive operation Cy(z) Cy(2) leads to C.%(z).
The x, y, and 2 axes are called fourfold symmetry (or rotation) axes.
There are nine symmetry operations of this type. Furthermore, the
following rotational operations are also symmetry operations:
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C;, C,2: rotations around the [111], [T11], [1T1], and [111] axes by
angles 27/3 and 4«/3. We denote, for example, the rotation around the
[111] axis by 27/3 and 4#/3 as Cy(xyZ) and C3%(xyZ), respectively. There
are eight symmetry operations of this type.

C, : rotations around the [110], [110], [101], [101], [011], and [01T]
axes by angle 7. We denote, for example, the rotation around the [011]
axis by = as C,(y%). There are six symmetry operations of this type.

After all, by including the identity operation £ which does not move
the system, twenty-four symmetry operations have been found in our
system. However, it should be remarked that there are other kinds of
symmetry operations which leave our system invariant. They are those
involving inversion with respect to the center of the system. For the
moment we will ignore these symmetry operations, which will be taken
into account in a later part of this section.

By symmetry operation R, a point P whose coordinate is r(xyz) is
transformed to P’ whose coordinate is r'(x'y’z’). This transformation
is simply expressed as

r' = Rr. (1.34)

For example, for R = Cy(2) it is seen from Fig. 1.1 that &’ = —y,

y' = x, and 2’ = 2. From the result of the C,(2) transformation of

point P, rotation C,(2) may be represented by
x—> —y

Cyz) = |:y—> x] (1.35)

22— 2

One of other methods of representing the rotational operations of our
system, which favors our geometrical intuition more than (1.35), is
to indicate how the six point-charges are transformed by the symmetry
operations. For example, by rotation C,(2) point-charge 1 goes to the
position of point-charge 2, 2 to that of 4, 4 to that of 5, 5 to that of 1,
3 to that of 3, and 6 to that of 6. Denoting such transformation simply as
333859, which indicates that the point-charge with the upper
number goes to the position of the point-charge with the number

indicated just below, we may also represent rotation Cy(2) as

123456
ce)=(, 43571 e (1.36)

We shall use this method of representing the symmetry operations for
a little while.
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By using the representations as given in (1.36), one can confirm that
an aggregate of our twenty-four symmetry operations satisfies the fol-
lowing four conditions:

(1) A product of two arbitrary operations within the aggregate is
also an operation within the aggregate. The product R,R, means the
successive operation of R, after operation R; . For example,

1234564123456
CCi=(s 51354 a3s1e
123456
=( 31 56 4= Cilowd: @37

It should be noted that the operations do not commute with each other
as shown by an example,

1 2345623456
COCN=(, 535 16ls 21354
123456 _
(65231 5= G®
# Cy(9)Cu(#). (1.38)

(2) Let R,, R,, and R; be operations within the aggregate. Then,
they satisfy (R;R,) R; = R,(R,R;). For example, when R, = C,(y),
R, = Cy(2), and R; = C,(2), using (1.37), we have

[CA3)CNCu(2) = C3(xy2)Cy()

=6 315edbiss1
:(; § ? 2 ; Z)=Cz(zx), (1.39)

and
CiNICLNC(2)] = C3)Cs*(2)

R EEEIERRES
R EES PO

(3) 'There is an identity operation E which satisfies RE = ER = R
for any operation R within the aggregate.
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(4) There is an inverse operation R-! within the aggregate which
satisfies RR™! = R-IR = E for each operation R within the aggregate.
For example, Cy(2)! = C3(2).

The aggregate of operations which satisfies the above-mentioned four
conditions is called a group, and the operations are called the elements
of the group. If the number of elements are finite as the present example,
the group is called a finite group. Furthermore, if all the symmetry
operations belonging to a finite group keep a lattice point unmoved,
the group is called a point-group. Thirty-two point-groups have been
known to exist. The group to which our twenty-four symmetry operations
belong is one of the point-groups called O-group, octahedral group.

The twenty-four symmetry operations of the O-group can further be
classified into five classes, in each of which symmetry operations are the
rotations around equivalent axes by the same angle. Here, the equivalent
axes are those which are transformed to each other by the symmetry
operations of the O-group: for example, the «, ¥, and 2 axes are equiv-
alent. The classification is shown in the tabulation. Operation Cé(x)

Classes Symmetry operations
E E
CA C4(x), C4( y), C4(z),
Ci¥(x), Ci¥(), C¥(2)
042 Ci¥(x), Ci¥(), Co(2)
08 CS(xyz), Ca(‘fyz): Cs(xf’z): Ca(xyﬁ),
Cs™(xyz), Cs¥(Zyz), Cs¥(az), Cy*(xys)
Cz Cuxy), Co(yz), Caf2x),

Cu(®y), Co(52), Cy(2x).

is identical to Cy(%), and the #-axis is equivalent to the x-axis. Therefore,
Ci¥(x) and C,(x) belong to the same class. A similar argument can be
applied to Cy(xyz) and Cg¥(xyz).

In order to define the class in a more general way, let us consider two
rotational operations C(7) and C(j) around the equivalent 7 and j axes,
respectively, by the same angle, and assume that the axis 7 is transformed
into j by symmetry operation R in the same group. Then, the following
relation may be proved:

RC()R = C(j). (1.41)
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For example, the x-axis is transformed to the y-axis by C,(2) and

CiB)Cy(x)Cy(x)™

“bissidhsseedsiisgd
:(é ; ? g 2 2)204@- (1.42)

Equation (1.41) defines the transformation of operations: we say that
operation C(z) is transformed to C(j) by R. With this terminology, the
definition of the class may be stated as follows: The class is an aggregate
of the elements of a group which are transformed to each other by
appropriate elements of the group.

Finally it is worth pointing out that all the elements of a group may be
generated from a smaller number of elements of the group. In our
O-group, one can show that successive operations of two elements
Cy(=) and Cy(y) generate all of the twenty-four elements. The generation
of Cy(xyz), Cy(¥yz), and Cy(zx) from C,y(z) and C,(y) has been already
shown in (1.37), (1.38), and (1.39), respectively. The elements whose
successive operations generate all the elements of a group are called
generating elements. In general, there are many ways of choosing the
generating elements.

1.2.2 IRREDUCIBLE REPRESENTATIONS

Let us first consider the transformation of function f(r) by symmetry
operation R. The function may be considered to represent an electron
distribution. Therefore, the transformation of a function may be inter-
preted as that of an electron distribution. For example, for f(r) = «
the electron distribution may be illustrated as in Fig. 1.5. When

I —alr)=Cl2atr)=y
AY

A}
]
i
i

1

I

/f(')=x

Fic. 1.5. Transformation of function

f(r) = x. 7 \\‘
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operation C,(2) is applied, the electron distribution is transformed to
that indicated by the broken curve which is represented by g(r) = y.
Therefore, we express this transformation as C,(z) x = y. Similarly
Cyz)y = —x and Cy(2) 2 = z. With respect to the transformation of
functions x, y, and 2, therefore, rotation C,(z) may be represented as

x — ¥
Cylz) = [y—» —x] . (1.43)
funct

2 —> =2

The subscript “funct” indicates that the symmetry operation in this
case operates on the functions x, ¥, and z instead of the coordinates.
If we regard the transformation in (1.43) as the point transformation
such as (1.35), the representation is just that of C,(2)~1. This relationship
is not accidental, and the reason is explained as follows: Let the electron
distribution corresponding to f(r) be indicated by the solid contour and
the transformed one by the broken contour as indicated in Fig. 1.6.

Fic. 1.6. Transformation of function f(r).
—f(r)

Point P on the solid contour is transformed to point P’ on the broken
one by the transformation. From Fig. 1.6, it is immediately seen that

Rf(r") = f(r). (1.44)
Since r' = Rr, (1.44) is reexpressed as
Rf(r) = f(R'r), (1.45)

which explains the relation between the representations (1.43) and
(1.35).

As seen in (1.31a), ¢, is proportional to yz which may be considered
to be the product of functions y and z. Therefore,

Cy(2)pe = —(15/4m )1 22x Ry 4(r)/r* (1.46a)
= —@y.
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Similarly,
C4(2‘)<p,, = Q¢>
Cy(R)pr = —o¢, (1.46b)
C4(2‘)(pu = Py >
C4(z)‘Pv = TPy

Considering vector @(g;, ¢n, 9r> Pu» P») in a five-dimensional space,
we may express these transformation in the following compact form:

Cy(3) = [pepnprpups] - D(Cy(?)), (1.47)
where
0 1 0
—1 0 0
oy =|. 0 0 (1.48)
0 1 0
0 —1

With respect to functions x, v, and z, rotation C,(y) is represented as

X —> —X
Ciy) = [y—> y ] . (1.49)
&= X leynet
Therefore,
Co(¥)pe = 915 (1.50a)
Ca(¥)pn = —n) (1.50b)
ClP)ps = —o¢ (1.50c)
1 3
Ci0)pu = —5Pu + —2{ Po> (1.50d)
3 1
Coy)ps = %— Put 3P0 (1.50e)
which gives
p— 0 ____1 —
0 —1 0
1 0
DGO = T L s (1.51)
2 2
Vi1
L 2 2
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It is straightforward to derive the relation,

D(Cy(¥)Cy(2)) = D(Cy(xyz))

-0 0 1 - .
100 : 0
010
= 1 V3
) T2
0 _
- V3 _1
L ) 2
= D(Cy(y)) - D(Cy(z))- (1.52)

In general, for any elements R; and R, of the O-group, we can show
D(R,R;) = D(R,) - D(R,). (1.53)

In this case the aggregate of matrices D(R)’s is called representation D
of the O-group. The representation has a concrete form, namely
matrices in the present case, in contrast to the rather abstract nature
of the group. Equations (1.35), (1.36), and (1.43) are also some represen-
tations of the O-group. In representation D, ¢, , ¢, , ¢;, ¢, , and ¢, are
called the bases of the representation.

It is noticed in (1.48) and (1.51) that D(Cy(2)) and D(C,(y)) have a

characteristic form,

...... En.” , (1.54)

where the matrix elements indicated by X are not zero in general. More
generally, D(R) for any element R of the O-group can be shown
to have the form (1.54), as Cy(2) and C,(¥) are the generating elements
of the O-group and D(R) for any R may be obtained from (1.48) and
(1.51) by using (1.53). In this case, representation D may be reduced to
two representations of smaller dimensions,

D = D' 4 p® (1.55)
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by taking ¢, , ¢, , and ¢, as the bases of D‘T2 and ¢, and ¢, as those of
D'®), These two sets of the bases are never admixed by the symmetry
operations of the O-group. It is obvious that both D72 and D'® are
the representations of the O-group. The representation which may be
reduced to the representations of smaller dimensions is called a
reducible representation.

However, it should be noted that, even if representation matrices with
some bases do not have forms like (1.54), the representation could be
a reducible one. In order to see this, we have to introduce the concept
of equivalent representations. Let T be an arbitrary matrix with the
same dimension as that of representation D of a group. We assume
det 7' 5= 0. Then, we can show that the aggregate of matrices D'(R)
given for all the elements R of the group by

D'(R) = TD(R)T-! (1.56)
is also a representation of the group, as

D'(R,)D'(R,) = TD(R,)T-"TD(R,)T-!
= TD(R,)D(R,)T
— TD(R,R,)T-!
— D'(R,R,). (1.57)

Representations D and D’ are called equivalent representations. Trans-
formation (1.56) is called a similarity transformation. If a representa-
tion matrix can be brought into a form like (1.54) by a similarity
transformation, the representation is a reducible one. The represen-
tations which are not reducible are called srreducible representations.
Representations D72 and D'® can be shown to be irreducible repre-
sentations.

Problem 1.4. Construct the five-dimensional representation of the
O-group with bases @g4,, (m = 2,1, 0, —1, —2) and reduce it.

In this subsection, we have shown that the #,, and e, wavefunctions are
the bases of irreducible representations D{T2) and D'®), respectively. In
general, the wavefunctions of a state can be the bases of an irreducible
representation of the group whose symmetry operations leave the system
invariant. In order to show this, let us consider the Schrédinger equation
for a system

Hopr = pr - (1'58)
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If the system is invariant to symmetry operations R of group G, the
Hamiltonian operator is invariant when it is transformed by R;

RA#R = #. (1.59)
Operating R on (1.58) from the left, we obtain

R#p, = RA#R 'Ry,
= Ry, = Ry, . (1.60)

Equation (1.60) means that, if ¢, is an eigenfunction with energy
eigenvalue ¢ , then Ry, is also the eigenfunction with the same eigen-
value ¢, . When state k is degenerate in g-fold, Rg,; should, in general,
be given by a linear combination of the wavefunctions ¢,; ( = 1, 2,..., g)
of the degenerate state:

g
Rei; = Y. 9uDP(R), (1.61)
i=1

where the D{¥'(R)’s are numerical coefficients. Equation (1.61) immedi-
ately means that matrix D®®)(R), appearing in (1.61), is the representation
for R with bases ¢;; (i = 1, 2,..., g). Besides the case of accidental
degeneracy in state &, there is no reason to restrict the summation in (1.6)
to particular g;;’s among the g wavefunctions of the degenerate state, so
that D% is an irreducible representation of group G.

Problem 1.5. Derive the irreducible representations for C,(z) and
Cy(y) of the O-group with bases ¢, , ¢, , and ¢, of the p-state.

Problem 1.6. Confirm the irreducible representations given in the
tabulation. O

Bases E Cy(=) Ci(2) Cy(xy=z) Caxy)
1 V3
[1 o] [1 o] [1 o] 2 72 [1 o]
Pus Po 0 1 0 -1 0 1 vi 1 0 -1
2 2
100 01 0 1 0 0 0 0 1 0 -1
Pes P> Pt [0 1 0] [—1 0 o] [0—1 o] {1 0 o] [—1 0 0
0 0 1 0 0-1 0 0 1 01 0 00 1
100 0-1 0 1 0 0 0 0 1 01 0
Pes Pys P [o 1 o] [1 0 o} [0—1 0] [1 0 o] [1 0 o]
0 0 1 0 0 1 00 1 01 0 0 0-1
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1.2.3 CHARACTERS OF REPRESENTATIONS

In the previous subsection, it was shown that the wavefuntions of an
eigenstate were the bases of an irreducible representation of the symmetry
group whose symmetry operations leave the system invariant. Con-
versely speaking, the eigenstate may be characterized by the irreducible
representations whose bases are the wavefunction of the state. Then,
questions arise, concerning how many kinds of irreducible represen-
tations we can have for a group and how each kind of irreducible
representations is characterized. The latter question arises because there
are many equivalent irreducible representations. We have to seek a
quantity which is invariant to a similarity transformation (1.56). This
quantity can be shown to be the diagonal sum (trace) of the representation
matrix, as

2 Dl R) = 3, TruD i RYT )y
m

mnl

= Z Dlﬂ(R) Z (T—l)anml

=Y Dy(R) 8, =Y Dyu(R). (1.62)

Hereafter, the diagonal sum of the kth irreducible representation
D®)(R) will be written as

x?(R) =Y. DB (R), (1.63)

and will be called the character of the kth irreducible representation
D) for operation R. Since symmetry operations belonging to the same
class are related to each other by transformation (1.41), the character of
the irreducible representation is the same for all the symmetry operations
in the same class. Therefore, the character would better be considered
to be given for a class rather than for each element.

Now returning to the first question, let us consider the number of the
inequivalent irreducible representations appearing in a group. For this
purpose, we first give the orthogonality relation for the matrix elements
of irreducible representations D and D');

o h
. DR (R) DE(R) = =845 850 801 » (1.64)
R o«

which may be proved by use of Shur’s lemmas. The proof of (1.64) will
be left to any standard textbook of the group theory. In (1.64) 4 is the
number of elements in the group (called order of the group), and 7, is the
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dimension of irreducible representation D® (called degree of the kth
irreducible representation). Putting p = ¢ and » = s and summing over
p and 7 in (1.64), we obtain

Y xR PR = k. (1.652)

Since for finite groups every representation is equivalent to a unitary
representation, in our problem of the finite group

DR = D (R)*. (1.66)
Therefore, in this case (1.65a2) may be written as

Y xR xO(R* = k. (1.65b)

Equations (1.65a, b) are called the orthogonality relation of the first kind
for characters. By denoting the class to which R belongs as R and remem-
bering that y®(R)’s for all R in class R take the same value x*)(R),
then (1.65b) may be reexpressed as

%hax“’)(R) O RY* = hi,g, (1.67)

where hy is the number of elements in class R. Equation (1.67) tells
us that vectors X*®’s in the m-dimensional space whose components are
(ka2 x9(Ry), (hg 7% x9(Ry),.., (g, % x(R,,) are mutually ortho-
gonal. Here m is the number of classes in the group of interest. Since the
number of mutually orthogonal vectors can not exceed the dimension of
the vector space, it may be concluded that the number of vectors x'®’s,
in other words, the number of nonequivalent irreducible representations
g is equal to or smaller than m:

qg < m. (1.68)

In order to show another inequality which together with (1.68) finally
determines ¢, we have to give the orthogonality relation of the second kind
for characters, which is expressed as follows:

¥ xPR) xP(RY) = ;};; 8(R,Ry) (1.69a)
k 1

or for unitary representations

¥ xP(R) xP(Re)* = ;};— 8(R,R,). (1.69b)
k 1
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Readers will find the derivation of (1.69) in any textbook of the group
theory (for example, see Hamermesh, p. 110). Equation (1.69) shows
that the g-dimensional vectors X(R)’s whose components are x*V(R),
x¥)(R),..., x*(R) are mutually orthogonal. Since the number of
mutually orthogonal vectors cannot exceed the dimension of the space,
we have an inequality,

m < q. (1.70)

Equations (1.68) and (1.70) lead us to the conclusion that the number of
inequivalent irreducible representations is equal to the number of classes.
In our O-group, therefore, five inequivalent irreducible representations
are predicted.

Equation (1.69) also gives us a useful relation which determines
dimension #;, of irreducible representation D%®. Assuming R, = R, = E
in (1.69) and noting x*(E) = n,, , we obtain

Y om? = (n;, : nonvanishing integers). (1.71)
%

In the O-group, 2 = 24 and k runs from 1 through 5. Therefore, n,’s
are uniquely determined as follows:

124 12 422 4 32 + 32 = 24, (1.72)

Now let us obtain all the values of x*)(R) in the O-group. One-
dimensional irreducible representations are given by numbers, among
which the simplest one has the value unity for all the elements of the
group. This representation certainly satisfies the requirement for the
representation of the group as given in (1.53) and is clearly irreducible.
The irreducible representation like this is called an identity representation,
and always exists for any group. Furthermore, in Problem 1.6 we have
already obtained the irreducible representations with the sets of bases
(Pus o)y (Pe> ®n»> @), and (¢, @, , ®,) for an element in each class,
which will be labeled as E, T,, and T, irreducible representations,
respectively. That T, and 7T, are inequivalent may be seen from the
difference in the characters of these representations for classes Cyand C, .
Therefore, the characters of two- and two three-dimensional inequiv-
alent irreducible representations are in our hands. The characters of
the remaining one-dimensional irreducible representation can be
determined by using the orthogonality relations (1.67) and (1.69b). The
character table of the O-group thus completed is given in Table 1.3.

Character tables of thirty-two point-groups have already been
obtained; they are given in Appendix 1.
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TABLE 1.3

CHARACTER TABLE OF THE O-GRoup

Irreducible representations Characters
Mulliken  Bethe BSW @ E 26C, 3C2 8¢, 6C,
A, I, I, 1 1 1 1 1
A, r, r, 1 —1 1 1 —1
E r, Iy, 2 0 2 —1 0
T, I, Iy 3 1 —1 0 —1
T, ry Ty 3 —1 —1 0 1

@ Notations by L. P. Bouckaert, R. Smoluchowski, and E. P. Wigner.
® The number of elements in a class.

1.2.4 SPLITTING OF ENERGY LEVELS

As an example of how to use the character tables, we shall discuss the
splitting of energy levels when the symmetry of a system is lowered.
In Section 1.1, using a simple model, we calculated the splitting of the
3d-level of a hydrogen atom when it was placed in a cubic field. In this
subsection, however, we will show that the qualitative nature of the
splitting may easily be derived from a more general point of view by the
use of characters.

In a free hydrogen atom an electron is exposed to a spherically sym-
metric potential field of the nucleus, so that the electron Hamiltonian
is invariant to the rotations around the nucleus by arbitrary angles.
An aggregate of the rotations around the axis of arbitrary directions by
arbitrary angles clearly forms a group, which is called a continuous
rotation group. In this group the number of elements is infinite and
uncountable. Since the rotations by the same angle belong to the same
class irrespective of the direction of the rotation axes, the number of
classes in this group is also infinite and uncountable.

According to the result in Section 1.2.2, the hydrogen wavefunctions
of the nl-state,

‘Pnlm(r) = Rnl(r) Ylm(&P) (m = lw l— 11'-') _l)

should be the bases of (2/ 4- 1)-dimensional irreducible representation
D of the continuous rotation group. In order to obtain the characters in
this group, let us consider the irreducible representation for rotation R,



1.2 Group Theoretical Preliminaries 31

around the z-axis by angle «. The choice of this particular rotation axis
is sufficient for our purpose, as the characters do not depend upon the
direction of the rotational axis. From (1.61) representation matrix D
is given by

-1
RPum = Y. Puim Dl - (1.73)
m’=l
By using the relation,
R.Yin(09) = e7™=Y (09), (1.74)

we obtain D!?(«) from (1.73) as follows:
e—tla
et 0
DW(x) = - (1.75)
0 .eilu
from which character x(¥(«) is calculated as
—1 . 1
o) = ~ima — ﬂj__?)_a
x0o) = ), e = sinfa

m=1

(1.76)

When a hydrogen atom is placed in the system of cubic symmetry,
the electron Hamiltonian is no longer invariant under rotations around
arbitrary rotational axes by arbitrary angles, but is only invariant under
the rotations around specific rotational axes by specific angles, i.e., under
the symmetry operations in the O-group which form only a small part of
the symmetry operations in the continuous rotation group (in this case
the O-group is called a subgroup of the continuous rotation group).
In what follows, it will be shown that in the O-group representation D'V
is reducible, in general.

Let us assume that DY may be reduced to irreducible representations
D®»’s of the O-group as follows:

D =Y c(kl) D®, (1.77)

k

where ¢(kl) indicates the number of the same D'¥! that appear. By using
characters, (1.77) may be expressed as

XP(R) =3 c(kl) x(R), (1.78)

k
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or, by using (1.67) further,

o(kl) = %%hkx‘”(ﬁ’) XPR)*. (1.79)
In (1.79) yP(R) is calculated by inserting for « in (1.76) a particular

value characteristic to the rotation angle of R in class R. Then y'’(R)
for each class of the O-group is obtained as follows:

YEB) = (e = 0) =20 + 1, (1.80a)
W Y . (—1)#, for [ =2m

x(Ca) = x (a 2) 3(—1)%”“”, for 1=2m+1 (m: integers)

(1.80b)
XCE) = x(Cy) = XV = ) = (1), (1.80c)

2 1, for I =3m
yw@y=w%a=§ﬂ== 0, for I=3m+1 (1.80d)
-1, for | =3m+2 (m: integers).

Since x*)(R)’s for all R have already been obtained in Table 1.1,
c(k 1=2) can now be calculated from (1.79) and (1.80) as follows:

«42) =0,  o(d2) =0,

(E2) =1, T2)=0, (1.81)
o(T2) = 1,

which means
D® = Dp® 4 pT», (1.82)

Bearing in mind that the states of the system are characterized by the
irreducible representations of the group to which the symmetry of the
system belongs, we notice from (1.82) that the d-level of a hydrogen atom
splits into a doubly degenerate level and a triply degenerate level in a cubic
field in agreement with the result of the previous calculation by the use
of a specific model. However, by the symmetry arguments alone, as
given in this subsection, the magnitude of the energy separation between
the split levels, ¢, and #,, , cannot be predicted.

In this way (1.79) predicts the splittings of the energy levels with
various / in a cubic field. The result is given in Table 1.4.

In concluding this subsection let us consider one more example of the
splitting of the ¢, and #,, levels in a tetragonal field. A simple system
having the field of this symmetry is obtained by changing in Fig. 1.1 the
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TABLE 1.4

) Splitting in a cubic field
0 S A,
1 P T,
2 D E+ T,
3 F 4, + T+ T,
4 G A+ E+T+ T,
5 H E+2T,+ T,
6 I A, + A, + E+ T, + 2T,

distances between the central atom and the point-charges 3 and 6 to
b(b # a) while keeping the other point-charges unmoved. This system

e

point-charges; Dy, symmetry.

a i
Fic. 1.7. Hydrogen atom surrounded by six 5 a
o % a
a

!

6

is illustrated in Fig. 1.7. This system is invariant under the symmetry
operations shown in the accompanying tabulation.

Class Symmetry operations
E E
204 Cy(2), C&(2)

'« C(2)
202 Ca(xy), Cyxp)
202/ Co(x), Co(3)-

The group having these eight symmetry operations is called D,-group.
It is evident that the D,-group is a subgroup of the O-group. There are
five classes in the D,-group. Therefore, (1.71) in the present case can
be written as

12412+ 12+ 12 4 22 = §, (1.83)
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which indicates that we have four one-dimensional and one two-dimen-
sional irreducible representations in the Dy-group. The character table
of this group has been obtained as shown in Table 1.5.

TABLE 1.5
CuaracTer TABLE or THE D;-Group

Irred.

Bases repres. E 26, G 26, 26,
P A, 1 1 1 1 1
s A, 1 1 1 —1 —1
P B, 1 —1 1 —1 1
- B, 1 —1 1 1 —1

(Pzs ) - E 2 0 —_2 0 0

(¢ o)

Using Table 1.3 and Table 1.5, we obtain

(E) __ pldy) (8)
D™ =D 4 D, (1.84)
D(Tg) — D(Bg) + D(E),

from a relation similar to (1.79). Therefore, by symmetry arguments
only, one can predict that the e,-level splits into two nondegenerate
levels, and the #,,-level into a nondegenerate level and doubly degenerate
levels. This situation is visualized in Fig. 1.8. The reason why suffix g
is attached to the irreducible representations of the D,-group as well as
for those for the O-group will be explained in the next subsection.

Problem 1.7. Let the distances between the hydrogen atom and point-
charges 1, 2, and 3 in Fig. 1.1 be 4, and those between the hydrogen atom
and point-charges 4, 5, and 6 be b (a # b). Examine the splittings of the

e, and t,, levels in this system.

big
eqg
—\
/ N\ Qig
i
i
i o .. .
d H b Fic. 1.8. Splitting of the d-level in a field of
=\ ; 29 Dy, symmetry.
1
\\ I,
v tag h
L. S—
———



1.2 Group Theoretical Preliminaries 35

1.2.5 INVERSION SYMMETRY

So far, for simplicity, we have confined ourselves to simple rotations.
However, as mentioned in Section 1.2.1, the system illustrated in Fig. 1.1
is invariant under the other kinds of symmetry operations involving
inversion I with respect to the center of the system. Inversion I may be
represented as

1 23456
12(456123)’ . (189

so that clearly
I =E. (1.86)

Thus, two symmetry operations I and E form a group called C;-group.
It can further be shown that I commutes with all the operations of the
O-group. For example, from (1.36) and (1.85)

1 23 45 6yy1 2 3 4 5 6
104("’):(4 561 2 3)(2 4 351 6)
(1.87a)
_(1 2345 6)
T\ 1 6 2 4 3
and
1 34 5 6
which show
IC,(z) = C,) . (1.88)

In general, if two groups G, and G, have no common element besides
the identity element and any element g,; of G; commutes with any
element g,; of G, , all the products g,,£,; can be shown to form a group.
This group G is called the direct product of groups G, and G,, and is
expressed as

G =G, xG,. (1.89)

Problem 1.8. Prove that all the products g,,£,; form a group. <

For the direct product one can show that, if g,, and g,, are the elements
of the same class in G, connected by the transformation

S = &1:8181 (1.90)
and g,,- and g,,- are the elements of the same class in G, related as

8o’ :gZJgZV'g;il’ (1‘91)
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&1.80. and g,,8,, are the elements of the same class in G because of the
relation

(£1:82) 81/ 82 (£1:825) " = L1 8ou’ - (1.92)

Therefore, the number of classes in G is the product m;m, of the number
of classes in G, m, , and that in G, , m, .
The matrix whose elements are given by

D% (g1:80) = D¥(g1,) x D% g.) (1.93)

is obviously a representation of G and has dimension ¢ = ¢; X ¢, if
the dimensions of D% and D%2 are ¢, and ¢,, respectively. And
D{v(g,;)and D%2)(g,,) are the matrix elements of the &, and %, irreducible
representations of G; and G,, respectively. Furthermore, Dt:k2) js
irreducible, as the number of inequivalent irreducible representations
of G exceeds the number of classes in G, m;m, , if D12 is reducible.

Now, returning to our problem, since the O- and C;-groups have no
common element besides £ and any element of the O-group commutes
with that of the C;-group, we can make a direct product,

0, =0 xC;. (1.94)

Then, the O,-group involves forty-eight elements and ten classes. By
using the character table for the C;-group which is easily obtained as
shown in Table 1.6, the character table of the O,-group is obtained as
shown in Table 1.7.

In Table 1.6, the base of the irreducible representation g belongs to
even parity, or the parity of this base is even, and the parity of the u base
is odd. The parity of the bases of 4,,, Ay, , E,, Ty, , and Ty, is even and
that of 4,,, 4,,, E,, Ty, and Ty, is odd. The parity of the d-wave-
function is clearly even. Therefore, the bases (¢, , ¢,) and (p;, @, ®;)
are the bases of the E, and T,, irreducible representations of the O,-
group. This is the reason why we have used notation e, and ¢,, for the
split components of the d-level. The p wavefunctions belong to the odd
parity, so that (¢, , ¢, , @,) are the bases of T}, in the O,-group. The

TABLE 1.6

CHARACTER TaBLE oF THE C;-GRoup

Irred. repres. E I

g 1 1
u 1 —1
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TABLE 1.7
CHARACTER TABLE OF THE O,-Groupr®

~ A A~ A~ A
Irred. repres. £ 6C, 3C¢ 8C, 6C, I 6IC, 3ICg2? B8IC, 6IC,

Ay,
Ay,

oy

@ Here T is the character table given in Table 1.3, and —T means that all the signs
in Table 1.3 should be inverted.

system illustrated in Fig. 1.7 is also invariant under the inversion, and
we can make a direct product,

Dy =D, x C; . (1.95)

We have attached suffix g to the irreducible representations of the D,-
group in illustrating Fig. 1.8, as their parity is even.

One of the important results obtained in this section is that the wave-
functions of the ¢, and ¢, states are the bases of the irreducible represen-
tations E, and T,, of the O,-group, respectively. This conclusion has
been obtained without using any approximation. However, the result
obtained in Section 1.1, that these wavefunctions are constructed from
only the d-functions, is based on an approximate treatment, i.e., the
perturbation method. Therefore, it may be mentioned that the e, and
t,, wavefunctions could be some admixture of various atomic functions,
for example, those with I = 2, 4, 6, etc., as long as they are the bases of
the irreducible representations E, and T, . In what follows we will use
the notations of the wavefunctions e, and ¢,, merely to indicate that they
are the bases of the irreducible representations.

In this section we have not explained all the topics of the group
theory that is necessary for later discussions. For example, we have not
mentioned double groups, Kronecker products, reflection symmetry,
and so on. These topics will be discussed in the following chapters as
they become necessary.



Chapter Il TWO ELECTRONS
IN A CUBIC FIELD

2.1 Formulation of the Two-Electron Problem

2.1.1 THE HAMILTONIAN AND SLATER DETERMINANT

In this chapter we shall be concerned with the problem of obtaining
the eigenstates and the energy eigenvalues of the two-electron systems,
in which two electrons are accomodated in the #,, and ¢, shells in various
ways. Here the #,, and ¢, shells mean the aggregates of the degenerate
one-electron orbitals denoted by 2,, and e, , respectively, in the previous
chapter. There are six and four ways of accommodating an electron in
the ,, and e, shells, respectively.

The reason why these two shells are particularly dealt with is that they
are in many cases the outermost shells in the systems of the iron group
elements in a cubic field in which we are interested. In these systems the
inner shells of the iron group ions are completely filled and neighboring
atoms, ions, or molecules which are called /igands also have closed-shell
configurations with energies lower than those of the #,, and e, shells.
We call the electrons in both the inner shells of the central metal ion
and the closed shells of the ligands simply the inner-shell electrons. In
the following treatments we assume a picture of the electrons in the #,,
and ¢, shells (valence electrons) moving and interacting with each other
in a field coming from both the inner-shell electrons and the nuclei
of the metal ion and the ligands. The potential energy of a valence
electron due to this field is denoted by V(r), without expressing the

38
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detailed form of ¥(r). One point we know exactly about ¥(r) is that it
has cubic symmetry.
With this picture, the electron Hamiltonian of the system is given by

H =fi+fo+t g2s (2.1)
where

fi=—¥i+ V() (E=12) (22)

is a one-electron operator acting on electron 7, and

&1z = 1/, 2.3)

is a two-electron operator representing the Coulomb interaction between
electrons 1 and 2. In these expressions the atomic units are employed.
With the Hamiltonian in (2.1) the Schrédinger equation is given as

HY¥(r,0,, r,0,) = E¥(ro,, r,0,), (2.4)

where o, (1 = 1, 2) is the spin-coordinate of electron 7 and takes two
values 3 and — 3. In order to solve this Schrédinger equation, we use the
perturbation method in which gy, is assumed to be a small perturbation
on the noninteracting electron system. This method is more than a mere
approximation. It provides us not only with a good insight into the
essence of the many-electron problem but also with an exact information
of the solution concerning symmetry properties. In the perturbation
treatment we split the Hamiltonian as

H— Hy L K, 25)
where
Hy=fi + 1 and H = g1a -

Then, we first solve the equation
HFo(r0y , ry0y) = EgFy(r,0,, r0,). (2.6)

The solution of (2.6) is easily obtained if the solution of the following
equation for a single electron is known:

Joi(ro) = exbi(ro), e = (b | fldw- 2.7

Since operator f involves no spin-coordinate, ¢,(ro) is given by the
product of orbital function ¢,(r) and spin function «(o) or (o), and is
called a spin-orbital. Here ,(r) is the eigenfunction of operator f which
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involves electron space-coordinate only, and spin functions «(0) and B(o)
are defined as follows:

(S0

alc = —3) =0, (2.8a)

oo =

) = 1;
Ble=1%=0, plo=-H=1 (2.8b)

By using the solution of (2.7), the eigenfunction and eigenvalue of (2.6)
are given as

Porr(ri0y , 1,0,) = ¢4(r0,) 4(r,0,), (2.9a)
Epi =€+ €. (2.9b)

According to the Pauli principle, wavefunctions for electrons should
be antisymmetric with respect to the exchange of electrons. By using the
mathematical properties of determinants, the antisymmetric wave-
function of (2.9) can be written as

1 | éu(rio,) dy(ryoy)

ngt("lcl ) F20p) = —=

V2 | $1(r:0,) $1(r,05)
= [dpd |- (2-10)

This determinant is called Slater determinant. Factor 1/4/2 is normali-
zation factor. Hereafter, we leave out superscript 4 of the wavefunction
for simplicity and often use the abbreviation given in the last expression
of (2.10). This abbreviation includes the normalization factor. Of course,
one finds

I‘?Sk‘?sz | = - 1¢z¢k ] (2-”)
2.1.2 TEerwms

Let us first consider the states obtained byaccommodatingtwoelectrons
in the #,, shell. It has already been known that the orbital-functions
associated with this shell are .(r), ¢,(r), and ¢,(r), which will simply be
written as &(r), n(r), and {(r), respectively. Since two spin-functions
«(o) and (o) are available, we have six spin-orbitals available in this
shell; &(r) a(o), &(r) B(0), 7(r) o(0),... . Therefore, there are six ways of
placing the first electron in the shell. However, according to Pauli
principle, the second electron cannot be placed in the spin-orbital where
the first one is already accommodated, so that the number of ways of
accommodating two electrons is given by ¢C, = 6!/412 = 15. Abbre-
viating spin-orbitals, for example, éx and ¢B as ¢ and &, respectively,
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the Slater determinants corresponding to these fifteen states are given as

| €11, P&, Iatl,  19L), [ L€, [ L€, (2.129)
| €71, [&nl, 1), 19c1,  1EE, [{¢],  (2.12b)
[¢E1,  |mal, 1) (2.12¢)

These states are visualized in Fig. 2.1.

1

Fic. 2.1. Visualized Slater determinants. 1€ 7t 1€ 7t

Since the &, 7, and { orbitals are degenerate, one has

EIIE =nlflm =<EIf1 D (2.13)

By using (2.13) one can show that, as long as the Coulomb interaction
between the two electrons is neglected, the fifteen states in (2.12a, b, c)
have the same energy. Therefore, in this case we have one energy level
with fifteenfold degeneracy. In what follows, this high degeneracy will
be shown to be partially removed by the effect of the Coulomb inter-
action.

According to the perturbation theory, the perturbed energy levels and
the wavefunctions associated with them are obtained by diagonalizing
the 15 X 15 matrix of J#; whose base functions are those Slater deter-
minants given in (2.12). This procedure is quite similar to that used in
Section 1.1 for calculating the splitting of the d-level and the wave-
functions, and it is greatly simplified with the aid of the group theory as
discussed in Section 1.2.

Let us first note that the total Hamiltonian J¢; -+ X is invariant under
the transformation by R of the O,-group. According to the group theory,
the eigenfunctions associated with a certain energy level of this system
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are the bases of an irreducible representation, say I, of the O,-group,
and the energy level may be labeled as I The nondiagonal matrix
elements of the Hamiltonian between the states with different s are
all vanishing. Therefore, if we find the linear combinations of the Slater
determinants given in (2.12) which are the bases of irreducible represen-
tations, the matrix with these bases would already be partially diagonal.
The remaining task is to diagonalize the matrix of a smaller dimension
which is given between the states with the same I.

So far we have considered the orbital part only. Now we will consider
the spin part. Since the Hamiltonian involves no spin operator, it com-
mutes with S, consequently $2, where S is the resultant spin angular
momentum S = s; + s, . This means that 8§82 is a constant of motion
and has a definite value S(S - 1) in the eigenstate.

As a whole the energy levels are characterized by ST' and have
(28 + 1) x (I')-fold degeneracy. Here, (I') represents the dimension
of irreducible representation I'. Degeneracy (25 + 1) occurs because
the eigenvalues M, of S, in the state with 82 = S(S + 1)are S, S — 1,..,,
—S8 4 1, —S and the energy eigenvalues are independent of these values
of M, . The energy levels characterized by ST are called terms and are
denoted by 25+1I". The (28 + 1)(I') wavefunctions of the 25+1]" term are
expressed as ¥(wST'Mvy), in which M is the abbreviation of M, , y denotes
one of the bases of irreducible representation I', for example y = &, 7,
and { for I' = T,,, and « is some quantum number which distinguishes
the states with the same ST.

Once one finds a suitable linear combination of Slater determinants
to express ¥(«SI'My), the matrix of #] calculated with these wave-
functions is partially diagonalized: All the matrix elements between
the states with different ST are zero. Therefore, in the next section we
will discuss the method of constructing ¥(«SI'My) from Slater deter-
minants, which satisfies the following requirements: First, for an
arbitrary operation R of the O,-group, it must be transformed in the same
way as the bases of irreducible representation D:

R¥(aSTMy) = ¥ ¥(«STMy') DEXR). (2.14)

Second, it must satisfy the equations
S™W(oaSTMy) = S(S + 1) P(aSTMy), (.15)
S,P(aSTMy) = MP(aSTMy). (2.16)

Finally, it must be antisymmetric with respect to electron exchanges.
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2.2 Two-Electron Wavefunctions

As preliminaries for constructing ¥(«.SI"My) from Slater determinants,
the first few subsections will be devoted to deriving the bases of an
irreducible representation by linear combinations of the products of
orbital functions, and also to obtaining the eigenfunction of $% and S,
by linear combinations of the products of spin functions.

2.2.1 PropucT REPRESENTATIONS

Let o(I'yy,) and ¢(I';y,) be the bases of irreducible representations I'y
and I, , respectively. By operation R of a group, they are transformed to

Rp(T'yyy) = Y, (Tyy) DS2(R),
Y1
(2.17)
Ro(Tyry) = ¥, ¢(Taye) DI2(R).

Y2

Then, how are the (I'}) X (I',) products of ¢(Iyy,) and ¢(Iy,) trans-
formed by operation R ? In this case variables in ¢(I'y,) and (! yy,) may
be different from each other, but operation R is applied to both variables
at the same time. From (2.17) it is clear that

Rlp(I'in") 9(I'zv2")] = Rep(I; ™) Re(Iays')

= ¥ #Tu) ¢(Tyy2) DyR) DI (R). (2.182)

Y1¥e

For simplicity, we will use the following abbreviations:

$) = e(I'r1) ¢(Laya)s (2.192)

D,(R) = D{2(R) DI2(R), (2.19b)

Yo¥e

where v represents various combinations of y; and y, . By using (2.19),
(2.18a) is simplified to

RY(') = ) () Do (R), (2.18b)

which indicates that D,,(R) are matrix elements of a representation of
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the group. Actually, for the elements satisfying OR = T, one can show
that

Y. D,(Q) D(R) = ¥, DI(Q) DEQ) DI (R) D2 (R)

I

8184
= D;"2(QR) DI?(OR)

— DI(T) DI2(T)

= D AT). (2.20)

This representation is called the product representation or Kronecker pro-
duct of I'; and I', and is often expressed simply as I} X I',. The dimen-
sion of this representation is given by (I}) X (I'y). It is important to
note that, in general, the product representation is reducible. This may
be seen in the following example: Let both I, and I', be T, of the
O,-group and their bases be (x; , ¥, , 2;) and (x,, ¥, , 2,), respectively.
One may think that these bases are the coordinates of electrons 1 and 2.
From nine bases of the product representation, x,%, , %; Vs ,..., %5 , ON€
can make a linear combination,

(1/V/3)(x1%2 + y1 52 + 2120) = (1/V3)(ry - 1y).

Since this is a scalar, it is not changed by any operation of the O,-group.
Therefore, this linear combination is the base of the 4,, representation.
One can also make linear combinations, (1/v/2)(y:2, — 21Y2),
(1/V/2) (212, — x125), (1/v/2)(%;¥5 — y1%,). Since these are the compo-
nents of vector (1/4/2)(r; X r,), they are obviously the bases of
the T, representation. The remaining linear combinations,

[(1/V2N( 312, + 21 32), (1/V2)(z1%, + 212,), (l/vz)(xl Yo 1 31%,)]

and
[(1/V6)(3z2, — Iy - Iy), (1/v2)(x25 — y132)]

may be seen as the bases of T,, and E, , respectively, by comparing them
with the t,, and e, wavefunctions given in (1.31) and (1.32). Of course,
one may confirm this by applying the symmetry operations of the
O,-group and calculating the characters. After all, we have seen that
the product representation T, X T}, can be reduced to four irreducible
representations: 4,,, E,, Ty,, and Ty, .

The reduction prodcedure of product representation T, X T4,
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may be summarized as follows: We apply unitary transformation U to
nine bases (v)’s of the product representation, and obtain

WIy) =} ) Uy.ry 2.21)

which are classified into the sets of the bases of irreducible representations
(= A4,,,E,, Ty, Ts,). When (I'y)’s are used as the new bases of
the product representation, the matrix of the product representation

is given by

D“® 1 0 1 0 I 0
—————— T e
o I DE® | 0o | o0
U- DR = | —————~ e - omm ., (2.22)
0 x[ 0 ][ D7v(R) ][ 0
—————— el S B
L o0 10 i 0 | DT(R)

where four matrices of the irreducible representations are located on the
diagonal. In our example, the unitary transformation was found
intuitively.

For merely finding which irreducible representations are obtained
by reducing a product representation, it is unnecessary to know the
unitary transformation: Instead, we use the relation for characters,

X(R) = Y. DofR) = ¥ Di(R) D(R)

Y171 k14
Y1v2

= xR x"(R). (2.23)

In our example of Ty, X T4, , the characters for the product represen-
tation are given from Table 1.7 as shown in the tabulation. By using

I eic, 3iCce 8ic, 6IC,
E 6C, 36,2 8&, 6C,

xXB 9 1 1 0 1

(1.79) in which x‘?(R) are replaced by these y(R), one can show that
irreducible representations 4,,, E, , Ty, , and T,, appear when
Ty, X Ty, is reduced. This reduction is simply expressed as

Tlu X Tlu = Ala + Ea + Tla + ng . (2'24)
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Table 2.1 shows how all the product representations of the O-group are
reduced. For the O,-group, suffices g and # should be attached to the
irreducible representations in Table 2.1 according to the rules

EXE=4 g Xu=u, uXu=g. (2.25)

TABLE 2.1
I'y x I'y = XT'; ror THE O-GRroup

N A1 Az E Tl Tz
2

4, 4, 4, E T, T,
4, 4, E T, T,

E 4, + 4, + E T, + T, T+ T,

T, A +E+ T +T, 4 +E+ T, + T,
T, A +E+ T+ T,

Problem 2.1. Derive Table 2.1. &

2.2.2 CLEBsSCH-GORDAN COEFFICIENTS

To obtain the wavefunctions and the energy matrix in the two-
electron system, we have to find the unitary transformation in (2.21).
Matrix elements U, ,’s are usually denoted by

U,.r, = Tinilaye [ Ty, (2.26)

and are called Clebsch-Gordan coefficients. Since U is unitary,
Clebsch—Gordan (C-G) coeflicients must satisfy the following relations:

(UNry, = Iy | T'enillays)
= Ty laye | Iy %, (2.27)

Z <FY [ Dyl oy ivileye | Ty = S(FF/) 8(’)"}’/), (2-28)

Y1ve

Z <F1')’1F2'}’2 l F’)’><F')’ | F171/F272/> = 8(')’1'}’1/) 8('}’2'}’2/)- (2-29)
Iy
In the example of T, X T,, a unitary transformation was introduced
in order to satisfy (2.22), which in terms of C-G coefficients is expressed
for Iy X T, as
Y. <Iy| Tynleyey DYE(R) D2 (RXTyyy Ty | Ty = DEAR) §(I'T).

Y1¥1
¥1¥1

"' (2.30)
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Furthermore, by using (2.29), (2.30) can be reexpressed as

Y DIR) DI (RX Ty Ty | Ty = ¥ Tynl'gra | Ty> DWYR).  (2.31)
, k4

V11
vy've

This equation may be compared with (2.21) which in terms of C-G
coefficients is given as

Z o(I'1y1) P(Leya XDyl gy | Iy = (Iy). (2-32)

v1¥2

Since matrix elements of the irreducible representations appearing in
(2.31) are known from symmetry arguments, coupled equations (2.31)
with various operations R determine C-G coeflicients. In this case it is
sufficient to set the equations for only generating elements. The reason
is explained in Problem 2.2.

Problem 2.2. Show that, if (2.31) is satisfied for R; and R,, it is also
satisfied for R = R\R,.

As an example of calculating C-G coefficients from (2.31) let us
consider the case of Iy = I, =1 = E of the O-group. We use
generating elements C,(z) and C,(x) whose representation matrices
DE) are

pec) =4[ Y (2.33)
W -1 _v3

DB(C,(x)) — \% f (2.33b)
I T2 2

For R = Cy(2), (2.31) shows that nonvanishing C-G coefficients are
only {EuEu| Euy, {EvEv|Ev), {EuEv | Ev), and {EvEu| Ev): for
instance, for R = Cy(2), y, = y, = 4, and y' = 2, (2.31) gives

{FuEu | Evy = —(EuEu | Ev). (2.34)

For R= Cy(x) and vy, = y, = y' = u, by using the result just
mentioned, (2.31) is written as

(=2 3t -+ (- ) ) o 0

= (Bubu| Bay (1), (235)
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from which the following relation is obtained:
{EuEu | Euv) = —{EvEv | Eu). (2.36)

For R = Cyx), v, = u,and y, = ¢’ = 0, (2.31) is

(-0 e 50+ ()5 ot 2
— (EuEv | Eo) (%) (2.37)
from which
{EuEv | Ev) = (EvEu | Ev). (2.38)

Furthermore, for R = Cy(x), y, = v, = %, and y’ = v, (2.31) gives
(EuEv | Ev) + (EvEu | Ev) = —2(EuFEu | Eu). (2.39)
Results in (2.36), (2.38), and (2.39) are summarized as follows:

—{EuEu | Eu) = (EvEv | Eu)
= (EuEv | Ev) = (EvEu| Ev). (2.40)
From (2.40) and the requirements for a unitary matrix, C-G coefficients
are obtained as shown in Appendix II, where all the C—G coefficients for
the O-group are listed. In the Appendix the bases of T, are denoted

by «, B, and y. As seen in this appendix, when I} = I',, we have the
relations

I'nlyys | Tyy = LXKyl | Ty, (2.41)

where

o) =—1 for I} = and T = 4,,

(=1 otherwise.
When I', # I, , we use the phase conventions

Lagyelyyy | Ty = Iyyilaye | Ty, (2.42)

so that only half the C-G coefficients for I'; 5 I', are listed in the
appendix. For the O,-group it is sufficient to attach suffices g and u to I
according to the rules given in (2.25). By using these C—G coefficients the
base functions of irreducible representations can be constructed from
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linear combinations of the products of two base functions of irreducible
representations as shown in (2.32).

In concluding this subsection, it is worth pointing out that sometimes
one may calculate C-G coefficients in a simple fashion without using
(2.31). The previously mentioned arguments on reducing 7, X T3, is
one of the cases. One of the other cases is seen in the derivation (see
Problem 2.3) of C-G coefficients for T} X T, from those for T; X T;
by using the fact that the bases of T, are given by the products of the
bases of 4, and T} as e,qa, €,8, and eyy.

Problem 2.3. Derive C-G coefficients for T, X T, and T, X T, from
those for T, X T;. O

Problem 2.4. Using (2.31) calculate C-G coefficients for 4, X E
andE X T;. &

2.2.3 WieNER COEFFICIENTS

In this subsection, we simply give the well-known formula for con-
structing the eigenfunctions of 8§ and S, in terms of the products of two
spin functions 6(s,m,) and 6(s,m,). Here, S = s, 4 s, and 6(s,m;) and
0(sym,) are the eigenfunctions of s,2, s, , and §,% s,,, respectively.

The eigenfunctions @(SM) of S with S = s; + 55, 8y + 5, — 1,..,,
| s; — 85|, and S, with its eigenvalue M are given in terms of the pro-
duct of two spin functions as follows:

O(SM) = ), 6(symy) O(symy){symysyms | SM, (2.43)

myMmy

in which coefficients of the linear combination, {s;m;s,m, | SM), are
called Wigner coefficients.* The transformation given in (2.43) is unitary
so that Wigner coefficients satisfy the following relations:

(SM | symisymy) = {symsymy | SMH*, (2.44)
Y. (SM | symysympd{symysamy | S'M'y = 3(SS") (MM), (2.45)

myMmy

Z (symysomy | SMY(SM | symysymy’> == 8(mymy”") 8(myms’). (2.46)

SM

Wigner coeflicients are nonvanishing only when M = m;, 4+ m, and
[ s — 85| < S < 8 + s, are satisfied. A general formula for calculating

* Sometimes these coefficients are also called Clebsch—Gordan coefficients or vector-
coupling coefficients.
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Wigner coeflicients with arbitrary values of parameters involved is
given in Appendix III. Further, simplified formulas for calculating the
Wigner coefficients with s, = 1, 1, 3, 2 are also given in Appendix III.
From the general formula, we see the relation

(sgmasymy | SMY = (—1)4°25simys,m, | SM>. (2.47)

In the present two-electron problem, s; = s, = % and the @(SM)’s
are given as

O(S=1, M=1) = o(0;) «(0y),

T3 (o) flo) + FE)a(@)],  (248)

6(S=1, M=—1) = (o) B(0),

(S=1, M=0) =

1
V2
where «(0) = 8(% 1) and B(0) = 6(3 — %) according to the definition in

(2.8).

O(S=0, M=0) = —=[«(0,) B(05) — B(01) (02)],  (2.48b)

2.2.4 WAVEFUNCTIONS

Now we are in a position to construct the two-electron wavefunctions
by using the results obtained in the previous subsections. There are two
methods of constructing many-electron wavefunctions. One of them is
to start from the products of one-electron spin-orbitals and make their
linear combination to be the base of irreducible representation I” and the
eigenfunction of 82 and S, . However, since the linear combination is
not always antisymmetric with respect to the electron exchange, we make
it antisymmetric afterward in order to obtain the two-electron wave-
function. This method will be used in the next chapter to obtain many-
electron wavefunctions. Another method is to start from Slater deter-
minants which are already antisymmetric. Since they are neither bases
of irreducible representations nor the eigenfunctions of $2, we have to
find a suitable linear combination of Slater determinants to make it
satisfy requirements of (2.14), (2.15), and (2.16). We use this method
in this subsection.

In order to use the latter method, it is necessary to know how Slater
determinants behave when the rotation and spin operators are operated
on them. Let us denote one-electron spin-orbital ¢(tyy) 6(3m) in the

ty, shell as ¢(¢,my). For simplicity, hereafter subscript g of ¢,, and e,
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will be left out when no confusion occurs. By using properties of deter-
minants, it is easy to show that, if we have

Ré(t;my’) = Y $(tzmy) DP(R), (2.49)

we obtain

R| $(tamyyy’) $ltsmays)) = 3. | $(tamyy,) $(tzmays)] DT2(R) DI (R), (2.50)

and also that, if we have
s(tom'y) = Y d(tamy)m| s | m'), (2.51)
we obtain
S| d(tamy 1) f(tamyys)!
= 81| ¢(tamy"y1) P(tamy'y2)| + ol $(tamy"yy) p(tamyy,)|
s¢t2m1'v1( 1 ) s¢t2m2'v2(1 ) ¢t2m1'y1( 1 ) ¢t3m2'y2( 1 )

a1 L1
\/j ¢t2'm1 'v1(2) ¢t2'm2")'2(2) \/z s¢t2m1'v1(2) s¢t2m2'v2(2)
1 s¢t2m1'v1(1) ¢t2'm3'vz(1) 1 ¢t3m1'v1(1) s¢t3m2'v2(1)

V2

s¢t2m1'y1(2) ¢t2m2'v2(2) + \_/5 ¢t2m1'v1(2) s¢t2m2'y2(2)

= Z [ p(tamyyy) Stamsy,)l[<my| s [ my>

+ 3 1 p(tamyvy) Bltamays) | <my| s | my'>. (2.52)
Equations (2.50) and (2.52) show that Slater determinant |d(f,m,y,)
¢(t,myy,)| behaves just like the simple productof one-electron spin-orbitals
(t,myy,) p(t,myy,) when the rotation and spin operators are operated.
This fact leads us to the conclusion that the linear combination of Slater
determinants,

Z [ $(tamyyy) d(tamays)|<3mydmy | SMOTyy, Toy, | Ty, (2.53)

mmy
"1v2
is base y of irreducible representation I" of the O,-group and at the same
time the eigenfunction of $% and S, with eigenvalues S(S + 1) and M,
respectively.
So far we have used a similarity between the Slater determinant and
the simple product of one-electron spin-orbitals. However, there are two
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important differences between them. The first difference is that because
of the property in (2.11) the linear combination of Slater determinants
as (2.53) vanishes identically for certain sets of SI" while the corre-
sponding linear combination of the simple product of one-electron
spin-orbitals is always nonvanishing. The possible sets of SI" in our
problem of two 2, electrons are all the possible combinations of S = 0, 1,
and I'=A4,,E,T,,T,. For example, when S =0 and ' = Ty,
(2.53) withy = y is

415573 + 181 (- 73)0) + 1 ()= )

+ 171 (— \/2)(_ 713) —o. (2.54)

This result can be shown to be independent of y. In this way, among
eight possible sets of ST, the wavefunctions of 34, , 3E, 1T , and 3T, can
be shown to be identically zero. Therefore, only four terms 14, , 1E,
3Ty, and 1T, are allowed. The number of states in the allowed terms is
1 42+ 9+ 3 = 15, which agrees with the number of possible states
predicted by using Pauli principle, (C, = 15.

The second difference between the linear combination of Slater
determinants and that of simple products of one-electron spin-orbitals
is that the former linear combination is not normalized, in general, even
for the allowed terms while the latter is always normalized. This difference
also comes from the property of Slater determinants given in (2.11). For
example, for 14, (2.53) is given as

161 (F5)(7) + 181 (S5)(05) + 171 (35)(75)

+ 11 (— ) (75) + 181 (7)) + 121 (- 25)(5)
=) e+ 1w+ 120 (2.55)

which is not normalized.

Now it is clear that two-electron wavefunctions associated with terms
2S+1I" are obtained by normalizing (2.53). In the present problem they
are denoted by ¥(z,2 SI" My), and are listed in Table 2.2.

Problem 2.5. Derive ¥(t,23T, Ma) from (2.53), and confirm the foot-
notes of Table 2.2. ¢



2.2 Two-Electron Wavefunctions 53

TABLE 2.2¢
WAVEFUNCTIONS ¥(t,2STMy)

V(e 4y) = [ €¢] + 1gm ) + 1 EL11/V3
V(2 Eu) = [—| €] — | ni | +21LL1)/vVE
¥(t,? Bo) = [| ¢€] — | 77 1/ V2
Y(,* T M=1y) = | {7
V(.2 Ta M=0y)" = [ &7 — | ¢ [)/V2
Y2 Ty M=—1y)* = | & |

Y210 =[] 671 + [ 9€11/vV2

¢ The unlisted components of the wavefunctions are obtained
from the listed one by an appropriate cyclic permutation of £,
7, and {.

® Here, ¥Y(t,23T; M=0+v) and ¥(%3T; M=—1 y) may be
derived from ¥(t,%3T; M=1 v) by successive operations of S_
on (8,2 3T, M=1yv).

Similarly ¥(e2SI" My) can be obtained as shown in Table 2.3. In this
case allowed terms are 14, , 34, , and 'E. The number of states in these
terms is | 4+ 3 4+ 2 = 6 which agrees with ,C, = 6.

TABLE 2.3
WAVEFUNCTIONS ¥(e2STMy)

V(e 14y) = [lui i + [v51]/vV2
V(e 34, M=1) = |uv |
¥(e* 24, M=0) = [|us | — |0 []/V2
Y234, M=—1) = | ad |
V(e Eu) = [—|ua| + | v5]]/V2
V(e 'Ev) = [[ud | + [vi []/ V2

Finally, let us consider the wavefunctions of the t,e configuration.
In this case all the Slater determinants appearing in (2.53) are linearly
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independent, so that all the terms are allowed and (2.53) is normalized.
Thus, wavefunctions ¥(¢,eS My) are given as

W(t,eSI" My) = Z [ p(2amyv1) Plemyyy)| <Gmyimy | SMHTyy, By, | T'y). (2.56)

my My
Y1v2

The terms are given by all the possible combinations of S = 0, 1 and
I'=1T,,T,: They are 3T, , 3T, , 1T, , and 1T, . The number of states
in these terms is 9 + 9 + 3 4 3 = 24 which agrees with 6 x 4 = 24.
Wavefunctions W(2,eSI" My) calculated from (2.56) are given in
Table 2.4.

Problem 2.6. Derive ¥(t,e'Tia) and Y(t,e 1T,¢) from (2.56) and
confirm the footnote of Table 2.4. &

TABLE 2.4
WAVEFUNCTIONS ¥(£,eST'My)

Pty *Ty M=1y) = | {v|
Pltee*Ti M=0y) = [| &5 | + | Lo []/v2
Pty *Ty M=—1v) = {5 |
Pt 3T, M=108) = | {u]
Pltee *Te M=08) = [1&a| + [ Qu])/v2
Pltye Ty M=—10) = | la |
Ve ' Try) = [180] — | w1/ V2
P(tee ' Ty ) = [1 G| — [ Lu )/ V2

¢ The unlisted components of the wavefunctions are
obtained from the listed ones by appropriate cyclic
changes of (£, 7, D), (uz, 4, , u,), and (v, vy , v,). Here,
v, = —(V3u—13v, v, = (V3 Qu— v, v, = v as
shown in (1.33) by using notations v, , v, , v, for ¢{®, ¢®,
97:,”7 and u, = — %u + (\/3/2)1)7 Uy = — %u - (\/3/2)1)7
and u, = u.

2.3 Term Energies

In the previous section we derived the wavefunctions of the 2,2, €2,
and e electron configuration. At the same time we learned what kinds
of terms appear in these electron configurations. In the case of the t,2
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configuration, a single unperturbed level with fifteen-fold degeneracy
splits into four terms by the Coulomb interaction. They are non-
degenerate 14, , doubly degenerate 1E, triply degenerate T, , and 37T,
with 9-fold degeneracy including the spin-degeneracy. Since all these
terms are labeled with different sets of ST, the matrix of 5] is completely
diagonalized when it is calculated by the use of the wavefunctions
obtained in the previous section. This makes the calculation of term
energies very simple.

2.3.1 MaTriXx ELEMENTS BETWEEN SLATER DETERMINANTS

In order to calculate the matrix of 3#, by using the two-electron
wavefunctions, we derive a formula to calculate the following integral:

z f dry dT, | $(Amyy) BAamay)l* g1g | SN My 1) (A my 2 )l (2.57)

0102

Here, the A;’s represent ¢, and/or e. Expanding the first Slater deter-
minant in (2.57) into two terms and exchangeing electron numbers in
the second term, we obtain

(25T) = V2 Y [ a1y d18}0(1190) $amn(1202)
0392
1 Barmyvy (F191) Pay my vy (F191)

X — , 2.58
§12 V2 | Parmyvy (F202) aymy vy (F2Os) ( )

where factor 4/2 comes from the normalization factor 1/4/2 of the
Slater determinant multiplied by 2. Expanding again the Slater deter-
minant in (2.58), we obtain

(2.57) = Aymyyy s Xgmay, [ g 1 M'my vy, A my'yy">

— Mty s Agigys | 8 1 Agmylvy’s Ay'my vy, (2.59)
where

mmayy s Agingys | 8 | X/my'yy s A'my'yy >

= z f dr, dT2¢:\k1m1Y1(rlol) ¢j\:mzyz(r2°2) 812

010y
X Parmyy (F191) Baymy vy (F2O2)- (2.60)

Since g,, is independent of spin coordinates, (2.60) is expressed in terms of
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orbital functions ¢,,(r) in place of spin-orbitals ¢,,,,(re) = ¢,(r) 0,,(c):

{Atmyyy > Agmigy, | ’fgl [ A"y A my yy >
= §(mym,") 8(mymy Y Ay Asys | ’1_21 [ Ay A ve s (2.61)
where
{yyidgys | ’1—21 [A Ay, ) = del dTZ(P;;Vl(rl) ‘Pf\;vz(rz)
X (1/ryq) ‘P:\l’vl’(rl) ‘I’,\z’vz’(rz)
= Aydays | A7 A ve D (2.62)

For simplicity we shall often use the abbreviation in the last expression
of (2.62). In particular,

JOuyiAeys) = yvideye | | Avideys) (2.63)
is called the Coulomb integral, and
KA ydgys) = Qavideye | Agyadiyr) (2.64)

is called the exchange integral. It can be shown that

] (’\171’\272) = K("l)’l’\zyz) = 0. (2-65)

From (2.59) one may obtain the following formula for a special case of

(2.57):
Z f dry dry | $(Amyyy) Aammays)| * g1 | $(Amyyy) d(Agmay,)l

0102

= J(\yirays) — 8(mymy) K(ArysAeys)- (2.66)

2.3.2 THE t,2 ELECTRON CONFIGURATION

By using the formulas obtained in the previous subsection, let us
calculate the energies of the terms of the £,2 electron configuration. We
make the full use of the wavefunctions listed in Table 2.2.

For 14, , one obtains

A | 12U =3 Y Y [ dndry | €8 1% g | €

(1) 040,

+3 Z Z deldTglfg[*glleﬁ]

(én2) 040y

+3 Y Y [andn| €81 e, ! L1 267)

(én2) oy0,
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where 3(;,) means the summation over the terms obtained by cyclic
permutations of £, 7, and . Since £, 5, and { are real functions, relations
such as

€L mm> = K(&n),  ete. (2.68)
hold. Therefore, (2.67) can be rewritten as
Q67 =% Y JE) +3§ Y K(é) (2.69)
(énd) (€nd)

Furthermore by using relations,

J(€&) = Jom) = JED),
K(én) = K(nf) = K(£8),

which may be derived from the symmetry properties of the orbital
functions, (2.67) is finally given as

(214, | | 12 1Ay = J(E) + 2K(én)- @)

(2.70)

For E one may obtain the term energy by calculating the matrix
of J#, in the 1Eu state as follows:

(82 1Eu | A |t YEuy = [ J(§€) + J(m) + 4J(L0)
+ 2K(&n) — 4K(6) — 4K(nd)]
= JZY) — K(én). (2.72)

The same result is also obtained by calculating the matrix element in
the 1Ev state.

Problem 2.7. Confirm that {,21Eu | 3¢, | t,2Ev) = 0. O

For 3T, , the simplest way of obtaining the term energy is to calculate
the matrix element of ¢ in the 3T, M = 1 y state. However, for exer-
cise, we calculate it here in the 3T, M = 0 y state as follows:

(82 3Ty M=0y| 3 | 1,237y M=0 y)
= %[Z fd'rld'rzl&]*gmlﬁl + Z fd"'ld'rzl"}gl*glz]")gl

— 3 [anan, €71 g | nE | — ¥ [dridr, 1nE % | €71 ]

= Y J(én) + J(én) — K(én) — K(én))
= J(&n) — K(én)- (2.73)
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Comparing the wavefunction of 17T,{ with that of 37, M = 0y, we see
that the term energy of the 17, term is obtained by changing the sign
of K(én) in (2.73):

EPITRL | A 12 T = J(&n) + K(én). (2.74)

In this way the term energies in #,% are given in terms of three integrals
J(LD), J(én), and K(én), which are mutually independent, i.e., none of
them can be expressed in terms of the others. In order to predict the term
locations it is necessary to know the values of these three integrals.
However, by using qualitative arguments, one may predict the order of
some terms as follows. Since K(&n) > 0, the energy of the 14, term,
E(*4,), is higher than that of E, E(*E): E(*4,) > E(*E). Similarly
E(T,) > E(T,). By using the relation, J({0) = J(£¢) = Jm) > J(£n)
one may predict that E(E) > E(®T,) and E(*4,) > E(*T,). However, it
is impossible to predict the order of E and 17, with qualitative argu-
ments. After all the order of the terms is predicted as E(*4,) > E(*E),
E(T;) > E(3T)). Later, it will be shown that, if the #,, functions are
d-functions, the E and !T, terms are accidentally degenerate. Such a
situation is visualized in Fig. 2.2.

! A,
;
/
/
/
;
i e Fic. 2.2. Energy levels arising from the 2,2
t2 Iy E. T electron configuration.
R
ST'

It is worth noting that in the present problem the 37, term having the
highest spin multiplicity is lowest in energy. This is in accordance with
the Hund rule for free atoms and ions. This rule is based on the fact
that the electrons with parallel spins are prevented from approaching
each other because of the Pauli principle, resulting in the reduction of
the repulsive Coulomb energy. This situation is also found in our
problem as seen from the fact that

(e 3Ty M=1y) = (1/V2)[é(ry) 7(ry) — n(ry) £(rz)] o(0y) (03)
vanishes when r; = r, .

Problem 2.8. Prove that J(£€) = Jonm)= J(69).O
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2.3.3 THE €2 ELECTRON CONFIGURATION

By using the wavefunctions listed in Table 2.3, we obtain

14, | # | e 4> = [ J(wu) + J(vo)] + K(wv), (2.75)
(€234, M=0| #, | &34, M=0> = J(uv) — K(uv), (2.76)
(e 'Eu | A | € 'Euy = §[ J(uu) + J(vv)] — K(uwv). (2.77)

On the other hand, one has
(e?1Ev | A | 2 1Evy = J(uv) + K(uv), (2.78)

which has to be equal to (2.77). Therefore, the following relation should
hold:

W) + Jwo)] = Juo) + 2K(w). 2.79)
By using (2.79), (2.75) can be reexpressed as
(214, | #,| 214D = Juv) + 3K(ww). (2.80)
Problem 2.9. Show that J(uu) = J(wv). O

Thus, the term energies for the €% configuration are given in terms of
two integrals, J(uv) and K{uv), which are mutually independent. It is
clear that E(*4,) > E(E) > E(34,) and all the term separations are
given by 2K (uv). This situation is visualized in Fig. 2.3. Again the term
with the highest spin multiplicity is lowest in energy.

1 A!
/
!
/
'l
/
/
Fic. 2.3. Energy levels arising from the ¢? electron ! e
| —
configuration. e? i
_—
‘\
\
\
\
\
\ .
A,

2.3.4 THuE t,e ELECTRON CONFIGURATION
By using the wavefunctions listed in Table 2.4, we obtain
(3T, M=0y | 7| 1, T, M=07) = J(lo) — K(v),  (281)
(e Ty | # | e "Ty> = J(o) + K(Z0), (2.82)
(t,e3T, M=0{ | H, | 1, 3T, M=00> = J(lu) — K(Lu), (2.83)
(toe 1To0 | A | e 1T = J(Lu) + K(Lu). (2.84)
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Thus, these term energies are given in terms of four integrals, J({«),
J(¢v), K({u), and K({v) which are mutually independent. It is imme-
diately seen that E(1Ty) > E(T,) and E(*T,) > E(3T,). However, it is
hard to predict, for example, the order of 3T, and 37, without knowing
the magnitudes of the integrals. The order of the terms illustrated in
Fig. 2.4 is determined by assuming that the ¢, and e wavefunctions are
the d-functions as discussed later.

t.e y" Fic. 2.4. Energy levels arising from the #,e electron
X configuration.

2.3.5 ConrFicUrRaTION MIXING

So far we have calculated term energies within a single electron con-
figuration: 2,% e?, or t,e. The states of 2,2, €%, and t,e have, respectively,
energies of 2{L |f | O, 2<{v | f| v, and <L | f| > + <{v ! f] v in addition
to the Coulomb interaction energies, and, as longas (v | f| 2> — L | f|
is much larger than the Coulomb interaction energies, it is a good
approximation to calculate term energies within a single electron con-
figuration. Here, (v |f|v) — ({|f| {> corresponds to 10Dg in (1.26).
However, if (v |f]v) — <({|f]{> is not so large, we can no longer
neglect the nondiagonal matrix elements of 5#,; between the same SI
states of different electron configurations. For example, there are two
37T, states arising from #,2 and #,e, and these states are admixed due to the
Coulomb interaction resulting in shifts of their energies.

Let us first calculate the nondiagonal element of 5#; for 37, . It is
given as

23Ty M=0y | # | 13T, M=0y) = {&n || {o) — én | 00>
=X || L), (2.85)

in which the relation
Enllloy = —<&n |00 (2.86)

is used. Relation (2.86) can be proved as follows: Since the Coulomb



2.3 Term Energies 61

interaction operator 1/r,, is invariant to any rotation of the O,-group,
one obtains

En | [ Loy = (Cy(2)€ Cy2)n | | Cy(2)E Co(z)v)
==L —
= —{én || vD). (2.87)

There are two T, states arising from #,> and #,e. The nondiagonal
element for 17, is calculated as

ERITSL | A | 1ae ' T = (& | [ Lup + (&9 | | ul)
= 2{én || fw, (2.88)

in which we have used the relation

En 1 Luy = nllub). (2.89)
Relation (2.89) can be proved in just the same way as (2.86) was proved.
Problem 2.10. Derive ({n| (v = V3 (&) luy. O

For 14, there are two states arising from #,* and e2. The nondiagonal
element is given as

1
Ve (;m CEE | | uuy

(uv)

1
— — Y K(¢u). 2.90a
Ve (;{) (éu) (2.90a)

(uv)

(214, | H ety =

Among the six terms in (2.90a), only K({x) and K({v) may be taken to
be independent:

K(éu) = K(nu) = 1K(Lw) + §K(Lv),

K(¢v) = K(w) = $K(lw) + 1K (o). @20
Then, (2.90a) is reexpressed as
(8214, | A | 14, = (320 P[K(Lw) + K(fv)]- (2.90b)
Finally for 1E, one obtains
(t?Eu| H#, | € 'Euy = —(3/2)'P[K(fu) — K({v)]. (2.92)

Problem 2.11. Derive (2.91). Note that K(éu,) = K(qu,) = K({u).
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Now we have obtained all the necessary nondiagonal matrix elements
of 5 . Term energies of 3T, , 1T, , 14, , and 'E are obtained by diago-
nalizing the two-dimensional matrix of 3%, + 5#; . For instance, term
energies of two 3T states are calculated by solving the secular equation,

FIKUIFID + JEn) — K(E) =B 2én || 10 o
hel Aenlity LSO+ @Iflo+ @) — K@) —£] 7 o

The eigenfunctions are given as

Y(a Ty M=01y) = cos 0%¥(t,® 3Ty M=0y) — sin 6P (t,e 3Ty M=01y), (
2.94
P(b 3T, M=0y) = sin 6P(2,2 3Ty M=0y) + cos 0¥(t,e 3T M=0v), )

where 8 is determined by

4Kén || Lo 295)

tan 20 = 10Dg + J({v) — K({v) — J(én) + K(éy)’

and

10Dg = <o [flop —<LIfI D (2.96)

In this section we have shown that term energies of the system having
two electrons in the t,, and e, shells are given in terms of ten two-
electron integrals ](CC) ](57;) K(f-r;) J(uo), K(uv); J(lu), K({u); J({v),
K(lv); {&n] {u>, in addition to 10Dg representing the splitting of one-
electron levels, #,; and e, . In many cases it is very difficult to know the
accurate wavefunctions of #,, and e, and consequently to evaluate these
integrals. Therefore, these integrals are left as parameters to be deter-
mined by experiments. However, in doing so, we immediately meet a
difficulty: The number of parameters is too big to be determined from
the limited experimental information. In the next subsection a reasonable
approximation will be made to reduce the number of these parameters.

Problem 2.12. Calculate the term energies and the wevefunctions for
1T, by taking into account the configuration mixing. <>

2.3.6 SLATER INTEGRALS

One of the ways of reducing the number of two-electron integrals
introduced in the previous subsections is to assume a simple angular
dependence for the #,, and e, wavefunctions. If d-electrons in crystals
are relatively localized around the iron-group metal ions and deformation
of atomic d-orbitals is not drastic, it is reasonable to assume as the first
approximation that the #,, and e, wavefunctions have pure d-character
and are given in the forms of (1.31) and (1.32). However, this approxi-
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mation does not necessarily mean that radial part R,(r) in (1.31) and
(1.32) is that of a free atom or ion. In this sense, we will write Ry(7)
for Rg4(r). This point will be discussed in more detail in the chapters
on optical spectra and molecular orbitals. In this subsection we will use
this approximation to show how ten parameters are expressed in terms
of fewer parameters.

Since the ¢,, and e, wavefunctions are now assumed to be linear com-
bination of g, (r) = Ry(r) Y,,(0p) (m = 2,1,0, —1, —2,), the two
electron integrals derived in the previous subsection are given in terms
of those involving ¢4,(r). For example, one has

JCO =1L
= del T, ( Vs ) [Pax(r1) — @ae(ry)] ( V2 ) [Pax(rs) — @as(rs)]

X % (%) [Pax(r1) — Pa—a(ry)] (\_7;\ [a2(rz) — @a—a(r2)]

12
=322 +(2-2]|2-D+Q2-2][2-2
+ (=220 =22 + 2 =2 =225 + (=22]|2 — 2)], 2.97)

where

(mymy | | my'my> = f dr, dr, <Pdm1(r1) <Pdm2(r2) <Pdm1 (r1) Pam, (ra)- (2.98)

In deriving (2.97) we have used the fact that (2.98) is nonvanishing only
when m; + m, = m," + m,’. Expanding 1/r;, in terms of Legendre
polynomials and using (1.5) and (1.8), we obtain

le' = Z ,k+1 Z( l)qc(k)(91<P1) c (92?)2)’ (2.99)

where 7_ is the lesser and r_ is the greater of r; and 7, . By using (2.99)
and (1.15), (2.98) can be expressed as

{mymy | | my'my'> = Z (—1)2c*2m, , 2m,") *(2my , 2m,")

kq
X 8(9 + my’, my) 8(_9 + my, mz)Fk(dd)
= 8(my + my, my’ + myY(—1)™™ Y H2my , 2my)

k
X c*(2my , 2my") F¥(dd), (2.100)
where

Fidd) = j ntdn j 7t dry RAm) R 7 . (2.101)
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By using the table of ¢*(Im, I'm’) in Table 1.2, (mym, || m,’m,"> appearing
in (2.97) are given as

221122 = (22| =2 =2>=<2—2]]2—2) =({-22|| 22}

4 1
— KO — 2 P )
=Pt 5P 4 o P (2.102)
70
2 =2} =22 =(~221|2 =2 =z F*, (2.103)

where the F¥’s are the abbreviation of the F¥(dd)’s. To simplify the
results, the F}’s are often used in place of the F¥’s:

1 1

Fy=F, F,=gF, F,=zF (2.104)

Integrals F, or F* are called the Slater integrals or Slater—Condon param-
eters. Now J([{) is given in terms of the Slater integrals as

J(&§) =F, + 4F, + 36F,. (2.105)

It is also convenient to use the following parameters introduced by
Racah:

A=F,—49F,, B=F,—5F,, C =35F,, (2.106)
which are called the Racah parameters. In terms of the Racah parameters,
J(Zl) = A + 4B + 3C. (2.107)

Similarly all the ten two-electron integrals can be expressed by using
the three Racah parameters as shown in Table 2.5.

TABLE 2.5

TeEN Two-ELECTRON INTEGRALS IN TERMS OF THE RACAH PARAMETERS

J) =A+4B+3C  Juw)= A—4B + C
Jén) =A4—2B+ C Kuv) = 4B + C
K(én) =3B+ C

J(wy=A—4B + C Jw) = A+ 4B+ C
K(u) = 4B + C K(lv) = C

Entitw = V3B
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Problem 2.13. By assuming <{|f|{) = <v|f]|v) and ¢,, and e, with
d-character, diagonalize two-dimensional energy matrices for 37,
'T,,'4,, and 'E, and show that the terms in each of the following sets
are degenerate:

Set I: a3Ty, t,e 3T, , 234, .

Set 1I: a'E, a'T,.

SetI1I: a'4,, b1T,, te Ty, bE.

Here, E(b »+1T) > E(a®+T). O



Chapter Il MANY ELECTRONS
IN A CUBIC FIELD

3.1 Many-Electron Wavefunctions

3.1.1 WAVEFUNCTIONS OF THE ?,°> CONFIGURATIONS

The method of obtaining the wavefunctions of the ¢, electron con-
figuration we are describing here is easily extended to the general cases of
n-electrons (z > 3) in a shell. Later we will show that, once the wave-
functions of the #,” and ™ configurations are known, those of the #,%e™
configurations are easily obtained.

We start from a system of one #,’ electron added to the system of the
t,2 configuration. Here, #," means that it has the same symmetry as that
of t,, but it is different from the ¢, orbital: One may imagine the case
in which ¢, is the split component of the atomic 3d-orbital and ¢,” that
of the 5g-orbital both of which belong to irreducible representation T,
of the Oy-group. To obtain the wavefunctions of this system, one may
use a method similar to that employed in obtaining the wavefunctions
of the t,e configuration. Since there are four terms, 14, , 'E, T, , and
3T, of t,2, we obtain fifteen terms by adding #,” to ¢,> as shown in Table 3.1.

In order to obtain the wavefunctions of these terms, let us first study
the function,

W (t2(Sel) t'ST) = Z ¥(t.2So 0 Mgvo) B(t2'mzys)
Mymy
Vo¥s

X (SeMygms | SMO<LgyoToys | Iy,  (3.1)
66
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TABLE 3.1
THE ALLOWED TERMS OF £,%(S,I,)t,’SI’

SoT', Sr

14, 2T,

1E o7, , 2T,

T, %A, %E, 2T, T,
3Ty 24, ,%E, 2Ty, T,

4y, *E, 4Ty, 0T,

where ¥(£,2S,0,Myy,) is the wavefunction of £,2 involving electrons 1
and 2, and ¢(2,'m;y,) the spin-orbital of the added t,’ electron, electron 3.
The function given by (3.1) is base vy of irreducible representation I" of
the O,-group and also the eigenfunction of $% and S, with eigenvalues
S(S + 1) and M, respectively. Here, S = S, -+ s5 (s; = 3). However,
this function is not antisymmetric with respect to the exchange of
electrons 1 and 3, and electrons 2 and 3, although it is antisymmetric
to the exchange of electrons 1 and 2. Therefore, the next task to do
is to make function (3.1) totally antisymmetric without destroying its
two characters: (1) It is the base y of irreducible representation I';
(2) It is the eigenfunction of $2and S, .
In terms of Slater determinants, (3.1) can be expressed as

V= 3 Cupgy | brbr lan X 63, (3.2)

Eqkoks

where k; represents sets of quantum numbers (Z,m;y;) for i = 1, 2, ks
represents (,'mgzy;). Subscript (1, 2) of the Slater determinant indicates
that it involves electron coordinates r;o; and ryo, . The Cy ; . ’s are the
numerical coefficients determined from (3.1). For making (3.2) totally
antisymmetric, it is sufficient to make the following linear combination:

1

V3 klkz;ks Chygegt, [ BB, .90 X B1es(3) — [ by L)
X $1(2) + | brbr, l@o) X br(1)], 3.3)
which, according to the property of determinants, can be reexpressed as
(1,4 Soly) ta'ST M y) = k;k Chtegey | PrePrePres |- 34

This function clearly keeps the two characteristics which function ¥’
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had, and in addition to this it is totally antisymmetric. Factor 1/4/3
in (3.3) was introduced to let (3.4) be normalized. Therefore,

F(t(Sol o) t'ST M y)

is the wavefunction of the £,%,” electron configuration.

Now, in order to obtain the wavefunctions of the #,3 configuration,

- we replace ¢," in (3.4) by t, . Then, the Slater determinants appearing in

(3.4) are no longer mutually independent, and (3.4) vanishes identically
for some particular sets of SI" in Table 3.1 as was seen in the case of #,2.
In other words, terms with these sets of SI" are not allowed. In the
allowed cases, however, wavefunctions (3.4) with a given SI" become
essentially identical to each other even if they are constructed from
different sets of SyI'y . Therefore, the number of the allowed terms of
t,3 1s greatly reduced from fifteen in Table 3.1. Nonvanishing functions
obtained by the replacement ¢," — ¢, are usually not normalized, so that
we have to normalize them to obtain wavefunctions ¥(£,3ST"My).

As a nonvanishing case of (3.4), let us calculate ¥(¢,% 44, M = 3),
which can be constructed from SyI, = 3T as seen in Table 3.1. From
Table 2.2 we know that

W(t,? 3Ty M=1a) = [ n{ ]|, (3.5a)
V(2 3Ty M=18) = | [£ ], (3.5b)
Y(t,23Ty M=l1y) = | {n]. (3.5¢)

By using the C-G coeflicients for (T y; Ty, | Ase,> in Appendix II
and the Wigner coefficients (1My3m; | 33> = 8(M,l) 8(my3), (3.2) is
given as

¥ (s2CT) 0 44, M=3) = — 2Tk [ X £0) o)
+ 18w X 7'(3) «(3)
+ 1 énlaa X F(3) «3)]. (3.6)
Antisymmetrizing (3.6), we obtain
Y (OT 6 A M=) = = [l |+ [ Loy |+ el L B)
which corresponds to (3.4). By performing the replacement, & — §,
1" —mn, {'—{, and noting that |{nl| = |{{n| = [n{{], the nor-

malized wavefunction is obtained as

V(2 44, M=3[2) = —| énL | (3.8)
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As a vanishing case of (3.4), ¥(t,® *E M=% u) is calculated from
Soly == 3T, as follows: (3.2) in this case is

(AT, 1y 4E M= 4)

= — 25 1Ml X €B) o)+ &l X 7)), (39)

so that (3.4) is proportional to | n{&" | — | (&7’ | which is vanishing by
the replacement, & — £, ' — 7. Thus, the 4E term of £, is not allowed
to appear.

As an example of obtaining the nonvanishing identical wavefunctions
from different sets of SyIy, let us calculate ¥(t,32E M=%u) from
Sy = 3Ty and T, . For SyIy = 3T, (3.2) is given as

¥ (10T 1 3B M—yu) = — — = [—1l lap X £0)o(3)

il law X €3)aB) + | L lan X 7(3) o3)
L lap X 7(3) (3] + \}—3- =7 la.a
X E()BO) + | L lap X 7G)BG)L  (3.10)

so that the normalized wavefunction of 2,3 is

39 1y 1 - z
W (1 B M=yu) = = [ 6| — | Ent ] (3-11)

On the other hand, for S,I'y = 1T, , (3.2) is given as
W (130T 1y B M=Yu) = L2 £ lq X U3)a(3)
2 2V3 '

+ 21 9€ la.9 X UG)3) — [ L€ a0 X 7'(3) o(3)
— €l la X 73)e3) — | 7l lq.n X €(3)«(3)
— [ & laa X €3) «3)] (3.12)

From (3.12) it is clear that the normalized wavefunction thus obtained
is identical to (3.11).

In this way nonvanishing wavefunctions are obtained only for terms
14, ,%E, %T, , and 2T, . The wavefunctions for 2E, 2T, , or 2T, constructed
from various sets of S I, are identical to each other. Thus, we know
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that among fifteen terms of #,%," only four terms are allowed for the #,3
electron configuration. The number of states with M = % in these
allowed terms is 1 + 2 + 3 + 3 = 9 which agrees with the number of
independent Slater determinants with M = } as follows:

[ €71,
[ n€€ |,

| énll,  émpl, €L,
[Le€L 1 Lmil

All the wavefunctions of £,2 are given in Table 3.2.

(3.13)

TABLE 3.2
W(3,ST M )
sr M y ¥
3
14, 3 & — 1 énl]
g 1 “ et — 1 &
2 V2
1 .
V—G[Zlfﬂfl—lfﬁll—lfﬂil]
1 1
o7, ! « S5l gni | — el
Ltimtg) - 1meen
B Va7 nég |
1 £ _
y -\E[IZS f— 1 {7 1]
2z ! 1 7| 4
A 3 ¢ \/2“ éng | + | £LL1
Lttt ¢
7 T/-z“[|"7§}+|"lf 1]
UL + 1t
4 \/iliffl—!-!"ml]

The method described in this subsection can easily be extended and
applied to obtaining the wavefunctions of £," (n > 3) and e™ (m > 2).
However, we will show in the next chapter that the allowed terms of
£5~™ are just those of £, and that the allowed terms of e*™ are just
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those of ™. Furthermore, there is a simple correlation between the
wavefunctions for the terms of #57" and #,” and also between those for
the terms of e*™ and e™. Therefore, it is unnecessary to calculate the
wavefunctions of 1,4, £,%, and € by using the method described here.

Problem 3.1. Derive wavefunctions for 2T, and 27, of ¢, and confirm
that the wavefunctions for 2T or 2T, derived from different sets of S,I,
are identical to each other. O

3.1.2 WAVEFUNCTIONS OF t,%e™

In order to obtain the wavefunctions of the #,"¢™ electron configuration
we use the wavefunctions of #,” and those of ¢™, which are assumed to be
known already.

As a simple example, let us consider the case of t,%. Since the allowed
terms of 1,2 are 14, , E, 1T, , and 3T, , the allowed terms of t,% are
those ten listed in Table 3.3. The wavefunctions are obtained from (3.4)

TABLE 3.3
THE ALLOWED TERMS OF #,3(S,l¢)eSI"

Soly Sr

14, g

‘E 24,,%4,,E
T, *Ty, *Te

T Ty, *T2, 4T, ' T,

in which #,” is replaced by e, and k;" by the sets of quantum numbers

(emgys). ]
Several examples will be shown below. P(t,2(3T,) e 4T, M=31{) is

obtained as follows: since one has
V(23 T1)e T, M=% {) = —| énla,2 X 9(3) «(3), (3.14)

Eq. (3.4) gives
Yt CT)e Ty M=3 ) = —| éno |. (3.15)

As an example of obtaining the wavefunctions with the same set of SI’
but with different sets of Syl , let us construct

W(t,2(0A,)e 2E M=%u) and  W(t,2(E)e 2E M=} u).
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Since one has
1
¥ (40 4y)e °E M= u)
1 _ _ _
= \/—3 [] ¢ fao + 17 lae + 1L 1(1.2)] u(3) «(3), (3.16)

Eq. (3.4) gives
1

21 2 _1 _ £ = 7
¥ (120 4y)e °E M= u) = sl i+ ] + 1)l (317)

Similarly, since one has
P (tzz(lE)e 2F M=% u)
1 - i
= - m 218 1an — | €€ lae — | 77 la.] #(3) «(3)

50l € o — 77 L] (3) o(3), (318)
Eq. (3.4) gives

lI’(tzz(lE)eZEMzéu) _ ! %—%[ZM@] — | ¢Eu | — | mju []

T2
+ 1 €€v | — [mp . (3.19)

Contrary to the case of £,, the wavefunctions (3.17) and (3.19) are
entirely different. All the wavefunctions of #,%e thus calculated are listed

in Table 3.4.

Problem 3.2. Construct the wavefunctions of the #,® electron con-
figuration.

Now we will construct the wavefunctions of £,%2% Since the allowed
terms are 4, , 'E, 'T, , and 3T, for £,% and *4, , 1E, 34, for 2, eighteen
terms are expected for £,%% as shown in Table 3.5. By denoting the wave-
functions of £,2 and €% by ¥(£,25,I"y M,y,)and ¥P(e2S,I,M,y,), respectively,
the wavefunction of the #,%(S,I7) e¥S,I,) SI'My state is obtained by
antisymmetrizing

P (t.2(S,[1) ez(Szrz) SFMV) = Z lP(tzzslpljwﬂ’l) l1’(32521“'2]‘427’2)
MIMZ
ViVs

X {81 MyS, My, | SMOY Dy oy, | Ty
(3.20)
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TABLE 3.4
Y(t,2(So0)eST M v)
Sr Sy M % ¥
2q, 1w L U1 e ¢ i : 5
. ;@ 53\/3[ | L) ~ | fur—mnuu+lffv1—|wvl$
2q 1 1 lzl 21 L8 R _ £ _
2 3 e 5%[1 'U|—]'f'fv‘—[71711’]]—1'5“[+|7l7lul$
. 4 1 1 : i :
1 3 U 7§[l§ui+lwul+l€ul]
v ”&g[[ff‘vl‘i‘l’lﬁvl‘i‘lc&ﬂ
E g ! ! 1—2;5 ¢E 7 3 i
2 u 53—73[1 ul — | uI—lvlvzuI]+|§§vl—lnvzv[§
1¢(1 ]
v 537/—3[2155'0]—Iffv!—lnﬁvl]-Hfful—lvﬁlulz
CNRY - V3l | — | 7L foi—14
1 2 5 o —m{ Onlul — 178wl + |9lv] — | 9lv |}
B zlﬁ{\@[wéul—ICEuI]—ICEvl+]C§vI}
1
Y 73 [l &qw] — 1 &qo (]
Y - Lt fell — v i ¢
1 1 5 o m[lnul+lﬂul]— [l 7o | + | nlv ]
+ 20| — V3inis |}
1 _ i
B m{[l feul + 12l + VI vl + [ LE0 ]
+ 2l ¢ + V3| LD B
1
y 73{—[[571ul+l§ﬁul]+2l§vzﬁl}
T, T, L=l — [t + V3l | — 17
2 2 3 ¢ m{—[lnul—ln5u1]+ [l7iv} — | 7to |1}
1 =t — G ]+ V3L Lol — | G0 )
1
4 Vi[lfﬁul—léwl]
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TABLE 3.4 (continued)

Sr S,y My w

1 =
13 m{—\ﬂ[l bl + [nlul]l — [ 9lo| + [ nlo ]

+ 2[V3 i |+ (9o [}
1 =
i m{\ﬂ[l feu| -+ 1Ll —[1 0]+ 1 Lév]]
+2A-V3 L) + ) Lol

1
£ Vg[lfn’vl+15ﬁ‘vl—2l§n‘5l]

T, 3T,y

N =

3 1 -
T,y 3Ty 3 o E[—lngul + V3inlv ]

1
B —E[léfu!+\/§IC§vI]

y | énui
3 1 _
T, 3 - € S[V3iqlul+iqtvl]
2 2
1 _
7 5[—\/3IC§uI+IC§vI]
L —lépo]

In terms of Slater determinants, (3.20) can be expressed as

¥ = Z Creyegiegies] PPy [@.20 X | PPy 3,09 5 (3.21)

kykokgky
where
k; = (tamyy;) for 1 =1,2
= (emyy;) for ¢ =3,4.
Therefore, the antisymmetrization is achieved by making the following
linear combination:

% Z Cklkzksk,,[l ¢k1¢k2 .2 X [¢k3¢k4 [.0)
— | drdr, la.2) X | Dby [0 — | Diey [0y X | rPrg l3.0)
— [ PePr, 0.9 X | Prbry I — [brbr, la,0 X | brbr, (6.2

+ 1 budr, @ X ]¢k3¢k4 la.9]- (3.22)
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TABLE 3.5
THE ALLOWED TERMS OF #,%(SI)e?(S,I,)SI

STy ST, Sr
14, 14,
E E
14,
T, T,
S 3T,
14, E
E 15 4,,'4, ,'E
T, Ty, 'T,
3T, 3Ty, 3T,
4, 4,
E 3E
3
1T, A, 3T,
3Ty 1Ty, 3T, , 5T,

Since (1/4/6)[---]in (3.22) is Laplace’s expansion* of Slater determinant

* Laplace’s expansion of the n-dimensional determinant D in terms of the r-dimensional
(r < n) small determinants is given as

r

v A
p= ¥ D (“,B, ,)Xade (“,B, )
w s a’B e A B e A
where
adj D (a,Z, ;[) = (_1)<a+B+'~+/\)+<a'+B'+-~+/\') comp D (a,g, ;)
o' B e o’ B e
Here
D (04 B cee A )
o X

is an r-dimensional small determinant constructed by picking up elements at the a-,
B~,..., Ath rows (or columns) and the «’-, f’-,..., A'th columns {or rows) of D. In this
case the order of «, B,..., A and also that of «’, §,..., X’ are fixed as found in D. The sum-
mation runs over all possible sets of (¢, §,..., 1), so that the number of terms is given

by ,C,. Complementary minor,
af A
comp D ( , ),
o

B X
is constructed by picking up elements at the remaining rows and columns with the order
as found in D.
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| b1, D%, Pr,Pr, | in terms of the two-dimensional small determinants, (3.22)
can be expressed as

Pt (SiT0) €X(Selo) STMy) = 3, Crpege, | Sribrbrdn, b (3.23)

Kykakgky

which is the wavefunction of the #,2(S,I") €%(S,I",) SI'My state.
For example ¥(t,%(*4,) e*(*E) *Eu) is obtained as follows: Since one has

V'(t,%(14,) E('E) *Eu) = \}_6_ [ € 1o + i lao + 1L la.o]

X [—|uit |30 + | V7 |g,0], (3.24)

Eq. (3.23) gives

\}—6— [—| it | + | £Eo5|

¥(2,(14,) *(E) ' Eu) =
— | miuit | + | mijes | — | Luit | + | Lot {]. (3.25)
The other *Eu state of #,%(*E) ¢*(*E) is obtained from

V(1,2 E)(E) 'Eu) = 2—\1/= - % [— | €€ law — | 77l

+ 21 L lapl[— 4t g0 + | 97 |g.0]

+ [ ¢ lan — | a2l #7 |0 — | #0 |g0]{ (3.26)
as
P(ACEACE) Ba) = = | = [ ¢ | — | ¢Eos |

+ | mijuit | — | mijew | — 2| LQuir | + 2| oo []

+ | ¢Euv | — | é€mv | — | s | + | i |} (3.27)

As expected (3.27) is entirely different from (3.25) with the same set of

My.
The method of obtaining the wavefunctions of £,% and t,2¢? described
here can easily be extended for obtaining those of ¢,%e™ (n << 6, m < 4).
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3.2 Formulas for Calculating Matrix Elements

3.2.1 MaTtrix ELEMENTS OF ONE-ELECTRON OPERATORS

Let us denote operators acting on one electron such as the electric
dipole moment —er;, the crystalline field potential energy V (r,) as f; .
In the N-electron system, a one-electron operator is given by

F=Yf. (3.28)
In this subsection we will give the formulas to reduce the integral,
Y [ vl dur, - b |*Fl ety - by | (3.29)

to one-electron integrals. In (3.29) 3", is the summation over the spin-
coordinates of IV electrons and the integration is carried out with respect
to the space coordinates of IV electrons. Inserting (3.28) into (3.29), we
obtain

(329 =) Y f At brbr,  bueyy ¥ i | brybry " Py’ |

i=1 o

= NY [ dridugr, = buy 1*fi | $ribry = be |- (330)

In deriving the last expression of (3.30), we have used the fact that the
integral involving f; does not change by renumbering 7 and 1 as 1 and ¢,
respectively, as both the Slater determinants involved merely change
their signs by this renumbering.

In (3.29) and (3.30) spin-orbitals ¢, and ¢, , in the Slater determinants
are arranged in such a way that, if ¢, and ¢+ are the same, they are
located at the same positions from the extreme right in the Slater
determinants. In other words, k; # k- if i 4, k; = k; for all j > i
if k, = k;/, and k; 5= &, for all j < 7 if k; % k;. This arrangement can
always be achieved by changing the order of columns in the Slater
determinant. For example, when the matrix element between | n&{ |
and | n{a | is calculated, we first change the order of columns to give
—[n€l| = | g, br, Pk, | = | EnL | and (—1)% nla| = | b, Pry iy | =
| @n{ |, then calculate (3.29) and finally multiply the result by (—1)3.
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Now to simplify (3.30) further, we expand both the Slater determinants
as

N
lqsal g '”‘#aNl = N-1/2 Z (~1)1+i¢a5(1)

i=1
X I qsalqsaz o qsrx;_l gp1 o ¢<xN 1(2,3... .N)

(¢ = k; and /), (3.31)

which is nothing but a particular case of Laplace’s expansion. In (3.31)
factor N—1/2 comes from the normalization factors included in the
Slater determinants. Inserting (3.31) into (3.30), one obtains

N N
(3.29) = Y Y (1), | f1 41> Sis»

i=1 j=1

(3.32)
Sy = Z' fd"" I¢k1¢kz I B © P [*

X [ brybry  riPrpy Py s

where Y, [dr’ is carried out for electrons, 2, 3,..., N. Because of the
orthogonality relation between Slater determinants, S;; is nonvanishing
and is unity only when the two Slater determinants in the integrand are
identical.

Case I k; = k; for all i. In this case, S;; is nonvanishing and is
unity only when ¢ = j, and from (3.32) one obtains

N
Z f dr l ¢k1¢kz ¢kN I*F[ ¢k1¢k2 ¢kN] = Z <¢k, Ifl ¢k,> (3-33)

i=1
Case Il ky # k', k; = k; (1 # 1). In this case, S;; is nonvanishing
and unity only when ¢ = j = 1. Thus, one obtains

3 [ dr e, bun *Flbusn, by | = Gu | 1> (b # B) (3.34)

Case IIl ky # ky', k, # k,’. In this case, S;; is always zero, and one
obtains

3 [ dridue, - buy * Fldusdey - duy | =0
(kb # R, By B). (3.35)
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3.2.2 MaTrix ELEMENTS OF Two-ELECTRON OPERATORS

Let us denote operators acting on two electrons, 7 and j, such as the
Coulomb interaction 1/7;; as g;; . In the N-electron system, a two-electron
operator is given by

N
Y gi- (3.36)
i>i=1
In this subsection, we will derive the formulas to reduce the N-electron
integral,

T [ dr 1 $udes -+ buy * Clobuyday by | (3.37)

to two-electron integrals. In (3.37) spin-orbitals in the Slater determinants
are arranged in just the same way as that mentioned in the previous
subsection. Inserting (3.36) into (3.37), one obtains

B3 = ¥ T [0 bubry by 1" 0| bty |

i>i=1 o

N(N D Z f AT | rbr, " Prn |* 812 | brybry - Fry |- (3.38)

For the derivation of the last expression of (3.38), we have used the fact
that the integral involving g;; is invariant to the renumbering of electrons,
i—1,1—1,j—2, and 2 —j. Factor N(N — 1)/2 is the number of
terms, yC,, in (3.36).

By using the formula of Laplace’s expansion, both the Slater deter-
minants in (3.38) are expanded in terms of two-dimensional Slater
determinants as follows:

N
| ooy Bay | = (NN —2)[2]712 3 (—1)"73 X [doghe, [0,

i=1
X ’qsal 7% ot ¢a,~_1 798 ot ¢a,~_1¢a,~+1 .”anN |(3,4,...,N) ’ (3‘39)

where factor [N(N — 1)/2]71/2 comes from the normalization factors
in the Slater determinants. Inserting (3.39) into (3.38), one obtains

N N
(337) = Z Z (_1)p+q+'+s[<¢k,,¢kq 18 | bu b,

g>p=1 s>r=1

- <¢k,¢kq g l¢k,’¢k,’>] Sz:q,rs ’ (3‘40)
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where

Soars = X' [ 47 1$udiy bty Bty bre Bres b |*

X | by by "’¢k;_1¢k;+1 "'¢k;_1¢k;+1 = ey |-

In factor S,;,s, Yo [d7" is carried out for electrons, 3, 4,..., N, and

Spq,rs 18 Nonvanishing and is unity only when the two Slater determinants

in the integrand are identical.

Casel ky; = k; for all i. In this case S, ,; is nonzero and unity
only when p = r and ¢ = s. Therefore, (3.40) gives

Y [ 1 Guy - bun 1* Clbugbe, = buy |

N
= z [<¢ki¢k5 lgl ¢k,-¢k,~> - <¢k,¢k5 lg ] ¢k5¢k,>] (3.41)
i>i=1
CaseIl k, # k), k; =k (i # 1). In this case, S,, . is nonzero
and unity only when p = r = 1 and ¢ = s. Thus, one obtains

Y[ ar by b |* Cldesbe, by |
= z N[<¢k1¢k5 lg |¢k1'¢k5> - <¢k1¢k5 lg !¢k5¢k1'>]

7=2,8,...,

(ky # &) (3.42)
Case III k, # k', ky # ky', k; = k/ (i # 1,2). In this case,S,,

is nonzero and unity only when p =7 = 1 and ¢ = s = 2, and one
obtains

Y [ @r bbb, bun 1* Gl busbrsbry  a |

= <¢k1¢kz gl ¢k1’¢k2’> - <¢k1¢k2 lg |¢k2¢kl> (b £ &y, ky # k).
(3.43)

Case IV Ry # ky', ky # ky', ks # k3'. In this case, S, . 1s always
zero, leading to
T [ dr bedrde, - b |* Gl busbibry oy | = O
(ki # k', Ry # k), ks # k). (3.44)
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Let us calculate one example using (3.42):

Y [dr 1ol | Glunl| = [oB e | g | uB o>
— (oB | g [ uB)] + [CoB LB || uB LB
— BB g | LBuB). (3.45)

Because of the orthogonality between spin functions, the second term,

{vB na| g | e up), in (3.45) is zero.

3.3 Energy Matrices in the Three-Electron System

3.3.1 Term ENERGIES IN f,°

As mentioned in Section 3.1, the allowed terms of the #,® electron
configuration are %4, , %E, 2T, and 2T, and we see that no term appears
more than once in this configuration. Therefore, the matrix of 5#; is
already diagonal if it is calculated by using the wavefunctions associated
with these terms. Thus, the term energies within the £,® configuration are
obtained directly by using the wavefunctions in Table 3.2 and the
formulas (3.41-3.44). Note that the matrix elements of %, appearing
in the diagonal are all the same within a fixed electron configuration.
Since the term energies are independent of M and v, it is convenient to
choose the wavefunction of the simplest form associated with a particular
set of M and y.

For %4, , by using (3.41), one obtains

(12 44y M=} | 9, | 1244, M=3) =Y. [ dx| énl |* G| énl |

= {fanalg| bunoy — (ana|g]|nx b
+ {talo|g]| balo) — (fala|g]| Lo ba)

+ (o fa | g [ ooy — <marla| g | Lo md,
(3.46)

which, in terms of the Coulomb and the exchange integrals defined in
Section 2.3, can simply be expressed as

(t,2 24, M = % f 9{1 [ 1, 24, M=3)
= 3[J(&n) — K(én)]. (3.47)
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For 2E, by using the wavefunction of the t,3 2E M=1u state, one
obtains

(1,3 *E M=} u| #, | 13 °E M=} up

= 1Y [ ol &t 1* Gl &7t | + | Bl 1* Gl Enl | — 21 7L 1* G| Ent |

= 3J(én). (3.48)
Similarly, one obtains
. (8 T | | 12 2Ty = 2 J(€n) + J(T0) — 2K(én), (3.49)
an
8 BT, | 4 [ 85° 2Ty = 2](ém) + J(ED)- (3.50)

Now, considering the relations K(¢n) > 0 and J({{) > J(é4) men-
tioned in Section 2.3, the order of the terms is found as

ECE) > E(*4,),  ECT,) > E(Th),

(3.51)
E(T)) > E(*4,),  E(T,) > E(E),

which shows that the 44, term is lowest in energy in agreement with
the Hund rule. From (3.51) it is impossible to determine which is higher,
2T, or 2E. However, if the ¢, orbital is assumed to be the d-function, one
sees that the 2T, and 2E levels are accidentally degenerate, as the term
energies are given to this approximation as follows:

E(t,3%4,) = 34 — 15B, (3.52a)
E(t,8 2E) = 34 — 6B + 3C, (3.52b)
E(t3 *Ty) = 34 — 6B + 3C, (3.52¢)
E(t,3*T,) = 34 + 5C. (3.52d)

The relative positions of the terms with £,® are visualized in Fig. 3.1 by
using the result in (3.52).

T,

2(3B+C)

2 2
; e *F *T,
i/ Fic. 3.1. Energy levels arising from the 2,2 electron
ts configuration.
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3.3.2 ENERGY MATRIX FOR 2E

Two 2E with £,%(*4,)e and t,%(*E)e are allowed, besides the 2,3 2E term,
as was shown in Section 3.1. In addition to these three 2E terms, it will
be shown in the next chapter that another 2E term arises from the 3
configuration. As in the case of the two-electron system, there are
nondiagonal matrix elements of ¥, among these four 2E terms. Con-
sequently, the exact term energies of 2E are calculated by diagonalizing
the energy matrix of 5, + 5, . Such calculation taking into account
the configuration mixing is particularly important when the cubic field
splitting parameter 10Dq is not much greater than the Coulomb inter-
action.

Before calculating the nondiagonal elements, let us first calculate the
diagonal elements for 2,%(14,)e 2E and t,%(*E)e *E. Since the wavefunctions
of these states were obtained in (3.17) and (3.19), one may calculate the
diagonal elements of 5] by using the formulas given in (3.41)(3.44) as
follows:

(1 y)e *E | | 1,5( Ay)e ED
= JEO) + J(&u) + J(Lo) + 2K(én) — 3[K(lu) + K(Lv)]
(=34 + 8B+ 6C). (3.53)
In deriving (3.53), the relation
J(éu) = Jonu) = 1J(w) + 2 J(L0) (3.54)

was used. The last expression of (3.53) in brackets is the result obtained
with the approximation where 2, and e are the d-functions. Furthermore,
one obtains

(F(E)eE | | t2(E)e °E>
= JUO) + J(u) + J(Lv) — K(én) — 3[K(Lw) + K(Lv)]
(=34 —~B+3C), (3.5
in which new relations -
CGul 1oy = —Cou | o> = 3 (o) — Jw), ass
ul|vE) = —COullopy = ? [K(¢v) — K(lw)]

are used in addition to those already given. For example, the first relation
in (3.56) can be proved by showing

ull év) = (CYP)EC ) || CAP)ECAP)v>

= ? [l vy — Lu| | ld] + % Lu || Loy, (3.57)
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in which the last term vanishes as follows:
Culllv) = (CRYLC(2u | | C2){Cy(2)v)
= —ul|{v) = 0. (3.58)

The remaining diagonal element is for ¢3 2E. In the next chapter we

will show that the wavefunctions of this term are given immediately as
(e :E M=} u) = | uvd |,

(3.59)
(e 2E M=% v) = |vuir |,

which may also be obtained from the wavefunction for €% 14, by using
the method described in Section 3.1. By using (3.59) the diagonal element
of 5, is calculated as

(B2E | #,| S2E) = 3J(uv) + K(uww) (=34 —8B +4C), (3.60)

in which the relation, J(uu) = J(vv), is used.
Now we calculate the nondiagonal elements of 5#;. By using the
following relations in addition to those already given,

L[] €u) = (Cy(amCy()L | | C)EC(Ru) = &L | | o),

(3.61)
ol || 8> = <L),
CEL 1> = CCARECUE || CimClauy
— Y en 110> — < 1w
= Xt || tw, (3.62)
ey = — Y <100 — L con 1>
— a1 L, (.69

one obtains
a5 M=1 | 8, | 2040 B M=1 >
_ .\i@.mu | éuy + 2CEL | |y — <EL| | um)

— i uf) — Ll lul) — (|| Lw)]
= —2V&& ||y (= —6v2B) (3.64)
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Also by using the relations

Ll 60> = —CEL |70, (3.652)
L) 0> = —CE || v, (3.65b)
@lim =Lt L lm =0 @66
@l Tom> = —v/Xen ||y, (3:67)

one obtains
tFE M=hu | | CE)e’E M=}y = —v/&én ||t
(= —342B). (3.68)

The nondiagonal element of J#] between £,% 2E and e3 2E states is zero
from (3.44). The remaining nondiagonal elements are

(t2(1Ay)e °E M= % u| H#,| t,2(\E)e*E M= % 1>

1 1

= 55 |~ v3 40 + 2K(6) + 4]0 — 2K ()
+4Ctu || Ey — 2tu] | 06>

= —J(w) + o) + K@) — K@),  (=10B),  (3.69)

(82(0A,)e*E M=% u | #, |  2E M=} u)

= VK@) + K@) (= V328 +0)), (3.70)
and
(i) *E M=} | #, & M=}
- % [K(w) — K(to)] (= 2v/3B). 3.71)

The diagonal elements of ) = f; + f, + f5 are calculated by using
(3.33) as follows:
(P PE | Ay | 68 °E) = 3 f1 D,
(S2E | #y| @ 2E) = 3| f]|v),
(1 Ay)e °E | Ay | 15 Ay)e *ED = (t,*(E)e °E | H#, | t,}("E)e *E)
=2LfID +<v|flo).

Now we have obtained all the necessary matrix elements. The term
energies of 2E are obtained by solving the four-dimensional secular
equation expressed in terms of these matrix elements. The corresponding
secular matrix can be found in Appendix IV.

(3.72)



Chapter IV ELECTRONS AND HOLES

4.1 Complementary States

In principle it is possible to calculate term energies of any N-electron
system by using the method described in the previous chapter. However,
the calculation becomes laborious as the number of electrons increases.
In this chapter we will show that there is a simple relation between the
matrix elements of operators in the states of £,%™ (n + m = N) con-
figurations and those in the states of #3-"¢*~™. Consequently it is un-
necessary to calculate energy matrices for N = 6,7, 8, and 9 once those
for N = 4, 3,2, and 1 are calculated. The t§~"(S,I"})e*™(S,[L)SI — M y
state is called complementary to the t,”(SI) e™(S.Is) SI' M v state in
the sense that these two states are complementary in constructing the
closed shells #,%?*, as shown later. For calculating energy matrices in the
complementary states, it is not always necessary to obtain their wave-
functions, but we first construct the wavefunctions according to the
prescription adopted so far.

4.1.1 COMPLEMENTARY STATES IN THE f, SHELL

To consider the complementary states in the ¢, shell, we start from the
1,814, state of a closed-shell configuration, which is expressed by a
single Slater determinant. By using the formula of Laplace’s expansion,
this determinant may be expanded in terms of n-dimensional (z < 6)

86
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small determinants D,® including the normalization factor (m!)~1/2
(Slater determinant) as follows:

Pt 14,) = | EEnll |

q
— qir Y DpDE, (@)

i=1

where D, involves electrons 1, 2,..., n and D" those n + 1,n + 2,..., 6.
Here, D" is the adjunct (or cofactor) of D;* also including the normali-
zation factor [(6 — n)!]~1/2. Factor ¢ is equal to ¢C, = 6!/nl{(6 — n)!
which comes from normalization factors in the Slater determinants.
For example, in the case of n = 2, D,;? and D82 are given as

i 1 2 3 4 5 .
Dg (¢l |ml 1L [&n] [l - (4.2)
DI \mitl| || | €| — &Ll 1 &l
By introducing a row vector D™ of ¢ components and a column vector
D¢ of ¢ components defined as follows,

D" = [Dlnv Dz",---, an],

b
Ber = | D5, 4.3)
e
Eq. (4.1) can be expressed simply as
Y(t,814,) = ¢* 2prps-—». 4.9

As mentioned in Chapters Il and IT], there are g states of £,*. Denoting
wavefunctions ¥(£,~SI" M y) as ¥;* and defining a row vector W” of ¢
components as

W — [P, P P, (4.5)

one can express W” in terms of a unitary matrix U and D" as follows:
Wr = D"U. 4.6)
For example, by arranging ¥,» for n = 2 as

Yr = P2 14,), PR = Y(t21Eu), W2 = P(t,21Ev),..., (4.7)
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the unitary matrix U is found from Table 2.2 as follows:

r1 11 7

5 Ve V3|

1 11 0

V3 V6 V2 |

u=|1 2 o | : 4.8)

V3 V6 E

_____________ L

0 E 12-dimensional

B [ matrix .

As seen in (4.8), U in our problem is real, so it is an orthogonal transfor-
mation matrix. However, to make possible a more general application of
our argument, we will hereafter deal with U as if it were complex.

Now let the hermitian conjugate of U be U*' which is the complex
conjugate of transposed matrix O, ie., (U'); = (0)} = U};. Then,
one obtains UtU = UU' = E as U is unitary. Therefore, (4.4) can
be reexpressed as

Y(1,814,) = ¢12D"U utPs—r
= g 12Yr D, (4.9)
In (4.9) U'D% is a column vector of ¢ components whose elements are
the antisymmetric functions of electrons, n + 1, n + 2,..., 6. We express

UtBs—= in the form

fr6—n
61

uden — | afi™ | (4.10)
qup:_n
where the ¢,’s are numerical constants. For a moment we assume that
for 1 = (SI'My), c; is given as
¢ = a (SMS —M | 00){TyTy | Aye>, @.11)

where in general « is a constant depending upon S, I', M, and y. By
denoting P§~" as P(t§-"SI" — My), (4.9) is now written as

Y(2,814,) = ¢ /2 Z a {SMS —M | 00X IyIy | Aep>
sr
My

X Y(t,"STMy) P15 ST —My), (4.12)
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which tells us that, if « is a constant oag., independent of My,
Y(t5"ST" —My) may be the y base of irreducible representation I"
of the O,-group as well as the eigenfunction of 8% and S, with eigenvalues
S(S + 1) and —M, respectively. In fact, if P(#5-"SI" —My) has the
above-mentioned properties, then

Y (SMS —M | 00){IyI'y | Ae;> P(t,"STMy) W(t$"ST" —My)

My
is the base of 4, of the O,-group with S = 0 irrespective of S and I,
so that the right-hand side of (4.12) with « = «g also has the property
of 14, .

Considering that P(t§~"SI" —My) is the antisymmetric function of

electrons, n -+ 1, n + 2,..., 6, we now see that lif’(tg“”SI1 —My) can be
the wavefunction associated with the SI" — My state of the 3" electron

configuration if « = og.. The constant oy is determined so that
Y(12-"ST" — My) is normalized;

| asr (<SMS —M | 003(T'yI'y | Aye>)? = 1. (4.13)

Since the Wigner coeflicient and the C-G coefficient appearing in (4.12)
are given as

(SMS —M | 00> = (—1)S"M2S + 1)1, (4.14a)
and
(Iyly | dyeyy = () Per, (4.14b)
with
E1‘2 =1,

Eq. (4.13) is satisfied if ag is given as
asr = €p[(2S + D)2 (4.15)

Of course (4.13) does not determine «g. uniquely as (4.15), but the
choice of the phase of ag; as given in (4.15) is necessary for later discus-
sions concerning the complementary states of a half-filled shell. Replacing
ain (4.12) by agp in (4.15), we finally obtain

P(t,814,) = 112 Y (—1)S-MP(t,nSTMy) P(tST —My),  (4.16)

B
which is the expression connecting P(t5-"SI" —My) with ¥(t,*ST'My).
As seen in (4.16) they are complementary in constructing the 14, state

of the £,® closed shell. It is interesting to note that ¥(£,% 14,) is totally
antisymmetric while each term in (4.16) is antisymmetric only with
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respect to the electron exchange within each set of electrons (1, 2,..., n)
and (n + 1,7 4 2,...,, 6). The wavefunction ¥(t,"SI"My) with n < 3
directly calculated by using the methods described in the previous
chapters is called the wavefunction of the L-state and denoted by ¥, ,
and P(t§"ST" — My) with n < 3 connected with ¥(£,»ST"My) by (4.16)
is called the wavefunction of the R-state ¥, . This labeling is important
when the state has a half-filled configuration (z = 3), as shown later. The
labeling may be extended to the cases of ¥(£,*SI"My) and ¥(t5"SI"My)
with #n > 3 by introducing ¥, (,"SI'My) with n > 3 and W,(¢,»SI My)
with # < 3 which satisfy the relaticn,

W, (t,"STMy) = W(t,"STMy)  (n > 3),

(4.17)
(8" STMy) = ¥,(t"STMy)  (n < 3).

As seen from (4.10), (4.11), and (4.15), ¥(t§~™SI" —My) appearing
in (4.16) can simply be obtained from ¥(¢,»SI"My) by using the following
procedures: (1) Change the coeflicients of D, in ¥(¢,»SI"My) into their
complex conjugates®; (2) Replace the Slater determinants D in
¥(t,"ST'My) by their adjunct D§™; (3) Multiply the factor (—1)s—M.
For example, from (4.2) and (4.8) one obtains

W(td 14,0,) = \—% Al | + | CBEE | + | Eni 1] (4.183)
Wt 1Eu) — —\}g [—(matl | — |(TEE| + 2/ &[],  (418b)
Wt ) — = [l | — | L I (4.180)

In deriving (4.18), procedures (1) and (3) give no effect on the results.
Problem 4.1. Derive P(t,43T My).

When N = 3, the phases of ¥ (£,23ST'My) and W (t,3SI"My) are not
necessarily the same. For example, from Table 3.2 one can derive

¥, (t23 4, Mz—% 32) = —[ &L,

1 | (4.19)
W (68T M=y 1) = — o118+ 1 T

* In the present problem this procedure is unnecessary, as the coefficients are real.
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from which one obtains

¥r (t23 4, M'—_g e2) =&,

2
. . (4.20)
W (18 3Ty M=5 1) = —= [ 288 | + | 0 )
Thus, comparing (4.20) with Table 3.2, one sees that
W(ty® 24p) = —Wi(t,® 44,),
4.21)

Wi(ts? 2Ty) = Wi (t,® °T).

Similarly, for all the remaining terms, 2E and 2T, , we can show that ¥,
has the phase opposite to that of ¥, . All the results may be summarized
as follows:

We(t,"ST) = puPy(t,7ST), 4.22)

where y; = —1 for n = 3 and SI" = %4, , 2E, 2T,, and u, = 1 for
all the other cases including # = 3 and SI" = 2T, .

The above-mentioned arguments can be applied as well to the wave-
functions of e™, and the results may be summarized as

We(emST) = pW¥y(emST), (4.23)

where u, = —1 for m = 2 and SI" = E, 34,, and p, = 1 for all the
other cases including m = 2 and ST" = 14, .

Relations (4.22) and (4.23) will conveniently be used in calculating
matrix elements of various operators in the states of the half-filled shell
electron configurations.

4.1.2 COMPLEMENTARY STATES IN THE (f,, ) SHELL

Starting from the #,%* 14, state, one can derive complementary states
in the (¢, , e) shell in a similar way to that mentioned in the previous
subsection. Expanding a ten-dimensional Slater determinant of the
t,%¢% 14, state in terms of n + m = N dimensional small determinants,
and using a similar procedure to that mentioned in the previous sub-
section, one obtains the expression corresponding to (4.16) as follows:

Y(t,0e2 14,) = | £€nnllummvt |
=Gy X (—1)5-MP(8,%(S, I'y) em(S,Ty) ST My)
$,7y 85T,
SrMy

n,m(n+m=N)

X Ylsﬂ‘ 1827 2(tg_ne4_mS I —M ')’)’ (424)
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in which ;,Cyx = 10!/N{(10 — N)!is the number of all the allowed states
of t,"em (n + m = N) and W(t,(S,I) e™(S,I,) SI'My) is the wave-
function of the #,™(S,I") e™(S,I,) SI'My state involving electrons,
1,2,...,N. And ¥, s (857"* ™SI —My) is the normalized wave-
function of the SI" — My state of the 5~ "e?™ electron configuration
involving electrons, N 4+ 1, N + 2,...,, 10, but we cannot conclude,
from the previously mentioned argument, that it is the wavefunction of
the §=(S,I%,) e4™(S,I,) SI' —My state. Since there are several
SI" — My states of t5™e*™™, it is, in general, given by linear combination
of the wavefunctions of the SI" — My states of the t§~"e*™ electron con-
figuration, for example, W(t8~"(S,'T") e™(S,' I,y SI' — My), as

¥, 5,0(t5 ST — My)
= Z o‘nm(Slrll ) S2F2 : Sllplla SZIFZI)

$y'Ty’
S, Ty’

X We(ts-n(S, Ty") e-m(S,'Ty) ST’ —My), (4.25)
where Wi(t5™(S 1) e™(S,I',) SI'My) is defined by
Pr(tg"(S111) e4(Se ) STMy)
= (—1)m Z V(578 T Myyy) Vr(et ™S, My,)

MM,
Y1v2

X {81 M Se M,y | SMOKTynIaye | Ty, (4.26)

with the inclusion of the phase factor (— 1) in the wavefunction of the
R-state. In (4.26), <7 is an operator which makes the right-hand side of
(4.26) antisymmetric with respect to the exchange of electrons in each
of the ¢, and e shells. However, after a somewhat complicated manipula-
tion, one can prove that

‘xnm(Slpl » 8ol : ST, S, 'Ty) = 8(S1S1I) 8(S2S2")
X 8(INTY) 8(IeTy). (4.27)

The proof of (4.27) will be given in Appendix V.
Then, one obtains
V(2,0 14,) = mC;l/z Z (—=1)sM
8111821y
SI'My
n,m(n+m=N)
X PL(t"(S117) em(So ) ST'My)
X WR(ts (S Iy) ™(SyIp) SI' —My), (4.28)
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which should be compared with (4.16). The phase relation between the
wavefunctions of the R and L states is given by

Wr(te"(S1Iy) €(Sely) STMy) = (—1)""myp,

X W (t"(S,Ty) em(S,1,) STMy),  (4.29)
in which g, and p, are already defined in (4.22) and (4.23). This phase
relation can be obtained by inserting first (4.27) into (4.25), then using
(4.26), and finally applying the phase relations (4.22) and (4.23).

Equation (4.28) tells us that, quite similarly to the case of complemen-
tary states in the £, shell, PR(¢t5 (S Iy) e+ ™(S,I,) SI'" — My) is obtained
from W, (8,(S,I'}) e™(S,I",) SI'My) by using the following procedures:
(1) Change the coefficients of Slater determinants in

V1 (t"(S11y) €™(Sols) ST'Mey)

into their complex conjugates; (2) Replace the Slater determinants by
their adjuncts; (3) multiply the factor (—1)5—™.
Problem 4.2. Derive ¥ n(t,%(*4,) e2(*4,) °A; M=3) and

¥y r(t(*A,) (1 Ay) 44, M =3)

by using the methods described here. Then confirm the phase relation
in (4.29). <

4.2 Matrix Elements in Complementary States

4.2.1 ConnNEecTION BETWEEN (aST" —My) aND W(aSIT'Mvy)

In the previous section, we discussed the relation between the wave-
functions of the ,%(S 1) e™(S.I"y) SI'My and

t8 (S 1) et (S ) SI' —My

states. However, in order to discuss the relation between the matrix
elements in the £,7(S, ")) e™(S, ;) ST'My and #5-™(S,I'})e*~"™(S, ) ST My
states, it is convenient to derive a simple method of obtaining the wave-
function of the #,»(S,I) e™(Syle) SI'My state from that of the
t,™(S,Iy) e™(S.I5) SI" — My state.

For this purpose let us introduce an operator,

K = KK, , (4.30)

where K, is the operator which acting on an orbital part changes a
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function into its complex conjugate and K the operator acting on a spin
part defined by

Ks0(3, m) = (—1)1/8-m4(}, —m). (4.31)

Operator K is called the time reversal operator. At present it is sufficient
merely to know its definition. The physical implication of this operator
will be fully discussed in a later chapter.

From (4.30) one can derive

Kiaa, - Qp 8 18n 15 " Bpyim,y
= (_—l)n2 I aa, - ‘7n1an1+1an1+2 ©t Ay i, " (432)

where the orbital functions a,’s are assumed to be real as in the present
case. By using (4.32) one can prove the relation

Y(aSI'My) = (—1)StMKP(aST —My), (4.33)

in which the coeflicients of Slater determinants are assumed to be real.
The proof of (4.33) is given in Problem 4.3. By using (4.33) and (4.32),
it is now easy to derive ¥ (a.SI"My) from ¥Y(aSI" — My).

Problem 4.3. First prove a special case of (4.33),
PY(aST M=—S y) = K¥(aST M=S ),
by using (4.31), and the relations

S_¥(aSTMy) = [S(S + 1) —M(M~1)]2¥ (ST M—1y)
and
S_| aa, - a, | = Z | aa, - a; - ay .

K

Then, assuming (4.33) to be valid, prove
Y(@ST M+1y) = (—1)S*MIKP ST —M—1vy). &

4.2.2 MaTrix ELEMENTS OF ONE-ELECTRON OPERATORS

In order to derive the relation between the matrix elements of one-
electron operator in the £,%(S,I}) e(S,I',) SI'My and

t37(Sul) e7(Selz) STMy

states, we first examine the matrix elements between DY and those
between (—1)S~M(—1)s+MKDLV = (—~1)WKDi*": Here it should be
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borne in mind that Y(t,(S,I"y) em(S,I,) S'My) is given by a linear
combination of DN and ¥(t§~™(S,I")) et™(S,I,) STMy) by that of
(—1)S-M(—1)s+MK DN, where D~V is the adjunct of D, .
By assuming that
DN = | ayay =+ oy |, (4.34)

where the o;’s are the abbreviation of spin-orbitals, the diagonal element
of operator F between D, is given from (3.33) as

= f dr DY*FD,N
g

= Z Lo [ f | o). (4-35)

=1
On the other hand, since one has
DiO—N = | oy p10nga T %0 by (4.36)

the diagonal element of F between (—1)VKD~Y is given as
F™ =3 [ dv [(—1)VKD NP F(— VKD ™

= Z f dr [K | ayy04e " oo [1¥FIK | oyyqoigas o 1]

10

= Y (Ko |f|Kap. (4.37)

i=N+1

If operator f is independent of spin as in the cgse of the ligand-field
potential energy, (4.37) can be simplified as
10
Fflc(x)c—N = Z oy lfl ). (4-38)

i=N+1

Introducing a quantity F,,
Fy = Z J' ar | ayary =+ oo |*F] ooy -+ oy
1]

10
= Z <°‘i If] @), (4-39)

=1

which is independent of state 2 we are considering, one obtains from
(4.35) and (4.38)
FN =F,—F},. (4.40)
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The nondiagonal element between D~ and DY, the latter of which
is assumed to be
DZ’ = | oy oy oy (%" = aysa)s (4.41)

is calculated from (3.34) as
Yy =Y f dr DY*FDY.

= {ay [fl O‘p’> = <°‘p If] 0‘N+q>' (442)

On the other hand, the nondiagonal element between (—1)VKDY¥—V
and (—1)¥KD¥-V, in which DY is given as

Al10—N ’ ’
Dy " = —| ayi10niz " Oyig T g | (y1q = ap), (4.43)
is calculated as

P = ¥ [ dr [(—1)VKDE PR~ VKDY

= - Z f dr [K | o yy0nse =" yig " 0qg [J¥F
X [K] oysa0y2 =" Ogg = 010 []

= —(Koyy4q [f] K"‘t’\1+a>
= ‘—<K°‘N+a [f] Kay). (444)

The minus sign of (4.43) comes from the relation,

adj | ogoy "+t oty qotpy tt oy |
= (—DM*P [ a0y 0 ye T One-1%4a T %0 |3 (4.45)
consequently
adj | aqarg =t oy’ oy |
= (— I+ (=17 | ooy 4104 7 Ong-1%N4asa T %o |
= (=DM (—DN-2(—1)07 g q0nggg o0 Osg 7 O |- (4.46)
If operator f is independent of spin, (4.44) can be simplified as
Fi" = —Cogiq | f1 op- (4.47)

Furthermore, if the matrix of fis Hermitian, namely <z | f | ;> = {j | f|>*,
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and is real as in the case of the ligand-field potential energy, one obtains

from (4.42) and (4.47)
FN — _Fy . (4.48)

Now we are ready to discuss the relation between the matrix element
in the £,7(SI7) e™(S,I,) SI'My states and that in the

t5=(S, 1) e2-"(S, ) STMy

states. From the results of the previous section, the wavefunctions of
these states are given as

TZ‘N = Z DkNUkZ > (4.493)
k
PPN = (=1 Y (KDY™) KUy
k

= (=D L (KDY™) Uy, (4.49b)
k
where YN and ¥}°~~ with i = ¢,%(S,I";) e*(S,I",) ST'My are the abbrevia-
tions of ¥, (£,(S1,)e™(S, o) ST My)and W (25 ="( ST )e*"( S, 5) ST My),
respectively. Therefore, one can show that the matrix elements,

y f dv PV RPN =Y URUFY, (4.50)
L ki
and
Y [ ar @l NpwleN — 3 Uiy, R, (4.51)
L kil

are related to each other as
y f dr PENAEPON _pis, ¥ j dT PVARP N, 4.52)

if the matrix of f is spin-independent, hermitian and real. Eq. (4.52)
shows that the system with 10 — NV electrons in the (¢, , e) shell behaves
just like the system with IV particles having positive charges with respect
to the ligand field, except an energy shift as a whole due to the diagonal
term F,, . These particles are called holes.

4.2.3 Matrix ELEMENTS OF TwoO-ELECTRON OPERATORS

For the purpose of deriving the relation between the matrix elements
of two-electron operators in the £,*(S;I) e™(S,I,) ST'My states and
those in the 13-"(S,I") e*~™(S,I',) SI'My states, let us first consider the
matrix elements between the D, Vs and those between the (—~1)NKD10—s,
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By using the expression of D,V in (4.34), the diagonal element of G
in DN is given from (3.42) as

=Y f dr DV*GD,¥

N
= Z [Couoy 1 g [ oy — ooy | g | )], (4.53)
i>i=1
while, by using (4.36), the diagonal element of G in (—1)¥KDP-V is
calculated as

G =3 [ dr (RDE™M*GEDE™)

10
= Y [KKoKo;|g|KoKey) — (KoyKe;| g | KyKo)].  (4.54)

§>4=N+1

If operator g is independent of spin as in the case of the Coulomb
interaction operator 1/ry,, operator K may be eliminated in (4.54),
and one obtains

10

G?Sc_N = Z (oo | g | ooy > — ooy | g | o]

§>¢=N+1

10 10 N N
=(X =22+ Y ) Ko gl aod — oy 12 [ ed],  (459)

§>3=1 g=1 i=1 §>i=1

in which the decomposition of the sum is explained in Fig. 4.1. Note that

F16. 4,1. Decomposition of the summation,

10 10 N

> - Y -FT+ 3.

3> i=N+1 i>i=l jml =1 i>i=1
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the expression in the square bracket in (4.55) is zero when ¢ = j. The
first sum in the last expression of (4.55) is equal to

Gy =3 de [ agorg === ayg [*Gl ooy =+ oty |, (4.56)
[

which is independent of state k. In the second sum one can show that
the term

10
G; = Z Koz | g ) oy — ooy | g [ o] (4.57)
i=1
is independent of ¢ as long as «; is one of the spin-orbitals involving £,
7, and {, and may be denoted as G(t,). The same statement is applied
when o, is one of the spin-orbitals involving # and v and term G; may be
denoted as G(e). The proof is as follows: Let us denote G; as G(a;) when
«; involves orbital function a;. Since operator g and ¥;_; «;*«; are
invariant to any symmetry operation of the O,-group, one obtains

G(§) = G(Cy(x)¢) = G(n)
= G(Cy(x)m) = G(0)
= G(t,), (4.58)
and similarly
Glu) = G(Cy(eyz)u) = G(Cy¥(xyz)u),

(4.59)
G(v) = G(Cy(xyz)v) = G(C¥(xyz)v).

Furthermore, by using DB((Cy(xyz)) in (1.52), it is easy to show the
relation
G(u) + G(Cy(xyz)u) + G(Cy¥(xyz)u)

= G(v) + G(Cyxyz)v) + G(C¥xyz)o), (4.60)
which together with (4.59) leads to
G(w) = G(v) = G(e). (4.61)

As a result of (4.58) and (4.61), the second sum in the last expression of
(4.55) is given as

nG(t;) + mGle). (4.62)

The physical implication of (4.58) and (4.61) is that the interaction

energy of an electron in a shell with closed shells is independent of the

state of the electron. In general, G(¢,) % G(e) but, if the ¢, and e func-
tions are the d-functions, one can show the relation

G(ty) = G(e) = G, (4.63)
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and the second sum is equal to NG,. The relation (4.63) is under-
standable from the above-mentioned physical argument, as the (%, , €)
shells can be regarded as a single shell, d-shell, to this approximation.

Problem 4.4. If the t, and e functions are the d-functions, Z,l-:l a*a
as well as operator g is invariant to any symmetry operation of the
continuous rotation group. Using this fact, prove (4.63). <

The third term in the last expression of (4.55) is nothing but G% .
Therefore, we finally obtain

G = Gy — [nG(t) + mG(e)] + Gy - (4.64)

The nondiagonal element of G between D,N and Dj’ , which are given

in (4.34) and (4.41), is calculated from (3.42) as

Gy = Zfd"' [ ooy === oy oo oy [¥Gl gty v oy’ =+ oy |
[

N
=Y [Kogey | g ] ayqesy — o5y | & | ooy ], (4.65)
=1

in which the term with j = p is formally included as it is zero. On the
other hand, the nondiagonal element of G between (—1)YKD;*" and
(—1)¥KDLV, in which D*~¥ and D}~ are given in (4.36) and (4.43),

is calculated as
G;(I);N = — Z fd'r (K| oysq0so = Oysq *** 030 [)¥G
o

X (K| oty1010 " Oiysq " 00 |)

10

= — Z [Conrqos | & | 00> — {onig®s | & | 2j050]

j=N+1

10

= — Z [aps | & | onpqs> — {apty | & | djoyg)] (4.66)

7=N+1

In (4.66) operator g is assumed to be the Coulomb interaction operator
and spin-orbitals to be real. Now let us examine the difference between

(4.65) and (4.66),
10
G — G =Y [Kopoy 1 8| ayag) — <205 | 8| o> (4.67)
i=1

o 0
This difference can be shown to be zero, as operator g and Z}=1 ay*
are invariant to any symmetry operation of the O,-group, and in addition
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to this one can always find a symmetry operation which transforms
ap*ayy, Into —op, oy, (@, # ay.,: a;’s are orbital functions in spin-
orbitals of the ;’s). For example, when a, = ¢ and ay,, = v, one can
show that the relation, C% y)éCX y)v = —év. Then one obtains
10—N N
Gkk’ = Gkk’ . (4-68)
The nondiagonal element of G between D,N and D}» , in which D},
is given by
DY = | ooy v o) oy’ o ay | (4.69)
with

’r [
oy’ = ooy and o = Oy

is calculated from (3.43) as
Gy = Z fd'r | aqag ==+ ap *++ g o+ oy [*G

X | aqag ot oy’ e g e oy |

= ooy | g | ayprtnss) — aptg | £ | oy soyap) (4.70)

On the other hand, the nondiagonal element of G between (—1)NKDi*—¥
and (—1) KDY, in which D%V is given from (4.69) as
D;Q—N = | oys10se T Oy T O Tt Oy | (4.71)
with
Wy = and Ups = Ay
is calculated as

G;;:N = Z de (K| as10v2 ** Gyar = Oy o o [)¥G
o

X (K | oyiy0nsg o f"zlv+r 0‘zlv+s oy |)
= <aN+raN+s lg I O‘paq> - <°‘N+r0‘N+s ]g { 0‘(10517>

- <°‘p°‘q lg| N Oy s) — <°‘p°‘q lgl 0‘N+s"‘N+r>- (472)

In (4.72) operator g is assumed to be 1/r,, and the spin-orbitals to be real.
Comparing (4.70) with (4.72), one obtains

G = Gy~ . (4.73)

All the other kinds of nondiagonal elements in D,~¥ and D~V are zero
because of the formula in (3.44).
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By using (4.64), (4.68), and (4.73) and remembering that ¥,V and
Y10~V are given as in (4.49), we finally obtain

Y, [arwrvigppey

= {Gy — [nG(t,) + mG(e)]} 8;; + ). f dr PY*GYN, (4.74)

In (4.74) operator G is assumed to be independent of spin and orbitals
involved are to be real. If the ¢, and e functions are the d-functions,
nG(t,) + mG(e) may be replaced by NG, which is independent of the
individual values of # and m.

Except for an energy shift as a whole due to the diagonal term G, - NG,
(the ¢, and e functions are assumed to be the d-functions), the result in
(4.74) also suggests that the (10 — N)-electron system can be regarded
as the N-hole system.

Problem 4.5. Express G(#,) and G(e) in terms of the two-electron
integrals given in Chap. II. Assuming the #, and e functions to be the
d-functions, express G(#,) and G(e) in terms of the Racah parameters

and confirm (4.64). O

4.3 Energy Matrices

By using (4.74) the matrix elements of #; = Y;_; 1/r,; in the (10 — V)-
electron system of 15~ "e*™ (n +m = N; 10 — N = 6, 7, 8) are imme-
diately obtained from those in the N-electron system of #,%e™ (N =
2, 3, 4,). In particular, if the ¢, and e functions are assumed to be the
d-functions, the same matrix elements of J#, can be used for both the
(10 — N)- and N-electron systems, as the additional common term,
G, — NG, , in the diagonal elements of the (10 — N)-electron system
only shifts the terms as a whole.

The matrix elements of 5 in the systems with N < 5 are obtained as
follows. Those for N = 2 and 3 have already been obtained in Chaps. 11
and III, respectively. In the system with N = 4, we have states of
1%, t,%, 1,%2, 1,e% and e? electron configurations. The wavefunctions for
t,% are obtained from those for #,2 by the use of the result in Section 4.1.1.
The wavefunctions for #,¢® are obtained by calculating first those for €3
from those for e, and then by combining the wavefunctions of ¢, and €
as mentioned in Section 3.1.2. The wavefunctions of the other con-
figurations are easily obtained. Then, it is straightforward to calculate
the matrix elements of 5, by using formulas given in (3.41)—(3.44).
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As in the case of N = 4, the wavefunctions of the N = 5 system are
calculated from those with £, (n << 3) and e™ (m < 2) according to the
methods described in Sections 4.1.1 and 3.1. Therefore, in principle,
there is no difficulty in calculating the matrix elements of 5#; . However,
the number of the matrix elements to be calculated can be greatly
reduced if one uses the following facts:

(i) As easily seen from (3.44), one has
™(S1Th) €(SeT) ST G | 575(SYTY) eH(Sy'Ty) STy =0 (4.75)

for [ k| > 2. This fact can also be used in the case of N = 4. Examples
are:
B* 3Ty | G| 1,62 Ty =0,
(4.76)
22T, | G 12(1T,) e ?Ty) =0,  etc.
(i) In the case of N = 5 the t§="(S.I")) e*™(S,I";) ST and
t3"(S1I1) €(Sels) ST

terms (n # 3, m # 2) are allowed as a pair. By using the results that
V(15 (S, Iy) e™(S,I,) SI'My) is related to

Y(t37(S:T) (ST ) STMy)

by (4.29) and the matrix elements of 5, are the same in the comple-
mentary states except the constant* G, — NG, appearing in diagonals,
one can show

M = (—1"™(—1)"" pypap 'ne M, (4.77)
where

M = (S, T) en(S, ) STI G | 15 (Sy'TY) e7(SyTy') ST, (4.78)
M = {§7(S.TY) (S, o) ST G | 857 (S TY) e-"(SyTy) ST). (4.79)

In (4.77) p, and w,’ are defined for »’, m’, S;'I'y’, and S,’T, just in
the same way as p, and p, for n, m, S;I'; and S,I, , i.e.,

p (orp) = —1 for n (orn’) =3 and
Sy (or Sy'TY) = *4,, %E, *Ty
=1 otherwise,

¥ The t, and e are assumed to be the d-functions.
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and
e (orpy) = —1 for m (orm’) =2 and
SoI'y (or Sy'IY) =1E, 34,,

=1 otherwise.

In the n + m = 5 system, (—1)»*(—1)*'™" is always plus unity. There-
fore, (4.77) can be expressed as

M’ = ppap s’ M. (4.80)

In the present case of # = 3andn’ 7 3 (accordingly m  2andm’ = 2)
(4.80) is
M=M (r+#3, n #3) (4.81)

Because of (4.81), it is unnecessary to calculate M’ if M is known.
Examples are:

(8 2Ty| G | 1,23 Ty)e 2Ty = (te* °Ty| G | 1,%(3Ty) €8 *T)

—~ _3vEB, (482)
P2, | G 18 2Ty = (1,6 2T, | G | 1pe* 2T
— _20B+10C, etc. (4.83)

(ili) If n = 3 and #" # 3 (accordingly m = 2 and m’ # 2), (4.80)
1s given as
M = pyp,M, (4.84)

which gives M’ immediately from M. Examples are:
(tP(TY) €(GAy) *Ty | G| 1,41 To)e 2Ty
= {t}(*Ty) €¥(°Ay) ?T3 | G | 12('Ty) €2 2Ty
= — 34/6B/2, (4.85)
{BXPTy) e E) * Ty | G | 15° 2Ty
= — {CT,) E(E)*T, | G | 1 Ty
= 2B, etc. (4.86)

(iv) If n = 3 and n’ = 3, M’ should be equal to M as they are the
matrix elements in the complementary states. Therefore, one can
conclude from (4.80) that

M=M =0 if papepy s = —1. (4.87)
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An example is
(3T (G A4,) *Te | G | 1% (P T) (E) 2T,» = 0. (4.88)

All the matrices of 5 calculated in this way for N = 2, 3, 4, and 5
are given in Appendix IV, in which the #, and e functions ar eassumed to
be the d-functions. To this approximation the matrices for N = 8, 7, 6
are, respectively, just those for V = 2, 3,4 with the bases obtained by re-
placing £,%(S,I'y) e™(S,I) ST for N = 2, 3,4 by t5™(S,I'}) e*™(S,I",) ST
Common terms appearing in diagonals for a fixed value of N are neglected.
When these matrices are diagonalized, they have to give the energies of
the terms of free atoms or ions indicated in brackets above the corre-
sponding matrices.

To obtain energy matrices of S, + 5, of (2.5), we must add

(—4n + 6m) Dg (4.89)

to the diagonal element in the state of z,"e™. For the state of 5 "et—m,
(4.89) should be

[—4(6 —n) + 6(4 — m)] Dg = —(—4n + 6m) Dy, (4.90)

in agreement with the result in (4.52). This shows that the term energies
for N = 6, 7, 8 are obtained, respectively, from those for N = 4, 3, 2
by changing the sign of Dg.
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5.1 Energy Level Diagrams

5.1.1 Racan PARAMETERS B anp C

In the previous chapter all the energy matrices for the systems of the
tye," (n+m= N = 1, 2,...,, 9) electron configurations were calculated
in terms of Racah parameters B and C and the cubic field splitting
parameter 10 Dg. To apply the theory to the analysis of experiments,
it is convenient to plot the energies of the states as a function of the
parameters involved in the energy matrices. For this purpose let us
first point out that the ratio C/B = y is almost independent of both the
atomic number and the number of electrons in the iron-group ions,
thus making it possible to reduce the number of parameters.

This fact may be understood from the following arguments: If the
radial part of the wavefunction Ry(r) is assumed to be that of a hydrogen-
like, or Slater-type wavefunction with an appropriate effective nuclear

charge, that is,
Ry(r) = Nr2er, (5.1)
where
N = [(2«)"[6!]/3, (5.2)

then Slater integral F¥(dd) given in (2.101) is calculated as
00 00 r<k
Frdd) = f dryr® f dryry?RA(ry) R(rs) pravy
1] 0 >

o's) T
= 2N fo dryry oc_l)Rdz(H) fol d’27720+2Rd2(72)

44(6 + R)! ik 12 —n)!
— _%Fl[(s — B! —ngl 213_,5(7 - k)_n)! ] (5.3)

106
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which is always proportional to x. Therefore, one easily sees that the
ratio of B to C, which is given in terms of F¥(dd) as in (2.104) and
(2.106), is independent of «.

The values of Racah parameters in the free iron-group ions may be
determined directly from the spectroscopic data,* or, if the data are
not available, by interpolating or extrapolating from those experimentally
determined. The values of Racah parameters and y thus determined are
listed in Table 5.1 for the divalent and trivalent positive ions. In Table
5.1 one sees that the values of y fall in a relatively narrow range of
values 4 to 5.

TABLE 5.1
RacaH PARAMETERS FOr FREE IonNs®

M3 B C v M3+ B C v
Tizt 695 cm™* 2910 cm—* 4.19

A 755 3257 4.31 Vit 862 3815 4.43
Cr+ 810 3565 4.40 Cr?t 918 4133 4.50
Mn?+ 860 3850 4.78 Mn?+ 965 4450 4.61
Fe?+ 917 4040 4.41 Fe3+ 1015 4800 4.73
Co?+ 971 4497 4.63 Co?+ 1065 5120 4.81
Ni%+ 1030 4850 4.71 Nis+ 1115 5450 4.89

% These values are taken from Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 766
(1954).

As emphasized in Section 2.3.6, the radial functions Ry(7) in crystals
and complex ions are not necessarily equal to the radial functions of the
3d-atomic orbitals. However, it seems reasonable to assume that the
deviation from the atomic orbitals would not be large. In particular the
deviation of y in crystals from that in free ions would be small. Therefore,
in what follows, we express the energy matrices in terms of two param-
eters, B and 10Dg assuming the free-ion value for y.

5.1.2 ITLLUSTRATION OF THE DIAGRAMS

Now, dividing all the matrix elements in the energy matrices by B, one
can calculate the energy eigenvalues in unit of B as a function of Dq/B.
The important low-lying energy levels thus calculated are shown in
Figs. 5.1-5.7. The values of y used in the calculation are indicated in

* “Atomic Energy Levels,” National Bureau of Standards (1952).
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Fic. 5.1. 'The energy level diagram for the N = 2 system (VIV : 3d4s3D ~ 111;
= 4.42; B = 860).

Fic. 5.2. The energy level diagram for the N = 8 system (NiIII : 3d°(*F)4s °F ~ 51;
y = 4.71; B = 1030).
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the figures. Notations, such as Cr IV and Ni III mean Cr3* and Ni?%*,
respectively. In each figure the energies are always measured from the
lowest energy levels.

As seen in the figures the curves representing energies of the terms of
the same electron configuration® are almost parallel to each other in
the range of large values of Dg/B. This is due to the fact that the effects
of the configuration mixing are small when the cubic field splitting is
large as compared with the Coulomb interaction.

At the left of the vertical axes, the energy levels observed in the free
ions are indicated by the horizontal lines, for which the values of B
shown in the figures are assumed. The positions of the energy levels at
Dg/B = 0 should coincide with the horizontal lines of corresponding
terms of the free ions, but because of the approximate nature of the
theory for free ions, the coincidence is imperfect as seen in the figures.
To show the fact that the energy of the lowest term of the d¥-1s con-
figuration is much higher than the energies of the terms of d¥, it is
indicated in the figures in unit of B.

*In the figures the electron configurations are denoted by de® dy™ instead of tyes™
Notations de and dy are sometimes used in place of t,, and ¢, , respectively, when the #,,
and e, orbitals are assumed to be the d-functions.
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5.1.3 BrREARKDOWN OF THE HuUuND RULE

As seen in Figs. 5.4-5.7, the interchange of the ground state occurs
at a certain value of Dg/B = (Dg/B), in the 4, 5, 6, and 7-electron
systems. In the range of Dg/B > (Dgq/B),, therefore, the Hund rule
with respect to spin which is valid for free atoms is no longer applicable
to the ions in a cubic field. This is explained by the fact that maximum
spin multiplicity is attained at the expense of excitation energies due
to the cubic field splitting. This situation is clearly seen in Fig. 5.8.
Figure 5.8a shows the spin arrangements in which the Hund rule with
respect to spin is valid. Figure 5.8b shows the spin arrangements in
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(a) (b)

Fic. 5.8. Spin arrangements in the ground states: (a) high-spin systems, (b) low-spin
systems.

which breakdown of the Hund rule occurs due to the large cubic
field splitting between the t,, and e, levels. It is clear that in 2, 3, and
8-electron systems the Hund rule is always valid.

The systems in which the Hund rule with respect to spin is valid are
sometimes called high-spin systems, and those in which it is no longer
valid are called low-spin systems.
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5.2 Optical Transitions

In order to prepare for the comparison between the present theory and
optical experiments, qualitative discussions will be given in this section
on the intensities and the line widths of optical transitions between the
terms, i.e., of the multiplets in a cubic field. More detailed arguments
on these subjects will be found in later chapters.

5.2.1 INTENSITIES

Let us first consider transitions between the terms of the same spin-
multiplicity which are called intrasystem combinations. Since all the terms
we are considering belong to even-parity, the electric-dipole transitions
which are proportional to the absolute square of the matrix elements of
the electric-dipole moment, P = — ¢ 3, r; , are forbidden as the parity of
P is odd. This selection rule is called the parity selection rule. The parity
selection rule is slightly released if cubic symmetry of the system is
slightly distorted either by the presence of a weak low-symmetry field
of odd-parity or if it is instantaneously distorted by the presence of
lattice vibrations of certain modes: in the latter case, the instantaneous
distortion also brings in a weak low-symmetry field of odd-parity. The
odd-parity field admixes even-parity states with odd-parity states,
resulting in nonvanishing matrix elements of the electric dipole moment.
Let us denote (V44> as the matrix element of the static or instantaneous
odd-parity field, V44 , between even- and odd-parity states. The degree
of the admixture of an even-parity state with an odd-parity state is
given as (V 44>/4E,, , where 4E, is the energy separation between the
even-parity and odd-parity states. Therefore, the oscillator strength

9™ of our parity forbidden transition is given approximately as

2
forb _, rallow (<Vodd>) , (5.4)

el el A E
€0

where f3°" is the oscillator strength of the parity allowed transition
given as

allow 8n?m

€1 = 3h€2 V(Iptc I2+,P’ll [2+‘PZ 12)' (5‘5)

In (5.5) p; ( = x, y, ) is the matrix element of the 7 component of the

electric dipole moment P; between the initial and final states of the

transition. In many cases f21°% is of the order of unity. To obtain the
y el y

magnitude of f{3™ it is necessary to estimate the magnitude of V4 .

Although a more detailed treatment will be given later, a rough
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estimate of V g4 due to lattice vibrations may be made as follows:
Since V44 is caused by a small nuclear displacement Q from an equili-
brium position where only a cubic field ¥V, is present, one sees that

Voaa ~ V. X QIR, (5.6)

where R is the distance between the metal and ligand ions. The instanta-
neous nuclear displacement O may be estimated from the zero-point
amplitude of the vibration by equating the classical energy of a harmonic
oscillator with amplitude Q, mass m, , and frequency v, to the quantum-
mechanical zero-point energy as follows:

2mmp 202 = Yhv,. .7)

Assuming that vy ~ 1013 sec™! and m, ~ 10~ g which is the mass of
the ligand ion, we obtain from (5.7) the zero-point amplitude of the
order of 10~® cm. Then, assuming the values of R ~ 10~8 cm and
V, ~ 10* cm™1, one obtains from (5.6) V 34 ~ 10®cm™1. In view of
experimental data on the absorption spectra in the ultraviolet region,
it seems reasonable to assume 4E,, ~ 10° cm~1. Then (5.4) gives

torb _, gallow 104~ 104, (5.8)

The weak low-symmetry ligand fields of odd-parity also come from
nuclear displacements, but in this case the displacements are static
and associated with the goemetrical structure of a crystal or molecule.
In many cases the magnitudes of the static displacements are of the same
order of magnitude as that of the amplitudes of the zero-point vibrations.
Therefore, the static low-symmetry fields of odd-parity are considered
to be also of the order of 1000 cm1, which leads us to the same result
for f19 as given in (5.8).

For our intrasystem combinations, magnetic-dipole transitions are
generally allowed, as the magnetic-dipole moment

ek
M= = e Y+ 2sy)

<

is of even parity. The oscillator strength of the magnetic-dipole transi-
tion, fi, , is given by the formula,

872m

fml :'%7”(’ my ]2+ lmw 2+ m, IZ)’ (59)

in which m; (i = x, y, 2) is the matrix element of the magnetic-dipole
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moment M; between the initial and final states of the transition. Since m;
is considered to be of the order of one Bohr magneton, (5.9) gives

Jm ~ 1078 (5.10)

In deriving (5.10) v is assumed to be 6 X 10 sec™! as we are concerned
with the transitions in the visible region.

Besides magnetic-dipole transitions, electric-quadrupole transitions
are allowed between the states with the same parity, although they are
considered to be very weak. The oscillator strength of the electric-
quadrupole transition f,, is given by the formula,

4mim
Jeo = st Z [ gi5 1% (5.11)

6], =%,9.%

in which g;; is the matrix element of the electric-quadrupole moment

Qi = —e Z (7in7im — §7a® 0i5)
n:eleetrons
between the initial and final states of the transition. The magnitude of
|g;] (~q) may be estimated from the approximate relation, g ~ e(r)?
where (r)> is the average of r. Then, assuming <{r)> ~ 108 cm, one
obtains from (5.11)

foz ~ 10-7. (5.12)

Although these estimates of the order of the oscillator strengths
are very crude and may contain an error of factor 10+, it seems reason-
able to conclude from (5.8), (5.10), and (5.12) that for intrasystem
combinations the electric-dipole transitions slightly allowed by the
presence of the odd-parity field or the odd-parity nuclear vibration
predominate over other kinds of transitions.

One thing to be remarked here is that so far we have not considered
selection rules other than the parity-selection rule. Transitions are
sometimes forbidden by the rotational symmetries associated with both
the initial and final states and also with the transition moment including
the odd-parity perturbation. Such a selection rule will be discussed in
later chapters. The above-mentioned arguments, of course, will be
applicable only to the case in which the transitions are not forbidden by
other selection rules.

Now let us consider the transitions between the terms of different
spin-multiplicities, which are called intersystem combinations. Since none
of the electric-dipole, magnetic-dipole, and electric-quadrupole moments
has matrix elements between the states of different spin-multiplicities,
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the intersystem combinations are forbidden. This selection rule is
called spin-selection rule. The spin-selection rule is slightly released if the
spin-orbit interaction is taken into account. As explained in detail later,
the spin-orbit interaction connects the terms with resultant spins S and
S’, where | § — 8’| = 0, 1. Therefore, the term with S may have small
components of the terms with S 4 1 if the spin-orbit interaction is
taken into account, and the presence of these small components slightly
allows the spin-forbidden transitions S == S 4- 1. The degree of the
admixture of the S term with the S 4+ 1 terms is approximately given
by (V4 /4E,., where (V> is the matrix element of the spin-orbit
interaction between the S and S 1 terms and 4E,, is the energy
separation between them. In our problem of iron-group ions in a cubic
field, (V> is of the order of 100 cm~! and 4E,, is of 3000 cri—™.
Therefore, the oscillator strengths of intersystem combinations for the
parity-forbidden electric-dipole, magnetic dipole, and electric-quadrupole
transitions are, respectively, given as

ol 107, (5.13)
Fing ~ 1072, (5.14)
Foo ~ 10729, (5.15)

More detailed arguments on the intersystem combinations will be given
after the spin-orbit interaction is fully discussed.

For the comparison of the present theory with experiments it is also
of some help to point out the fact that, if the terms are well specified by
electron configuration tje,™, optical transitions are forbidden between
the terms of fje,” and 13, “e;*** where | k | > 2. This selection rule is
called configuration-selection rule, and is expressed by saying that
k-electron jumps (| k| > 2) are forbidden. The explanation of this
selection rule is as follows: Since the transition moments are one-electron
operators, their matrix elements between the terms of f3e,™ and
5 *el* are zero from (3.35). Even in the case of the electric-dipole
transitions slightly allowed by the odd-parity perturbation where two
one-electron operators, the electric dipole moment and the odd-parity
perturbation V44, are incorporated in the transition matrix elements,
one can prove the validity of this selection rule. Clearly, the selection
rule cannot be applied when the configuration mixing is appreciable.

Problem 5.1. Assuming ¥V, ;4 as a small perturbation, show that the
configuration-selection rule may be applied to the electric-dipole transi-
tions slightly allowed by perturbation Vi 34.
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5.2.2 LiNE WIDTHS

As pointed out in Section 5.1.2, the separations of the energy levels
of the same configuration are almost independent of the cubic field
splitting parameter in the range of large Dg/B, while those of the levels
belonging to different electron configurations are almost proportional
to 10Dq. This fact tells us that the transition energies between the terms
of the same electron configurations is independent of the fluctuation of
the cubic field which is caused by the nuclear vibration, while those
between the terms belonging to different configurations have a certain
spread corresponding to the same fluctuation. The magnitude of this
fluctuation may be considered to be of the same order of V,33~1000 cm—1
at T' = 0°K, as one can apply the same method of the estimation to the
present case as that used in estimating V44 . Therefore, we expect that
the spectral lines connecting the terms of different configurations should
have the spectral widths of ~ 1000 cm~1; consequently they should be
observed as broad bands even at T'= 0°K. On the other hand, the
spectral lines connecting the terms of the same configuration are expected
to be observed as sharp lines.

In the present arguments, we have considered only a single mode
of the nuclear vibration which keeps the cubic symmetry of the system.
This mode is sometimes called a breathing mode of the vibration. How-
ever, if one takes into account the effects of other vibrational modes, the
spectral lines connecting the terms of the same electron configuration
may be broadened due to the vibrational fluctuation of low-symmetry
fields. This point will be discussed in the next chapter.

In the next section, the qualitative arguments on the line widths as
given here will be found very useful in assigning both the sharp and
broad structures in the absorption spectra observed in the crystals and
complex ions containing the iron-group ions.

5.3 Comparison between Theory and Experiments

In order to show how our theory may be compared with experimental
data, we will mention two examples, the comparison with the absorption
spectra of Al,O; containing Cr3* impurity ions called ruby and of MnF,
crystals which have been studied in detail both experimentally and
theoretically.

5.3.1 MULTIPLETS IN RuUBY

To the first approximation Cr3t ions are considered to be in a cubic
field in ruby, although the actual symmetry at the Cr3+ site is trigonal Cj .
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The effects of the trigonal field and the spin-orbit interaction will be
discussed later. Here we completely neglect the fine structure of the
multiplets.

The observed absorption spectrum around the visible region is
shown in Fig. 5.9. In the visible region there are two broad bands having
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Fic. 5.9. Absorption spectrum of ruby (by A. Misu, unpublished). ——, E 1 C; (o);
————, E/|C; (7) (0.28 wt % Cr,0;; room temperature).

the widths of ~ 3000 cm~! which are called U and Y bands, and three
groups of sharp lines called R, R’, and B. The spectral widths of these
lines range from 0.1 to 10 cm~!. In addition to them, one relatively
weak broad band is observed in the untraviolet region, which will be
called Y'. The oscillator strengths of these absorption bands and lines
are estimated from the observed absorption coefficients k(v) by using the
relation*

mc
f=—3 j k(v) dv, (5.16)
where N is the number of the absorption centers per cubic centimeter,

* In solution the absorption intensity is given in terms of the extinction coefficient «(»)
defined by the relation I = I,10-¢%!, where / is the thickness of the solution in centimeters,
¢, is the concentration of the absorption center in moles per liter, and I, and I are the
intensities of the incident and transmitted light, respectively. Then, the oscillator strength
is given as

3
PR LELE Y

N Avog mwe

where Nyyqq is the Avogadro number.
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and v the frequency measured per second. For a rough estimate of f,
one can replace the integral in (5.16) by %,,,, 4v assuming the gaussian
shape for the absorption curve: here k., is the absorption coefficient
at the absorption peak and 4dv the half-width. Then, one finds that the
oscillator strengths of the broad absorption bands are of the order of
1074, and those of the sharp lines of the order of 10~ to 10-7. From
polarization measurements, the transitions responsible for the absorption
are known to be of the electric-dipole type. The observed integrated
intensities are almost independent of temperature.

Considering these experimental facts, one may conclude that the
absorption bands are due to the intrasystem combinations, and the sharp
lines due to the intersystem combinations. Actually, looking at Fig. 5.3
one can find three intrasystem combinations,

3 4 2 2 24
log *Agg —> 1306, * T , 230, *Tyq and WA BTN
and three intersystem combinations,
3 3 3 2 3 2
tyg *Azy — 13 °E, , ta 2Ty and LY

with E/B less than 30. Since these intrasystem combinations connect the
terms of different electron configurations and the intersystem ones
connect the terms of the same configuration, it is also reasonable, in
view of spectral widths, to assign these intrasystem combinations to the
broad bands and the intersystem combinations to the groups of the
sharp lines.

Actually, one can fit the observed spectrum with the calculated energy
level diagram, if the assignments shown in the tabulation are made.

Absorption Transitions
R lines 3, *4, — 83, °E,
’ 12 3 2
R’ lines — 1y, 13,
2 4
U band — tgse; Tg,
. 3 2
B lines — tyy Ty
2 4
Y band — tyeey Ty
, 24
Y’ band — tye, 11

To obtain a quantitative agreement, it is found that one has to choose
the values of parameter, 10Dg = 17,000 cm™1, B = 700 cm™, y = C/B
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= 4.0. The assignment of the Y’ band indicates that it is due to a two-
electron jump. The weak, but observable, intensity of the Y’ band may
be explained by taking into account the configuration mixing of the
13,6, Ty, and t,,6,2 4T}, terms. Temperature-independent intensities of
these absorption bands and lines indicate that all the transitions are the
electric-dipole transitions slightly allowed by a static odd-parity field.
Actually, the Cr3+ site has no inversion symmetry so that the presence
of a static odd-parity field may be expected.

In ruby the #§, *E, and 2§, 2T}, excited states can be populated as
much as in the ground state by using a strong optical excitation called
optical pumping, and optical absorption from these excited states can be
observed as shown in Figs. 5.10 and 5.11, in which the absorption curves
for the light polarized perpendicular (o) and parallel () to the crystal
axis are given separately.

The observed locations of the « and B groups of relatively sharp lines
shown in Fig. 5.10 suggest the assignments shown in the tabulation.

Absorption Transitions
a lines &, 'E, —~ t;v Ty

. 3 2 3 2
B lines tyy Tig >ty Ty

These assignments have been confirmed by detailed studies of the fine
structure and the temperature dependence of the intensities of these
groups of lines. The sharpness of the lines also support the above
assignments, as these transitions connect the terms of the same electron
configuration t3,. Although these transitions are spin-allowed, the
observed oscillator strengths are of the order of 10—® which seems too
small: The explanation has not yet been found.

The oscillator strengths of the I, II, III, and IV bands in Fig. 5.11 are
comparable to those of the U and Y bands. This suggests that these
bands are due to the spin-allowed transitions mainly from the 23, 2E,
term to the t3,e, 2", terms: they should be ascribed to the one-electron
jumps as the band widths are broad. There are eight t3,e, 2I', terms,

13(3T15) €, 2Ty » t3(*A10) €, °Ey 5
13,1 Tog) € 2T, s tga(lEo) e °E, ,

136(*T10) € 2Ty 13, E,) €, 245, ,
13,(*Tag) €, 2Ty 13,(*E,) €, 24y,



a’ (cm™)

1
7000
/X (cm™)

F1c. 5.10. Absorption spectrum of optically pumped ruby (
86°K; — - — - —, o, 300°K; — --- — --- —, =, 300°K). [T. Kushida, J. Phys. Soc. Japan
21, 1331 (1966).]

i L i A
15,000 20,000 25000 30,000 35,000
/X {cm™)

F1c. 5.11. Absorption spectrum of optically pumped ruby ( , 03— ——, m). [T.
Kushida, J. Phys. Soc. Japan 21, 1331 (1966).]
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but one can show that the transitions from the #3; 2E, term to the four
2E, , 2E,, %4,,, 24,, terms are forbidden (see Problem 5.2). Therefore,
the observed bands are expected to be due to the transitions to the four
3,2, (I'y=Ty,,T,,) terms. By using the same values of the
parameters as those determined from the absorption spectrum of
unpumped ruby, it has been found that, if one uses the assignments in

the tabulation, the observed peak energies of these bands may reasonably

Absorption Transitions
I band t;a 2Eg i t;a(leﬂ) €y 2T2ﬂ
11 band =t Top) & "Ti
111 band — 3, Tip) € " Ty,
IV band — 15, (' Ts,) € "Ty,

be fitted to the calculated transition energies. In the absorption experiment
of unpumped ruby, the transitions to these t3, ¢, 2, terms are spin-
forbidden and correspond to the one-electron jumps. Therefore, these
transitions are unobservable because of the weak intensities and the
large spectral widths expected for these transitions.

Problem 5.2. By using the wavefunctions of the 23, 2E, and t,, %,
(I'y = E,, 4y,, 4,,) terms, show that the matrix elements of any one-
electron operator between the 3, 2E, and #3.¢, 2, (I', = E,;, Ay, , Ay,)
terms are zero. <>

5.3.2 MuLTiPLETS IN MnF, CRYSTALS

A MnF, crystal has rutile structure, but to the first approximation
Mn?* ions are surrounded octahedrally by six F~ ions, which makes
possible the application of our theory.* The observed absorption
spectrum of MnF, is illustrated in Fig. 5.12. In Mn2* ions we have only
one S = 5/2 term which is the ground state as seen in Fig. 5.7. There-
fore, all the transitions from the ground state are expected to be spin-

*Since Mn?* ions are placed periodically in MnF,, the exact wavefunctions should
be the bases of the irreducible representations of a space-group involving translational
symmetry and the energy levels in general have dispersion with respect to the wave-
vector forming energy bands. However, if the widths of the energy bands are much
smaller than the term separations, it is possible to apply the ligand field theory without
taking into consideration the periodicity in crystals.
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forbidden. Actually, all the observed absorption intensities are very
weak. As mentioned in the previous section, the spin-forbidden transi-
tions from the ground state to the S = 3/2 terms are slightly allowed by
the spin-orbit interaction. Therefore, one expects that the final states
of the observed transitions are spin-quartets. As seen from a relatively
small value of 10Dg determined later, the effects of the configuration
mixing are appreciable in this case, so that to specify the terms it is
convenient to indicate, in addition to the main electron configurations
t3,e,™, the free ion terms >+1L from which the terms 25+1I” arise.

It has been found that, if one uses the values of parameters, B =
675 cm~, C = 3750 cm~', and 10Dg = 7000 cm~), the observed
absorption peaks are nicely explained by the theory as shown in the
tabulation. In Fig. 5.12 the final states of the transitions are indicated
above the corresponding absorption peaks.

Transitions Observed peak energies Calculated

taes A1, (°S)

> *Tyy(tase, : *G) 19.4 x 10° cm™! 21.1 X 103 em-1
— “Tyo(tsee, : 'G) 23.5 239
— ‘A1,(foe,” : 'G) 25.2
4 3 2 4 25.3 25.5
— Eftye, 1 G) 25.5
28.1
g dea(tzaeaa : 4D) 28.4 28.7
~ ‘Ey(tse,” : “D) 30.2 30.2
~ *Tyy(thes : “P) 33.1 34.6
~ Ay (thee,” : F) 39.0 411
- 4Tla(t:aea2 : 4F) 41.4¢ 41.9

2 Observed by H. J. Hrostowski.

5.3.3 Ewmpiricar VALUES OF B anD 10Dgq

As seen in the examples given in the previous subsection, a suitable
choice of the parameter values B, C, and 10Dgq in our theory explains the
observed optical spectra in many insulating crystals and complex ions
involving metal ions with d-electrons. The values of B and Dgq chosen
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F1c. 5.12. Absorption spectrum of MnF, at room temperature (molar extinction
coefficient, liter cm~! mole~?). [J. W. Stout, J. Chem. Phys. 31, 709 (1959).]

for iron-group metal complexes with H,O ligands are summarized in

Table 5.2.

TABLE 5.2
ExXPERIMENTAL VALUES® OF Dg aNDp B

Ti*t Vst Cr3t Mnd+ Fe3+ Co?+

Dg (cm™1) 2030 1860 1720 2100 1350 1920
B (cm™) 642 765 820
(862) (918) (1015)

Cr2+ Mn?+ Fett Co?+ Nit+ Cu®*

Dq 1390 1230 1030 840 820 1220

B 810 860 917 971 1030
(810) 860) 817y (971) (1030)

®Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 766 (1954). Values in the parentheses
are those of B of free ions.

As for the cubic field splitting parameter 10Dgq, the following empir-
ical rules have been found: Irrespective of the ligand and the central
metal ions, 10Dg in the systems with divalent metal ions is around
10,000 cm™! and in those with trivalent metal ions around 20,000 cm™1.
The change of the ligand elements gives the variation of 10Dg which
is of the order of 1000 cm=1. It has been found that, when the metal
element is fixed and the ligand is varied, the magnitudes of 10Dg may
be arranged in the following order:

I<Br<Cl<S<F<O<N<<C(C,
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where the elements are those in ligands attached directly to the metal
ion. This order is called Tsuchida’s spectrochemical series. On the
other hand, Jergensen* has pointed out that, when the ligand is fixed and
the metal ion is varied, the magnitudes of 10Dg may be arranged in the
following order:

Mn?+ < Ni#t < Co?+ <« Fe?t < V2+ < Fe¥+ < Cr¥* < V3+ < Co¥+
< Mn%+t < Mo®+t < Rh3+ ~ Ru3t < Pdft < Ir®t < Rett < Pttt

Detailed discussion on the origin of 10Dg will be given in Chapter X
on the molecular orbital and the Heitler—London theories.

As for the Racah parameter B, the empirically determined values, in
particular for trivalent metal ions, are smaller than those of free ions as
shown in Table 5.2. This means that radial functions Ry(r) in crystals and
complex ions are slightly different from those of the free ion. Probably
the reduction from the free ion values would mean the expansion of the
free ion radial functions in the presence of ligands. This problem will
also be discussed in Chapter X.

# C. K. Jorgensen, “‘Absorption Spectra and Chemical Bonding in Complexes. Pergamon
Press, New York, 1962.
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So far we have been concerned only with the systems of cubic
symmetry. There are many crystals and complex ions in which, to the
first approximation, transition metal ions are surrounded octahedrally by
ligands. However, a more detailed examination of the site symmetry of the
metal ion very often reveals that the site symmetry is lower than cubic.
For example, the site symmetry of Cr3+ ions in ruby is trigonal, C;, as
mentioned in the previous chapter, and the site symmetry of Mn?* ions
in MnF, is orthorhombic, D,, . In these systems the electrons associated
with the metal ions are exposed to the fields of low symmetry in addition
to a cubic field. The presence of a low-symmetry field causes splittings
and shifts of the terms in a cubic system, and gives, together with the
spin-orbit interaction discussed in the next chapter, fine structure of
the multiplets. This chapter presents the methods of deriving the ligand-
field potentials of low symmetry and calculating their matrix elements
between the components of the cubic terms.

6.1 Single Electron in Fields of Low Symmetry

6.1.1 DerivaTioN oF THE LicaND-FIELD POTENTIALS

As discussed in Chapter I, the ligand-field potential is invariant to any
symmetry operation in the group to which symmetry of the system
belongs. Therefore, it has the same symmetry property as that of the
base function of the identity representation of the group. For example,
the cubic-field potential has the same symmetry property as that of the

126
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base function of irreducible representation A, of the Oy-group. If the
base function of 4, of the O,-group is expressed in the form

kz A1) CP(09), (6.1)

the terms of the lowest order k, except & = 0, should be those of 2 = 4.
This is because, as seen in Table 1.2, 4,, first appears when one reduces
representation DP with / = 4 (except / = 0) whose base functions are
given in terms of C{¥(6p) with & = 4. The next higher terms in (6.1)
have to be those with & = 6, as A,, appears when D with I = 6 is
reduced.

Instead of reducing representation D'¥, we will construct the terms of
k = 4 according to the consideration in Section 2.2.2. The explicit form
of these terms may be obtained by using (2.32) as proportional to

P(r) u(r)XEuBu | Aje;y + @o(r) p(r)XEvED | Ase1)

— 5 B ) + 9lr) 2, 62)
in which ¢, and g, are already given in (1.32a) and (1.32b). According to
the arguments given in Section 2.2.2, it is clear that (6.2) is the base
function of irreducible representation 4, of the O,-group.

Since (6.2) is given by a linear combination of Y, (69)Y ", (6)
with & = k” = 2, it is necessary for obtaining an expression like (6.1)
to express the product of two spherical harmonics by a linear combi-
nation of spherical harmonics as

YiemA00) Yirm(0) = 3 tpm(k'm’, K'm") CP(8p). (6.3)
k.m
By using the orthogonality relation,

f do @8 sin § CE(8p)* CP(0p) = ﬁ—l 81’ Smm” » (6.4)

coefficient ay,,(k'm’, k"'m”) is obtained as

aunlnt, Kmty = 2L g 20 6in 0 CO*(09) Vi i(69) Virme(69)
C2k41

(_l)m'ck(klml’ B’ _m//)’ (65)

=
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which is nonvanishing only when
m=m +m' (6.6)

The values of c¥(k'm’, k" —m") are given in Table 1.2.
According to (6.3), (6.5), and (6.6),

Vi) Yaolfp) = o= [CO00) + 3 C2(69) + 7 CP0m)], (67)

Yauo(06) VeualOp) = \/ e, (6:38)
and

Y,e400) Yarlbp) = o= [ C909) — 2 C2069) + 3 C(69)]. (69)

Then, one finds that (6.2) is proportional to

2 C009) + |00 + 4| [C000) + R0 (610)

The angular dependence of the second term is in agreement with that of
the fourth-order term in (1.11) derived from the point-charge model.
Similarly, we may derive the explicit form of the potential energies of
low-symmetry fields. Let us first consider the system of tetragonal
symmetry illustrated in Fig. 1.7. As pointed out in (1.95) this system has
symmetry D,, . The character table for the D,,-group is easily obtained
from Table 1.3 for the D,-group. As seen from Table 1.3, the base of the
identity representation of the Dg,-group is the u base of the E, irre-
ducible representation of the O,-group. Therefore, the potential of the
D,;-field with & = 2 in the form of (6.1) is immediately found to be
proportional to
C@(6p). (6.11)

Since E, of the O,-group also appears when D is reduced as shown in
Table 1.2, there should be the term with ¥ = 4 in the potential which
transforms like the u base of E, . This term is obtained by using (2.37) as

‘Pu(r) ‘Pu(r)<EuEu | Euy + ‘Pv(r) ‘P’v(r)<E7)E'v | Euy

\/2 [—2u(r) @ul(r) + 24o(r) @o(1)]. (6.12)

Again, using (6.7), (6.8), and (6.9), one finds that (6.12) is proportional to

4

7 C(z)(B‘P) + 30(4)(&;)) %) [024)(3(;0) -+ C_(_i)(ﬂqa)] . (6.13)
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Putting the first term of (6.13) and (6.11) together, one obtains the Dy,
ligand-field potential, V., , up to k = 4 as

Vi = A0) C209) + B0) |C09) — 4|15 [CE(69) + Co]], (6.14)

where A(r) and B'(r) are the functions of r only. We can express (6.14)
as the sum of cubic and axial fields as follows:

Vtet(r) = Vco(r) + Vax,z(r)a (6'15)
where

Vax.s = A(r) C2(6g) + B(r) CL(6g). (6.16)
In (6.15) and (6.16)

V2 = — LB {008 + [ 10000 + o] 617

and

B(r) = 15—2 B'(r). (6.18)

In (6.16) V. , is invariant to rotations around the 2z-axis by any angle ¢
as it is independent of @. Therefore, it is the potential of an axially
symmetric field.

Problem 6.1. Calculate the potential energy of an electron due to the
ligand point-charges in the system of the D,-symmetry as shown in

Fig. 17. &

In contrast to the D,;-group, the D,-group has no inversion symmetry
so that the base function of the identity representation 4, of the D,-group
is given by a linear combination of the # components of E, and E, of the
O,-group. Accordingly, the D,-field potential has to have the odd-parity
part in addition to the even-parity part givenin (6.15). Since E, firstappears
when D® is reduced as seen in Table 1.2, the odd-parity potential of
the lowest order is given in terms of C{2(6p). The even-parity terms of
ligand fields are responsible for the term splittings and shifts, but the
odd-parity terms are responsible for allowing slightly the parity-
forbidden electric dipole transitions.

Problem 6.2. Show that the even-parity potentials in the C,,, Cy,,
and C, systems are given by V., in (6.15), and the odd-parity potentials
of the lowest order for C,, and C, are given in terms of C{})(8p), while
for Cy, it is given in terms of CP(8p). O
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At this point, it is important to make the following statement. In many
textbooks, ligand-field potentials are given as

Y At *Ci(09), (6.19)
km

which is derived by assuming that the potential V(r) satisfies the Laplace
equation

4V(r) = 0. (6.20)
The solution of the Laplace equation, which is analytic near the origin,
is given in the form of (6.19) in which the 4,,’s are numerical constants.
However, if one takes into account the spatial distribution of ligand
electrons extended toward the metal ion, one has the equation

AV(r) = dmep(r), (6.21)

where p(r) is the electron density of ligands. The solution of (6.21) is
given in the form of (6.1) rather than (6.19).

Now let us next consider the system in which ligands 1, 2, 3 are
displaced by & along the [111] direction and ligands 4, 5, 6 are displaced
by the same amount along the [T11] direction as shown in Fig. 6.1. This
system has symmetry D,;, which is the direct product of D; and C;.
The D;-group contains six elements: E, Cy(xyz), C3*(xyz) = Cy(X9%),
Cy(xp), Cy(yZ), and Cy(2¥). These elements are classified into three

Fi1c. 6.1. An MX; system of Dy; symmetry.

classes, £, C, , and C, . For this simple group, the character table can be
constructed only by the use of the orthogonality relations of the first and
second kinds given, respectively, in (1.67) and (1.69b). The character
table for D, thus obtained is given in Table 6.1. Comparing this table
with Table 1.1, one may derive the following reduction of the irreducible
representations of the O-group when symmetry is reduced to Dy :

A4, - 4,, Ay — Ay, E—E,

(6.22)
T,~> Ay +E, Ty~ A4, +E.
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TABLE 6.1

CHARACTER TABLE OF THE D;-Group

Irred.

repres. E 26, 36,
A, 1 1
A, 1 1 —1
E 2 —1 0

We see from (6.22) that the base of the 4,, of the Dy4-group reduced
from T,, of the Oy-group is (£ 4+ n + {)/4/3, consequently the angular
dependence of the ligand-field potential in the D,;-system with the
lowest k& (k # 0) should be the same as that of (yz + 2x + xy)/4/3.
The base of the A,;, of Dy; reduced from 4,, of O, clearly gives the
cubic-field potential with 2 = 4.

Before deriving the explicit form of the D,; potential, it is convenient
to introduce a new coordinate (XYZ), in which the Z and Y axes are

F1G. 6.2. Coordinates (X, Y, Z) and (x, y, 2).

chosen along the [111] and [110] directions, respectively, as shown in
Fig. 6.2. The relation between the (xyz) and (XY Z) coordinates is given
as follows:

1

ee Ly 1y 1

VIRV, RISV £
] ] ]
z:ﬁX—i—L_Z

V3 V3
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It is straightforward to show, by calculating the characters from the
transformation matrices and comparing them with Table 1.3, that the
angular functions tabulated in Table 6.2 may be the bases of the

TABLE 6.2
TRIGONAL Basgs

Irred.
repres. Components Bases o
T, a, Y1,(09)
a_ Y1..(89)
) Y14(09)
E Uy —{Y:_o(09) — \/2Y21(0<p)]/\/§
u_ [Y2x(09) + V2V, ,(89)]/ V3
T, Xy —[’\/iyz—z(o?’) + Yz](a‘P)]/’\/g
xX_ [\/2Y22(0‘P) — Y.(09)]/ V3
Xp Yo(09)

irreducible representations of the O-group: In the table spherical
harmonics are referred to the new coordinate system. One may also
show after elementary, but lengthy, calculation that the bases, which will
be denoted by ¢4, in Table 6.2 are obtained from the linear combi-
nation of ¢r,’s referred to the (xyz) coordinate system as follows:

orm = Y, or Ly | TM), (6.24)

in which the (I'y | I’'M)’s are the numerical coefficients: The unitary
matrices whose elements are {I'y | 'M ) are given as

Iy I'M u, u_
u —1 1 1
v [ i _i] * V2 (6.25)
and
NI ) ) )
;(f) [—w @ 1 ] 1
) |—& o 1|x—, (6.26)
y@ =1 1 1] V3

where w = €23 and @ = w2 = ¢—27i/8,
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Problem 6.3. Confirm (6.25) and (6.26).

By applying symmetry operations in the Ds-group, the functions in
each set of (u,,u_), (a,,a_), and (x,, x_) are shown to be the bases
of E, the a, function the base of A4, , and the x, the base of 4, of the
Ds-group. Therefore these functions are called trigonal bases. For
further discussions on the trigonal systems, it is convenient to have
Clebsch—Gordan coefficients for the trigonal bases, {I'\M I, M, | I'M .
As easily seen from the definition of C-G coefficients, the C-G coeffi-
cients for the trigonal bases are calculated from those for the cubic bases
as

<M TLM,y | M
= Z M, | F171><F2M2 [ Daysy{Tyyil sy | F7><FV | M, (6-27)

Y1Ve¥

in which necessary {<I'M | I'y)’s are already given in (6.25) and (6.26).
The C- G coefficients for the trigonal bases calculated by (6.27) are given
in Appendix VI.

Now returning to the problem of deriving the explicit form of the Dy,
potential, the 2 = 2 term, which is found to be proportional to

= (€ + 9+ 0/+V3, is given from Table 6.2 as proportional to
C§¥(0p), in which the spherical harmonic is referred to as the (XYZ)
coordinate system. The k& = 4 term, which transforms like the x,
component of T,,, may be obtained from

‘Pa:+‘Pa:_< Tox, Tox_ | Toxgy + ‘Pz_‘Pac+<T2x-T2x+ [ Toxoy + ‘Pxo‘Paco<T2xoT2xo [ Toxop
= (§1* (‘Pa:,,,‘Pa:_ + ‘Pa:o‘Pa:o)’ (6.28)

which, by using Table 6.2, is given in terms of the products of spherical
harmonics referred to the (XYZ) coordinate system. The products of
spherical harmonics other than (6.7)-(6.9) are expressed by the linear
combinations of spherical harmonics as follows:

Yaullp) YorrO) = — o= [CO69) + 3 C2(69) — 7 C(09)]  (629)

3 5\
Yousl0p) Yaullp) = 2 (3) CL0%). (6:30)
Using (6.9), (6.29), and (6.30), one finds that (6.28) is proportional to

2 C209) + {C0) — 5 (75)  1C0) — CY6p].  (631)
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On the other hand the term of cubic symmetry, which of course is
invariant to the D,;~symmetry operations, is obtained from

‘Pz+‘Pz_< Tox, Tox_ | Arer) + ‘Pz_‘Pac+< Tox_Tyx, | Arer) + @uPael ToXoTog | Ae
1
=3 (—202,90_ + PaPa,)s (6.32)

which, by using (6.9), (6.29), and (6.30) again, is found to be proportional
to

309 + [cop + () C¥60) — cBepn] (639

Neglecting the first term in (6.33) and putting together (6.31) and (6.33),
one finally obtains the potential in the D, ;-symmetry system as

Vtrig = VCO + Vax,Z: (6'34)
where

ver = D) [ceg) + () [C00m — cBeen],  (639)

Vax.z = A(r) C2(09) + B(r) CL(bg). (6.36)

The apparent forms of V,, , in (6.36) and V,, , in (6.16) are the same:
The only difference is that in the latter the quantization axis (z-axis) is
along the fourfold symmetry axis of the octahedron.

In contrast to the D,; case, the Ds-group has no inversion symmetry
so that the ligand-field potential in the D, system has to involve the
odd-parity part in addition to the even-parity part given in (6.34)-(6.36).
As seen in Table 1.2, T, first appears when D® is reduced. Therefore,
the odd-parity potential of the lowest order is given in terms of C53(0p)
and it is proportional to

Pa, P {T1a.Tox_ | Toxo) + Po_pu,{Tra_Tox, | Toxo»
i
=3 (Pa, Pz = Pa_Pa,)s (6.37)

where the explicit forms of ¢,, are given in Table 6.2. By using the
relations derived from (6.3), (6.5), and

3
Y3a(69) Yzual09) = 7= C209), (6:38)

Yia(09) ViriO0) = = =7 [C200) — CPO9L (639)
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Eq. (6.37) is found to be proportional to
Vile = EOCP(0g) + CE o), (6.40)

which is nothing but the odd-parity potential in the Dj-symmetry
system.

By using the above mentioned analytical method based on the group
theory, it is possible to obtain the explicit form of the ligand-field
potential in any symmetry system. However, in the analysis of experi-
ments, the derivation of the explicit form of the potential is not always
necessary and a more general treatment of the potential can be applied
as discussed in the next section.

6.1.2 TERM SPLITTINGS AND SHIFTS

Let us first calculate the splittings of the cubic 27T,, and 2E, terms in
the system of a single electron in a tetragonal field. The wavefunctions
associated with these terms are assumed to be those given in (1.31) and
(1.32), i.e., the d-functions. Due to the cubic part of the ligand-field
potential, the 2T, and 2E, terms are separated by 10Dq.

By using (6.16), (1.31), (1.32), and (1.15), the matrix elements of
Vox.; between the components of the 2T, term are given as

&N WVaxo 1 & = | Vaxo [ W
= (A(r)> (21, 21) + (B> ¢4(21, 21)

— LAy — 5 <BOY, (641)
Q1 Vi | 0 = CAGY> (22,22) + (B 422, 22)

— —2a6p + 55 B, (642)
| Va1 = 0| Vaxa | D = < | Vens | 6 =0, (643)

where for any function f(7) of »
Fep = [ arrf) R) (6.4)

Therefore, the energy eigenvalues of the three-dimensional secular
equation are obtained as follows:

E(Bzg) = <€ ! VaX.z l €>,

(6.45)
E(E) = & Vax,. | £,
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where state B, is nondegenerate and state E, is doubly degenerate. Thus,
the splitting O, of the 2T, is given as

Or = E(E,) — E(By)

3 5
=5 CA()> — 57 (Br). (6.46)
Similarly the matrix elements of V, , between the components of
the 2E, term are given as
2 6
| Vaxz |4y = 5 (A0 + 57 B, (6.47)
; 2 1,
@1 Vaxz | ) = — 5 (A + 57 <BOP, (6.48)
u|Vaxzlv) =0, (6.49)

which give the energy eigenvalues,

E(Ay,) = u| Vax,z | w0,

(6.50)
E(By,) = <v| Vax,. | 2.
Thus, the splitting Q, of the 2E, term is given as
Q2 = E(4y,) — E(By)
— 2 + 2 B 651

When the term separation between 2T, and 2E, is not much larger than
the tetragonal splittings O, and Q, , it is important to take into account
the nondiagonal matrix elements of V/,, , between the components of
Ty, and 2E, . However, in the present problem, one can show that all
nondiagonal elements are zero: This is clear from the group-theoretical
point of view since same irreducible representation of the D,,-group
does not appear in the reduction of both 2T,, and 2E, . The splittings of
the 2T, and 2E, terms are schematically illustrated in Fig. 6.3.

The next example is the calculation of the splittings of the 2T, and
2E, terms in the one-electron system with the trigonal symmetry. The
angular dependences of the wavefunctions referred to the trigonal axis
are assumed to be those given in Table 6.2. Again by using (1.15) and
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Frc. 6.3. Splittings of the ¢, 2E, and #,, 2Ty,

terms of O)-symmetry in a tetragonal (Dg,) field 10Dq

(01 > 0,0, > 0).
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tog 2T20 __!——
-

(6.36) the matrix elements of V,, , between the components of the 2T,

term are given as

{xy | Va.x,z o,y = {x_| Vax,z [ x_>

= — 1A — 5 <BOY,

(ol Vax 2| 0> = 2 <A@ + 2 (B,
oy | Vax,z | %) = (x4 | Vax,z | %)
= - | Vax,z | %) = 0,
which give the energy eigenvalues,
E(E,) = %y | Vax,z | %7,
E(Ayg) = <% | Vax,z | %o).
Thus, the splitting 3K of the 2T, term is given as
3K = E(E,) — E(4y,)

= — 246 ~ 2 <BOY.

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)

Similarly, the matrix elements between the components of the 2E, term

are given as
{us | Vax,z | u.) = {u_ | Vax,z [u_

= {xt| Vax,z | %>

(6.57)
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Therefore, no splitting but a shift of the %E, term is predicted in
agreement with the group-theoretical result in (6.22). Since the E,
trigonal representation appears in the reduction of both 2T,, and %E,,
one has nonvanishing matrix elements between the 2E, components of
Dy, in 2T, and 2E, as follows:

(g | Vaxz luyy = {x_ | Vax,z | u_)

= Y2 [3ca6)> + 3 B0Y]

— _VIK, (6.58)

which shift the two 2E, states in the opposite directions to increase their
separation. The splitting and the shift of the 2T, and 2E, terms without
taking account of the nondiagonal elements (6.58) are schematically
illustrated in Fig. 6.4. The inclusion of (6.58) decreases the splitting,
3K, if K is positive.

2
2
€ Eq ,_____E*'_
I0Dq Fic. 6.4. Splitting and shift of the £, *Ty, and e, *E,
terms of Oj-symmetry in a trigonal (Dyg) field (K > 0).
2 259
tag “Tog _f_——
-————-_—(\/
VoO3K o,
y Ag

6.1.3 ErrecTivE ELECTRIC-DIPOLE TRANSITION MOMENTS

As mentioned in Section 5.2.1, the parity-forbidden electric-dipole
transitions are slightly allowed by the presence of the static odd-parity
potential in the system having no inversion symmetry. For example,
in the Djy-symmetry system, the static odd-parity potential is given in
(6.40). In this subsection the selection rules and relative intensities will
be discussed by calculating the effective electric-dipole transition
moments between the split components of the terms in the one-electron
system with the Ds-symmetry.

It is easy to see that the use of the perturbation theory gives the
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effective electric-dipole transition moment P (a — ) between even-
parity states a and b as follows:

Pusta — 1) — 3 LVt DGIPID) ¢ @I PLDG Vo b (g

b

where 7 is the odd-parity states whose energies are the E;’s, and P is the
electric dipole moment, —e Y r; . The first term of (6.59) is the matrix
element of P between the small odd-parity component in state a and the
even-parity state b, and the second term is that between the even-parity
state a and the small odd-parity component in state b: The odd-parity
components are brought into the even-parity states by perturbation V44 .
Equation (6.59) is often simplified by using the approximation in which
the denominators (E, — E;) and (E, — E;) are replaced by a suitable
average, 4E. This approximation is called closure approximation. To this
approximation, (6.59) may be expressed as

Pos(a — 8) = s <a | VoaaP |B). (6.60)

Now, let us calculate the transition matrix element in (6.60) between
the split components in the one-electron system of D;-symmetry. We
first neglect the mixing of the 2E, and 2T,, terms due to (6.58), assuming
that the cubic-field splitting is much larger than the trigonal splitting.
For calculating (6.60) for the left and right circular polarizations, o,
.and o_, in the plane perpendicular to the trigonal axis and for the linear
polarization = along the trigonal axis, it is convenient to express P as

P—= —P k+ — P,k + P,k (6.61)

where
j % (Py + iPy), (6.622)
P — % (Py — iPy), (6.62b)
P, =P,, (6.62¢)

and

R — — \—}5 G+ if), (6.63a)
k- = \—}5 i — ij), (6.63b)

ke = k. (6.63c)
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In (6.63) i, i, and k are the unit vectors in the directions of X, Y, and Z
coordinate axes, respectively. In terms of spherical harmonics, (6.62) are
expressed as

J ‘3’3’”2 ¥1,(69),
P — ”“2”2 Y,4(69) (6.64)
Py = — 280 v 6.

We reduce the products of two spherical harmonics appearing in PV 44
into a linear combination of spherical harmonics: In the present problem
Voaa is given by V23S in (6.40). From (6.3) and (6.5) one may derive the

[¢]
relations,

Vy09) Yas(09) — 22 C800), (6.:65)
Vyall9) Varale) = — o= [3 (3) " chom) — ()" cop)]. (66
Youl06) Yiss(Or) — 32 C(60). (6:67)

By using these relations one obtains

C86)|, (6.68)

odd —erE(r) c@ Y c®)
Pty = =220 ackon) — (2)” clon) + 5
—erE(r)
R%E
Then, the transition matrix elements between the trigonal components

for the m-polarization are calculated by using (6.69) and Table 6.2 as
follows:

\/_

PyVis = [CY(89) + CY(69)]. (6.69)

(o | PyVidig | x> = 0, (6.70)
(x| PoViig | usd = 0, (6.71)
(s | PoVinig | uzy =0, (6.72)
Cop | PoVirig | > = — (o | PoVinsg | 0>

. VBeTEEY 6.73)

21
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Similarly, the transition matrix elements for the o-polarizations are
calculated as

Cre | PVERE s> = (s | P_VESE | us> =0, (6.74)
Cew | PLVEg | uz) =0, (6.75)
Cra | PoVESS  ury — — 2V LECD “rED (6.76)
(xo | PeVidtg | wsy = (x| P<Virig | s> = 0. (6.77)
(ot | P, Vinig | 2 = — (x| P_Ving | %,

_ V10 eGE@) ’ 678)

21

oy | PVimig | uy = — <o | P_Virig | w,>

= % (x| P Vg | 20, (6.79)

Since the transition probabilities are proportional to the absolute
square of (6.60), one may calculate from (6.70)—(6.79) the selection rules
and the relative intensities for the transitions between the split com-
ponents in the D;-symmetry system as shown in Table 6.3. In the table,
o, and o_ are the constants having the same nonvanishing value only
when light is left and right circularly polarized, respectively, and =
is also the constant having the same nonvanishing value only when

TABLE 6.3

RELATIVE INTENSITIES FOR THE 'T'RANSITIONS BETWEEN 2E, AND 2T,

! i
Cubic Trigonal ]l ]
[

term term Xo | Xy X_ 1 U, u_
) j
i t

2Ty, 24, X : 20, 200 | oy o_

i
{ i
{ |
{ 1
[ 1

2g X, : ; £ 4o,

x_ I | 4o_ L

{ i
[ |
i |
i {
1 [
u [ [
g, g + ! |
i |
| |
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light is polarized parallel to the trigonal axis. For the light linearly
polarized perpendicular to the trigonal axis, the relative intensities are
given by the coefficients of i2 and j? in the absolute square of (6.60)
instead of those of | k* |2 and | k= |2 for the circularly polarized light.
Noting the relations,

Pkt 2 = | ko2 = 32 + ), (6.80)

one may illustrate the transition diagram as shown in Fig. 6.5 for the
light linearly polarized along (7) and perpendicular to (o) the trigonal
axis, in which o is the same nonvanishing constant as 7.

Problem 6.4. Derive both the even and odd-parity ligand-field potential
in the D,-symmetry system up to the term of 2 = 4: Here the rhombic
distortion is along the x or y axis. Then, calculate the splittings and
shifts of the terms in the one d-electron system of cubic symmetry.
Also calculate the selection rules and relative intensities of the transitions
between the split components.

y e 'g
T 40
i o F1G. 6.5. Transition diagram for a single
: d-electron in a field of Dy symmetry.
i T 2E
20 tzquzq
2A‘

6.2 Wigner-Eckart Theorem

6.2.1 Low-SyMMETRY FIELD POTENTIALS As TENSOR OPERATORS

Let us define irreducible tensor operators of type I, X(I'), in such a
way that their components X ,(I') transform in the same way as the
bases @(I'y) of the irreducible representation I" under the symmetry
operations of the O,-group:

RXI)R™ =Y X,(I') Dy)R), (6.81)

where R is a symmetry operation of the O,-group. As discussed
in the previous section, low-symmetry field potentials are considered
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TABLE 6.4

IRREDUCIBLE TENsSOR OPERATORS IN TERMS oF Cusic HaRMONICS

Irred. tensor

operators Cubic harmonics

V(d,,) (x* + y* + 2* — 3r%) + (6th order) + -+

V(4,,) xMy?— 2?) + y¥(2® — x?) + 2%(«x?— y®) + (10th order) + -
VuE,) (32 — %) + (4th order) + ---

VAE,;) V3(x* — y%) + (4th order) + ---

VAT, ® V3xy(x? — y?) + (6th order) + -+

Vi(Ty) © xy + (4th order) + ---

V(d4,,) xyz[x¥(y? — 2%) + yH2? — x®) + 24x?— y?)] -+ (13th order) + ---
V(A4,.,) xyz + (7th order) + -

V(E.) V3xyz(x? — y?) + (7th order) + -+

VAE,) xyz(32%2 — %) 4 (7th order) + ---

V(Tw)® z + (3rd order) + ---

VTy) ¢ V3z2(x? — %) + (5th order) -+ -

2 The other components may be obtained from these by cyclic change of x, y, and =z.
For example, V(Ty,) « v 3y2(y® — 2%, Vi(Ty) « V3x(y*— 2?), and so on.

to be some of these irreducible tensor operators, i.e., real irreducible
tensor operators V (I'). For example, the Dg,-symmetry field potential
is V,(E,), the D,4-symmetry potential [V(Ty,) + V(To,) + Vi(T5)1/V3
in addition to the cubic field potential V(4,,), and the odd-parity poten-
tial of the Dy-symmetry [V(Ty,) + V(T3,) + Vi(Ts)l/V/3. Similarly,
one can associate 18 real irreducible tensor operators V. (I") with the
ligand-field potentials of certain symmetries as follows:

cubic and tetrahedral: V(A

tetragonal around the z-axis: Vi(Esn), Vo (Ti)*

V(Aszo,u)®
1

— [Vl Tog,n) + Vi Top,u) + Vie(Toy,4)]
trigonal around the [111]-axis: \/3[ Ta0.0) n(T0.4) (To)

1
% [Va(Tla.u) + Vﬁ(Tla,u) + V'y(Tla,u)]§

rhombie, the distortion along [100] or [010]: VAE;, )
the distortion along [110] or [110]:  V/(T,,..).

* Here, V,(T},,.) are not associated with the Dy,- and D,-potentials.
§$ These are not associated with the Dy~ and Ds-potentials.
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.These irreducible tensor operators may be expanded in terms of
suitable linear combinations of spherical harmonics: Such linear
combinations of spherical harmonics, Y, ¢4n Yim(0®), with a fixed value
of k are called cubic harmonics of the kth order. For example, the cubic
harmonic of the 4th order in V(4,,) is given in (6.10) (except the first
term with & = 0) and that in V,(E,) is in (6.13) [the first term C§P(fyp) is
the cubic harmonic of k& = 2 associated with V,(E,)]. The cubic har-
monics of the kth order can be expressed in the form of polynomials
Y cpxyP27 (o + B+ y = k) if they are multiplied by r*. To help
intuitive understanding of the irreducible tensor operators, they are
given in Table 6.4 in terms of cubic harmonics in the polynomial forms,
although it is unnecessary in the following arguments to know these
polynomial forms.

6.2.2 FacToRIZATION OF REDUCED MATRICES

Now we consider the matrix elements of irreducible tensor operators,
(aly | X)) | Ty = defP*(aF ) Xo(I)p(o' T'Y'). (6.82)

Since X,(I') transforms like base ¢(I'7) of irreducible representation I’
of the Oy-group, it is clear from (2.37) that the linear combination of
products X,(I") ¢(a'T"y’),
¢(Falrlrlly”) — ZX;‘/(F) (p(a/ I)’I)<FI)’IF)7 l F”’)’”>, (6.83)
122
transforms like base ¢(I'"y") of irreducible representation I'” of the

O,-group. By using the orthogonality relation between C-G coefficients
given in (2.34), (6.83) may be reexpressed as

XD)peTy') = 3 I« T'T"y' KTy | Ty Ty). (6.84)

o
Inserting (6.84) into (6.82), one obtains
{aly | X;(f)[ Ty = Z {aly | Fa'T'T"y"><F”‘y" | F"y'ﬁ)’/>, (6.85)
Fooe
where

(aly | T T'T"y"y = f dr(aly)* YT T'T"). (6.86)

Since (6.86) is nonvanishing only when the integrand transforms like
the base of irreducible representation 4, , we obtain (see Appendix II)

(aly | T/ DT> = Ix 81187, (6.87)
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where I, does not depend upon y and y”. Therefore, we express I as
Ip = (D)%l || X(I)|| &« T, (6.88)

and call {aI'|| X(I")|| «'T"") reduced matrix. In (6.88) (I")~1/2 is factorized
for convenience of later use. Inserting (6.87) into (6.85) one finally
obtains the formula,

(aly | XyT)| Ty = (D)Xl | X(D) || "Xy | I'y'Ty),  (6.89)

which is the mathematical expression of Wigner—Eckart theorem.
Equation (6.89) shows that the matrix elements with the same oI, «'I",
and I' but different sets of v, 9, and § are related to each other by
C-G coefficients (I'y | I''y'T'y)>. The usefullness of this theorem will be
demonstrated in the subsequent subsections.

Since C-G coeflicients have the properties,

(D)1 Dy | PyTyy = (ITTYDY VT [ Dy, (690)
where
(TAT") = (I'T,I") = 1, (6.912)
T4,y = (I'Ty ") = —1, (6.91b)
and
«(TEI") = 1 (6.91c)
except for
«(T,ET,) = «(T,ET,) = —1, (6.91d)
one may easily prove the relation for real operators X (I') = Vy(I') as
follows,
@I || VY|« = TP | V) oD, (692)

which shows that

el V())jaly =0 for I'=2A, and T,. (6.93)

For purely imaginary operators* X, (I') = T,(I"), a similar relation to
(6.92) may be proved as

G| T Ty = —(IT"X T || T oL, (6.94)
which shows that
al|T(D)fel> =0 for '=A,,E and T,. (6.95)

# For example, the angular momentum operator ! = —ifir X V is a purely imaginary
operator T(Ty,) which will be discussed fully in the next chapter.
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6.2.3 SiMPLE APPLICATION OF WIGNER-ECKART THEOREM

In Section 6.1 the term splittings and the relative intensities of the
parity-forbidden transitions were calculated by the use of the explicit
forms of low-symmetry potentials, to the approximation in which the z,,
and e, orbitals are the d-functions. This assumption made it possible
to cut off the higher order terms with & > 4 in the expansion of the
potential in terms of cubic harmonics. However, this assumption is not
necessarily valid in practice, and in what follows the same problem will be
treated by using the Wigner—Eckart theorem without making such an
assumption.

Let us first consider the splittings of the 2,, 2T}, and the ¢, 2E, terms
in the D symmetry system. The even-parity D, -potential may be
represented by irreducible tensor operaotr I, (E,).* The splitting of the
ty, 2T, term is obtained by calculating the following matrix elements:

1
V3
By using C-G coefficients in Appendix II, (6.96) with various y and " are
calculated as:

<t2:7£ [ Vu(E,) | tae€> = {tygn | Vu(Ea) [ tagm>

= — 3t | VB | >

1
T T 24V3 oo | V(E,) || 135 (6.97)
the others are zero, which agree with (6.46) if the reduced matrix element
is related to Q; as

{tagy | Vu(Ea) | togy'> = (o |l V(Ea) | 220 Tay | Toy'Ens). (696)

2
(tye Il V(Ea) ltop> = — _\7’391 . (6.98)
In contrast to the present results in (6.97), the lack of the relation,
| Vaxa | & = —3L | Vax,o | £, in the previous results in (6.41) and

(6.42) is due to the subtraction of the cubic potential part from V. in
(6.14): tensor operator V,(E,) corresponds to V. . Similarly the
splitting of the ¢, 2E, term is obtained by calculating

Ceor | V(By) | e’y = % (oo || V(E) || e<Ey | EyEu>.  (6.99)

# Here, V,(T,) is not associated with this potential as it changes the sign under the
operations in 2C, and 2, classes in Table 1.5 as easily seen from the expansion form
of V,(Ty,) in Table 6.4.
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By using C-G coefficients in Appendix II again, one obtains

<egu ] Vu(Ea) ‘ egu> = - <eg7) l Vu(Eg) ‘ egv>
= — $<e | V(E)) |l e, (6.100)

the others are zero, which agree with (6.51) if

e || V(B |l ey = —Qs - (6.101)

Again the lack of the relation, <u | V,, ,|u) = —<v| Vyz,| o, in the
previous results in (6.47) and (6.48) should be contrasted to (6.100).
The absence of the nondiagonal elements of V,(E,) between the 2T,
and 2E, terms is easily seen, as <{T,y| Ey’Eu) are always zero:
E x E: A4, + A4, + E involves no T, .

The next example of the application of Wigner-Eckart theorem is the
calculation of the relative intensities of the electric-dipole transitions as
those discussed in Section 6.1.3. The odd-parity potential V234 in the
Dy-system may be represented by V, (7,,).* On the other hand, the
electric-dipole moments, P, , P_, and P, are represented by irreducible
tensor operators U, (Ty,), U, (Ty.), and U,(Ty,), respectively. By
using (6.84), the products of two tensor operators are reduced to linear
combinations of tensor operators W, (I") as follows:

Pi = U (Tlu) Va:o(Tzu)

= F W B) = WoTu) + 5 We (T (6102
Py = Up(T1) Ve (Tou)
— — LWy + V2w ) (6.103)
The matrix elements of B, for the 7-polarization are calculated as follows:
(tago | Pyl tos> = 0 (6.104)
(tago | Py | egtey = (tygxs | Py | euz) =0, (6.105)

as all the C—G coefficients appearing in the matrix elements of W(4,,;)

* Here, V(4,,) and V, ( T,.) cannot be the Dy-potential as they change their signs
under the symmetry operatlons in the 3C, class as shown in Table 6.1 and (6.22).
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and W, (T,,) between these trigonal components are zero. Nonvanishing
matrix elements of P, are

1/2
<t20x:l: , PO | eaui> = (%) <t20xd: l Wao(Tla) } eau:k>
\/— <t20 | W(T1) [l €5 (6.106)

For the o -polarization, one sees that

{togs | P+ | ety = (tygs | P_ | equs)y = {tygis | P:E | ez
= (tae% | Pi [ tggs)> = {tag¥o | P:E | eusy =0, (6107)
as all the C-G coefficients appearing in the matrix elements of W, (E,),

W, (Ty), and W, (sz) between these trigonal components are zero.
Nonvanlshlng matrix elements of P, are

<t20x:i: [ P? l eau¥>

= é<t20 “ W(Tla) ” ea> 3 <t20 ” W(ng) “ (6108)

2\/

(togy | Py | tzax=F>

= 575 | W(E) | 1) F - <t20 Il W(To0) || 2267, (6.109)

3\/2

<t20x0 l Pi l eau¥>

=+ é {tao || W(To) || €0 = 5 <tao | W(T25) [l 6> (6.110)

2\/3

In (6.109) the reduced matrix {t,, || W(Ty,)l t,> is set to be zero, as
operators U(T,,) and V(T,,) may be chosen to be real, and one can apply
(6.93) to this case.

In contrast to the relation derived from (6.73), (6.78), and (6.79) such as

Cag | Pyluyy = (o | Py
—Ka_ | P luy, (6.111)

which was obtained by approximating the #,, and e, orbitals as the
d-functions, the present result in (6.106), (6.108), and (6.110) shows only
the relation,

<xOIP+|u_>+<x_[P+[u+> = —<x+[P0[u+>. (6.112)
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Relation (6.112), of course, is satisfied if (6.111) is assumed, but in the
present calculation, (6.111) is satisfied only if we have the relation,

L

V3
Similarly, the previously obtained relation (6.79) is valid only when the
following relation holds in addition to (6.113):

(tag | W(Tyg) |l €3>

(oo || W(To) 1 &> = tae || W(T30) || - (6.113)

1
242
Problem 6.5. By using the irreducible tensor operators for the ligand

field and applying Wigner—Eckart theorem, derive the answers to
Problem 6.4. In this case be free from the d-function approximation. <

= — % (oo || W(E,) | tagy + Ltog | W(Tap) [ ta>- (6.114)

6.3 Many Electrons in Fields of Low Symmetry

6.3.1 CALCULATION OF THE MATRIX ELEMENTS

As discussed in Section 6.2, the matrix elements of the low-symmetry
potential V(I') between the

(S:T0) & (SeT)STMy  and  £3(S,'Ty) ' (SyT)ST'MYy

(n 4+ m =n" + m' = N) states are calculated by using Wigner—Eckart
theorem as follows:

An(SyT) &™(SoTs) STMy | Vo(I') | 63(Sy'Ty) € (Sy'Ty) ST'M'y'>
= §(SS") (MM Xy Iy | 'y T3
X (Ea(SiTy) €™ (Sol) ST || V(D) | Sy TY) € (S’ Ty) ST, (6.115)

In deriving (6.115) we have used the fact that the ligand-field potential
involves no spin operator. By using (6.115) it is possible to discuss the
term splittings leaving reduced matrix

EalSyIy) &(So) ST V(D) | 65(Sy Ty €5 (S, Ty') ST

as adjustable parameters. However, to reduce the number of adjustable
parameters, it is more convenient to express the reduced matrix for
many electrons in terms of the reduced matrix for a single electron.
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The ligand-field potential V(I') in a many-electron system is given as
the sum of the potentials for individual electrons 7 as follows:

VD) =}, o), (6.116)
where v,,(I") is the function of electron coordinate r; . Since the many-
electron states 13,6, »SI"My are given by the linear combination of Slater
determinants, by using formulas (3.33)-(3.35) the matrix element in

(6.115) may be expressed in terms of <{ty, || o(I)|| #,,>, <e, || o(I')|| €,>, and
tog l| 0(T)| €,>; in particular, from (3.35)

toe,"ST || V(D) || 13,5 **ST"y =0 for [k|>2, (6.117)
from (3.34)
toe,"ST | V()| £557] STy = Colty, || o(T) [ €, (6.118)
and from (3.33)
Ctage,"ST | V(T) || th,6,"ST"y = Ciltyy || ()| 225> + Cole, | (Tl ), (6.119)

where C,, C;, and C, are numerical coefficients depending upon the
states of interest and I'. From (6.93) and (6.119) one sees that

(e, ST V(T')|| to,e,"SI"> =0  for '=4, and Tj. (6.120)

The calculation of C;, C,, and C, is straightforward as the wave-
functions are already known. For example, C, for

<tga 4‘429 ” V(ng) ” t;a(a Tla)eg 4Tlg>

may be calculated as follows: By using Tables 3.2 and 3.4, and also
formula (3.34), one obtains

(04,5 | V(L) | 12T Ty 5 )
= — [dr et VT | ) = —C 0T |0, (6.121)
Noting the relations
(144,35 | VAT | 620Te 4Ty S )

T \/Lg (8 44, || V(Ty) || 1:3(CTy)e 2T (6.122)
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and
1

& o(To) [up = V3

|| v(T) || €, (6.123)
one finally obtains
(8 4, || V(Ty) | 1°CT1)er Ty > = (L[| o(To) || €)- (6.124)

Similarly C, and C, for <{t,2(3T,) e 4T, || V(T,)| t,23T,) ¢ *T,> may be
obtained as follows: By using Table 3.4 and formula (3.33), one obtains

(tOTe T, §m | VAT | 130T e T, 3 £)
=3 [3 [ar | w1 V(To) 1 ntu | — [ dv) &0 (VAT [ nio ]

= 3 €1 v(To) [ - (6.125)

Noting the relations

(80T AT, 3 | VAT [ 65T e Ty 3 £)

= % EPCTY)e *T, || V(Ty) || 12(Ty)e 4 To (6.126a)

and
1

Elo(T) I = v

$ty [l o(T) 1] 2D, (6.126b)

one finally proves that
PCTY)e *To || V(Te) || 823 Th)e *Toy = $<tp || o(Ty) || - (6.127)

In this case C, turns out to be zero.

Problem 6.6. Calculate C, and C, in (6.119) for

PCT)e *Ty || V(Ty) || 153 Ty)e 2 Ty
and
EECTy)e *T || V(E) || 12 (3Ty)e *T7>

withl'=T,and T,.
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6.3.2 THE REDUCED MATRIX IN COMPLEMENTARY STATES

Since the matrix of the ligand-field potential is hermitian and real,
the matrix elements of V(') in the complementary states are related to
each other as

(BM(S ) e™(Sels) S'My | VV(I_“) | t;"(Sl’Fl’) e”"(SZ’FZ’) SI"My">
= — (ST (ST STMy | V(T | 157
X (SYTY) er™(S,' Iy SI" My
(n+m=n+m %5  (6128)

as shown in (4.52). Here we neglect constant F, appearing in the diagonal
elements. Equation (6.128) tells us that

™S Ty) €M(SyTy) ST || V(D) || 85 (SyTy) €™ (Sy'Ty) SI™y
= (S T) (SoT) ST || V(D) | 857 (Sy'Ty) €™ (Sy’Ty) ST
n+m=n+m#£5. (6129

In particular, if the states have a half-filled subshell configuration such
as 1,3, one may show from (6.129) and (4.22) that

PST || V(D) 8°ST"p = ST || V(T) | 2SI g
= —papty EPST || V(I) [ £°ST),,  (6.130)

where L and R refer to the L and R states, respectively, and x, and p,’ are
the phase factors defined in (4.22) associated with ¢,3ST" and ¢,3ST",
respectively. From (6.130) one immediately sees that
AST | V()| £2ST> = 0, (6.131)
and
UISTI VD) 13ST7> #0 (I M) (6.132a)

only for the combinations
SI' = 2E, 2T, and SI" = 2T,, and vice versa. (6.132b)

Similarly,
ST V(I || ST = 0, (6.133)
and
STV ST #0 (I # IY) (6.134a)
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only for the combinations
SI' = 1E and S’ =14, , and vice versa. (6.134b)

In the case of n + m = n’ + m’ = 5, one may derive by using (4.51)
and (4.28) the relation,

$E(SiTy) €7(Sole) ST | V(D)1 85 (Sy'TY) €™ (S, Ty) STy,
= — B(S T e(S, Iy ST | V(T [ 857 (Sy'Ty) 7™ (S, Ty) ST">x
=~ gty B3 (S2 1) €4S Ty) ST | V(T | 457
X (Sy'Ty) er™(Sy'Ty) SISy . (6.135)

In deriving (6.135) one has used the fact that (—1)»m(—1)»™ =1 for
n+m=n" 4+ m' = 5. Equation (6.135) shows that, if n % 3 and
n' # 3,(6.128) holds evenforn + m = n' + m' = 5 as pypop,’'p,” = 1.
If n = 3 and n’ 3, one has

XSy Ty) €(Sal) ST V(T) || £ (SyTy) €™ (S, Ty') ST
= — f‘“lf‘“2<t23(S1F1) e2(S2F2) ST V(P) I tg_n’(Sllrl,) e4—m'(52/p2/) Sy
(' #3) (6.136)
and, if n = 3and n' = 3,
(S, T) €(S2Te) ST || V(I || 83(Sy ' Ty) (S Ty') STy = 0
for SiI'y, Soly, STy, and S,'Ty giving pypop'ps’ =1,  (6.137)
which shows
(t3(S,T) €(SoTo) ST || V(D) | 8.3(S1Ty) €X(Sol) STy = 0. (6.138)

As shown in (6.131), (6.133), and (6.138), the diagonal matrix elements
of any low-symmetry potential in the states of the half-filled shell
configurations, £,% €% and t,%? vanish. This tells us that the spectral
lines due to the transitions between the terms of the same half-filled
configuration are not broadened by the vibrational fluctuation of low-
symmetry fields.

Problem 6.7. By using the argument given in Section 3.1.2, show that
(S Th) €(Sols) ST V(T) |1 4,7(Sy'TY) em(Sy'T,)ST
= 8(5151) 8(SySe Kty (SuT1) €7(S,Ty) ST || V()| £,%(S1 1) €(S, ') ST, &



Chapter VIl SPIN-ORBIT INTERACTION

The spin-orbit interaction has its origin in the relativistic theory, and
in the case of a single electron in atoms it is derived from the Dirac
equation as

Heo = E() 1 - s, (7.1)
where £(r) is

. eh? ldU(r)
2mic? r dr

with spherically symmetric potential U(r) for the electron. Classically,
this interaction may be viewed as the interaction of the magnetic moment
of an electron spin with the magnetic field induced by the motion of the
nucleus around the electron: The nucleus is seen from the coordinate
system fixed on the electron.

The strength of the spin-orbit interaction in iron-group ions is about
one order of magnitude smaller than that of the Coulomb interaction,
and is comparable to that of low-symmetry ligand fields. Therefore, the
spin-orbit interaction as well as the low-symmetry ligand-field pertur-
bation is responsible for the fine structure of multiplets. The spin-orbit
interaction differs from the low-symmetry field perturbation in that the
former involves spin operators, while the latter does not. The presence
of spin operators makes it possible to connect the terms of different
spin-multiplicities, which is important in discussing, for example, the
intersystem combinations as briefly mentioned in Section 5.2.1.

154
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7.1 The Problem of a Single d-Electron

7.1.1 ORBITAL ANGULAR MOMENTUM

Before begining the detailed discussion of the spin-orbit interaction,
it is instructive to present the matrix elements of the orbital angular
momentum in the cubic system with a single electron t,, or e, whose
orbital is made from the d-function. From the well-known relations?

lz‘le(r) = m‘le(r)r (72)
Lgin(r) = [l + 1) — m(m £ D'/ @ruy(F),

where
L=14+i,

it is straightforward to calculate the following matrices of [, , ,, and [,
by using the explicit forms of the ¢,, and e, orbitals in (1.31) and (1.32):

3 N 4 u v
~ 0 0 0 - —43 —i]
0 0 i - 0 0
A R (7.3)
V3 0 o0 0 0
| i 0 o0 0 0]
-0 0 —i Y 0]
0 0 - V3 —i
L= 0 0 0 op (7.4)
0 —V3 0 0 0
| 0 i 0 0 0]
" 0 i 0 0 0]
—i 0 0 - 0 0
A T .5
0 0 o0 0 o0
| 0 0 —2 0 0]

As seen above, the matrices of the angular momentum are hermitian and
their elements are purely imaginary (note that the bases are real). It is

* Throughout this book, the matrix elements of angular momenta are given in unit of #.
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also seen that all the matrix elements of /in the ¢, state are zero. This
means that the orbital angular momentum is completely quenched in
the ¢, state. Therefore, there is no first-order spin-orbit interaction in
this state.

In the ¢,, state the orbital angular momentum is not quenched. It is
interesting to compare the matrix elements in the #,, state with those
in the p state in free atoms which are given as follows:

P Py P
0 0 0
L=|0 o0 —i, (7.6)
Lo ¢ ol
( 0 0
IL,=|0 0 of .7
i 0 o0
0 —i 0
L=|i 0 o (7.8)
0 0 ol

Then, one immediately sees the relation

I(t0) = —1(2), (7.8)

which tells us that the expectation value of 12 = [,2 + [,2 4 [2 in the t,,
state made from the d-states is /(! + 1) not with / = 2 but with / = 1.
This means that the orbital angular momentum is partially quenched in
the t,, state. Relation (7.8") is called T-P equivalence which will be
discussed in detail in Section 7.3.2. It should be noted that the 7-P
equivalence is only a formal matter as seen from the fact that I(z,,) does
not satisfy the commutation relation which the angular momentum
should satisfy: This is due to the neglect of the nondiagonal matrix
elements between the #,, and e, states given in (7.3)~(7.5). However, if
the cubic-field splitting is large, the neglect of the nondiagonal elements
is justified and the 7-P equivalence may conveniently be used for
practical purposes.

7.1.2 SPIN-ORBIT SPLITTING

As the simplest example of the term splitting due to the spin-orbit
interaction, let us calculate the splittings of the 2E, and 2T, terms in
a single-electron system assuming that the spin-orbit interaction is given
by (7.1) and the ¢,, and ¢, orbitals are the d-functions. We further assume
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that the cubic splitting between the 2T, and 2E, terms is much larger than
the spin-orbit splitting of these terms. In this case the spin-orbit inter-
action is ineffective in the 2E, term as the orbital angular momentum is
completely quenched in this term as mentioned in the previous sub-
section.

To calculate the matrix elements of the spin-orbit interaction in the
2T, state, the following well-known matrices of the spin operator are
used:

m,= 3 —3%
- e
s=1[0 ‘g] X3, (7.9)

From (7.3)-(7.5) and (7.9), the matrix of the spin-orbit interaction,
%0 = f(r)(lxsz + lysy + lzsz)’ (710)

in the 2T, state is derived as

19 (7.11)

which can be reduced to two three-dimensional matrices as follows:

¥ I -¥ -3 -4 ¥

0 i —I 0 —i 1
[— i 0 i} X 3, [i 0 i] X 3L. (1.12)
-1 —i 0 1 —i o
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In (7.11) and (7.12) { is given as
¢ = [ drreR20) £0). (7.13)
0
The matrices in (7.12) can be partially diagonalized as
R 1 o U T
-1 0 0 1 0 —v2
0 1 —\/2] x 3, { 0 -1 0 ] x ¥, (7.14)
0 —v2 0 —/2 0 0
if one takes the following linear combination of ¢ and 7 as new bases:

1

te = F 5 (& £ ). (7.15)

Then, one obtains the eigenvalues of (7.14) as
a=—¥ =1 (7.16)

in which ¢, has fourfold degeneracy and ¢, twofold degeneracy. The
eigenfunctions associated with ¢, are

ol

(7.17)
b= = [o 0 (3 75) + V2o 0 (3 1)),
and those associated with e, are
bt = 2= [V2ed (3 Fa) — @ 63 12)  (119)

It is interesting to compare these results with those of the 2P state
with a single p electron. We know that the 2P level splits into | = 3/2
and | = 1/2 levels whose separation is given by Landé’s interval rule as

c(J=9—e(J=h) =41,, (7.19)

where {, is given by an expression similar to (7.13) in which Ry(r) is
replaced by the radial part of the p function. Our result in (7.16) is
identical to (7.19) if one makes the following replacement: ¢, — (] = 3),
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€&, — (] = %), and {— —{,. The wave function associated with the
J = 3/2level are

s (1= M=£)) = o £1)6 (3 +3)
(7.20)
8 (7= M=) = 2= [ote £00 (3 75) + V20(00)0 (3 3)].
and those associated with | = 1/2 are
8 (J=g Mi=3) = Z5 [V2sts 200 (3 75) — we0)0 (3 45)] (20

In (7.20) $(% + ) are obtained by operating [z = I + s; on ¢(3 4-3)
and ¢(3 +3) are obtained by making them orthogonal to #(3 +3).
Wavefunctions (7.17) and (7.18) are, respectively, identical to (7.20) and
(7.21) if one makes the replacement, ¢(¢,) — ¢(p +1). A similarity of
the spin-orbit splitting of the 2T, term to that of the 2P term comes from
the 7-P equivalence given in (7.9).

So far we have neglected the nondiagonal matrix elements of the spin-
orbit interaction between the 2T, and 2E, terms, assuming that the cubic
field is much larger than the spin-orbit interaction. These nondiagonal
elements are calculated from (7.3)—~(7.5) and (7.9) as follows:

u v
e I
; [0 V3 0 —i
— 3| =3 0 - —i
1 0 3 0 —I
1 _1l_va ‘/0 , x . (7.22)
;3 0 0 2 0
—3l o 0 0 —2

The nondiagonal elements can be shown to be zero between the ¢, state
and 2E, term as shown in the following problem:

Problem 7.1. Show that the spin-orbit interaction does not connect the
2E, and ¢, states.

Furthermore, they bring no splitting of the ¢, and 2E, levels. These
points will be discussed in the next section in the light of the group
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theory. The absence of the spin-orbit splitting of the 2E, term may simply
be shown, in case the spin-orbit interaction is much smaller than the
cubic field strength, by using the perturbation calculation: In the
perturbation treatment the energy shifts of the 2E, My states are given by

4E=Y

My’

[CCEMy | Hgo [*To,M'yH12 382
10Dg ~ 20Dg’

(1.23)

which is independent of M and y.

7.2 Double-Group

7.2.1 ROTATION IN SPIN-SPACE

As is well-known, electron spins provide an additional freedom to
electrons, a spin-space. Here, we consider how the wavefunctions
involving spin coordinates are transformed by the rotation in the spin-
space. For simplicity let us denote wave-functions ¥Y(a.SI"My) as ¥(SM)
omitting the orbital specification. Wavefunctions ¥(SM) were introduced

as the eigenfunctions of spin operators 8% and S, to satisfy
S2Y(SM) = S(S -+ 1) ¥(SM),
( (7.24)
S,Y(SM) = M¥(SM).

In addition to these, the following relations can be derived from the
commutation relations for spin operators:

SP(SM) = [S(S -+ 1) — M(ME1)2 ¥Y(S M41), (7.25)
where
S. =S8, +1iS,.

Now, considering that .S is transformed like a vector, one may show that
RSS¥Rj5) = S2,
RES(RS)™ = S,, (7.26)
RES{(RS)™ = FiaS,,

where R, is the spin rotation operator around the z-axis by angle «.
Then, it follows from (7.24) that
RFSHRS)RSP(SM) = S2RSP(SM) = S(S + 1) RSV(SM)  (1.27)

and
RSS(REIRSV(SM) = S,RSV(SM) = MRSP(SM). (7.28)
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Equation (7.27) shows that RS¥(SM) is also the eigenfunction of S2
with eigenvalue S(S + 1), consequently it is given by a linear combi-
nation ¥, CrarP(SM’). Therefore, just as in the case of con-
tinuous rotations in the position-coordinate space, ¥(SM) (M = S,
S — 1,..., —8) form the bases of (25 + 1) -dimensional irreducible
representation D'S). Combined with this fact, Eq. (7.28) shows that

RSP(SM) = 1u(Me) ¥(SM), (7.29)

where u(Ma) is a constant depending upon M and «, and because of the
normalization of ¥(SM) it should satisfy

| p(Ma)i2 =1 or p(Ma) = e~#MMa), (7.30)

In (7.30) A(Mo) is a real function of M and «. Since A(MO0) = 0, A( M)
for very small « may be expressed as A(Mo) = Ay Considering that the
rotation by any angle « may be achieved by successive rotations by very
small angles, one finally obtains

((Mo) = exp(—ipga) (7.31)
for any angle o. On the other hand, it follows from (7.25) that
RSSL(RS)RSP(SM) = e¥=S.R SP(SM)

= [S(S + 1) — M(M + D]*2RS¥(S M + 1), (7.32)
which, by use of (7.29) and (7.31), is expressed as

2 exp[—i(Ayy — Apgen)ol] SeP(SM) = [S(S + 1) — M(M &+ D]'2¥(S M + 1).

. (7.33)
Equation (7.33) shows that
At — dagsy = F1, (1.34)
whose general solution is
Ay =C+ M, (7.35)

in which C is a real constant independent of M. We choose C to be zero
so that the transformation property in the spin space is similar to that in
the position-coordinate space as given in (1.74). Then one obtains the
transformation

RSP(SM) = e~M=p(SM). (7.36)

Notice that this choice of C makes R,® commute with the time reversal
operator K = K K, given in (4.30), in which K is now considered as the
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complex conjugate operator acting also on the phase of the spin function:
Readers will see from (7.31) and (4.32) that expressions

KR SP(SM) = eHC+Ma (_)S-MP(S — M) (7.37)
and
RSKP(SM) = (—1)5-M g P(S — M) (7.38)

are not identical to each other if C # 0. Just as in the case of calculating
x'"(a) in (1.76), the character of D)(R.,®) is obtained from (7.36) as

sin(S + 4o

xe) = — G Ta (7.39)

In contrast to the case of x'?(a), where / is always an integer, .S in
x''(«) can be a half-integer. For half-integral S, one sees from (7.39) that

X(a + 2m) = —xa). (7.40)
For example, for half-integral .S one has
x(0) =28 + 1,
(7.41)
xS(2r) = —(2S + 1).

Therefore, the representations for half-integral S are, in general, double-
valued: The exceptional case is for « = =, for which the representations
are single-valued as y'(n) = x*)(37) = 0. Such a complexity of the
double-valuedness may formally be avoided if the rotation period is
considered as 4 instead of 27 in the spin space with half-integral S.

7.2.2 CuBic DouBLE-GROUP

Let us consider the N-electron system with cubic symmetry whose
electron Hamiltonian is given as

where
‘% :th’
H = Zgii)

Heo =Y &) ) v s,

In (7.42) f; is the one-electron operator defined in (2.2) and is invariant
to any symmetry operation of the O-group, and g,; is the Coulomb
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interaction operator, which is also invariant to any symmetry operation
of the O-group. Since 5%, is the scalar product of I and s, it is invariant
if the same rotation is applied in both the spin-space and the position-
coordinate space simultaneously: In this case | and s may be regarded as
two vectors in a single space. The simultaneous and common rotation
Ros in both the spin and position-coordinate spaces may be expressed as

Ros == RORS = RsRo, (7.43)

where R° is the rotation in the position-coordinate space and R® is the
same rotation in the spin space. The result of our argument is

RoSH#(RoS) 1 = (7.44)

for R°® involving R° of the O-group. It should be noted that &(r) in 5,
is not necessarily spherically symmetric but could be of cubic symmetry
for H# to satisfy (7.44).

Before discussing physical problems related to (7.44), we now study
group theoretical problems associated with R°s. It is evident that the
aggregate of R°® with R of the O-group forms a group. However, to
avoid the double-valuedness of the spin-rotation group as mentioned
in the previous subsection, we also assume the fiction that the period of
the space rotation is 4, i.e., the cubic system is not to go over into itself
on rotation by 27 around an arbitrary axis but only on rotation by
47r. Then, the number of elements in this group is twice as many as
in the O-group. This group is called cubic double-group. Although the
number of elements is doubled, the number of classes is not necessarily
s0. The reason is explained as follows: In a double-group with the
rotation period 4w, the inverse of a rotation by angle = around a symmetry
axis denoted as R, is equal to R, R, where R is the rotation by angle 2=
around the same axis. Then, if the direction of this axis can be inverted
by a rotation in the group, R, and R, R should be associated with the same
class. For example, there are eight classes in the cubic double-group,
while there are five classes in the O-group.

Since the cubic double-group has forty-eight elements and eight classes,
the application of (1.71),

124 12 122 432 - 324 22 4 22 4 42 — 48,

shows that in this group we have two two-dimensional (denoted by E,
and E,) and one four-dimensional (denoted by G) irreducible represen-
tations in addition to those found in the O-group. These additional
irreducible representations are called double-valued representations,
whose characters are different in sign for rotations « and o + 27 (« # ).
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To construct the character table of the cubic double-group, we show
the classes and the symmetry operations in each class in the tabulation.

Classes Symmetry operations
E Rotation by 0 (or 47)
R Rotation by 27 denoted by R
¢y C., CSR=Cy'
G, Cd, CR=(CH?
Cp C?, CPR = (CH?
¢y Cy, CgR=C;'
(o4 Ci?, CyR = (C)!
¢, C;, GR

The characters for single-valued representations 4, , 4, , E, T; , and T,
should be the same as those in Table 1.3 with the same values for the
sets of E and R, €,/ and €7 , and €' and Cy . It is evident from (7.41)
that the characters of double-valued representations, E;, E,, and G,
for operation E are 2, 2, and 4, and for operation R are —2, —2, and -4,
respectively. It is also evident that all the characters of the double-valued
representations for C,2 and C, are zero as the rotation angles are 7 and
3w, and the characters for C; and C; are, respectively, just those for C,’
and C;’ with the signs changed. Then, with the help of the orthogonality
relations (1.67) and (1.69b), the remaining unknown characters for the
double-valued representations are calculated as shown in Table 7.1.

TABLE 7.1
CuARACTER TABLE ror Cunic DousLeE-Groupr
Bethe E R 6Cy 6C,” 62 8Cy 8Cy 126,
I, A, 1 1 1 1 1 1 1 1
T, A, 1 1 —1 —1 1 1 1 —1
I, E 2 2 0 0 2 —1 —1 0
r, Ty 3 3 1 1 —1 0 0 —1
Iy T, 3 3 —1 —1 —1 0 0 1
I, E, 2 —2 V2 —v2 0 1 —1 0
r, E, 2 —2 —v2 V2 0 1 —1 0
r, G 4 —4 0 0 0 —1 1 0
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Calculating x'S)(o) with half-integral S for particular « by use of (7.39)
and comparing them with the characters in Table 7.1, one may derive
the scheme of reducing D) with half-integral S into the double-valued
representations of the cubic double group when rotations in the spin
space are restricted to those of the cubic double-group. Such a reduction
scheme is given in Table 7.2.

TABLE 7.2

RepucTioN OF D'S? INTO REPRESENTATIONS
ofF CuBic DouBLe-Group

S Irred. reprs.
1/2 E,

32 G

512 E,+ G

72 E,+E+G
9/2 E, + 2G
11/2 E, + E; + 2G

Problem 7.2. Derive the character table for the double D-group given
in the tabulation, where

C/: Cy, CgR,
Ci: C& CR,
Ci: C2, C2R,
C.: Ci, CR,

Gy : CY, CyR.

E R 267 26, 262 4G, 4Gy
Ay 1 1 1 1 1 1 1
A, 1 1 1 1 1 —1 —1
B, 1 1 —1 —1 1 —1 1
B, 1 1 —1 —1 1 1 -1 &
E 2 2 0 0o -2 0 0
(Ev/2) E, 2 —2 v —v2 0 0 0
(Esr2) E, 2 —2 =2 V2 0 0 0
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Problem 7.3. Derive the character table for the double D,-group as
given in the tabulation. It should be noted that in this case C, and its
inverse C,R do not belong to the same class as the directions of the
twofold symmetry axes perpendicular to the trigonal axis cannot be
inverted by any symmetry operation in this group. To obtain pure
imaginary characters, the orthogonality relations in the forms of (1.65a)
and (1.69a) should be used. Two double-valued representations 4, and
A, are always combined together to assure the vanishing x‘S(«) and
x(3~) for half-integral S.

E R 26, 26, 36y 36,
A4, 1 1 1 1 1 1
A, 1 1 1 1 —1 -1
E' 2 2 —1 —1 0 0

- B B : . &

Ay 1 1 1 1 i i
A, 1 -1 -1 1 —i i
E 2 -2 1 -1 0 0

”

6y C;, Cy°R, G Cf, CiR

"

02': C,, 02 . CyR

7.2.3 LABELING OF THE SpPIN-ORBIT SpLIT COMPONENTS

As shown in (7.44), the electron Hamiltonian of a cubic system
including the spin-orbit interaction is invariant to symmetry operation
Ros defined in (7.43) in which R° and R® are rotations in the cubic
double-group. Therefore, according to the argument given in
Section 1.2.2, the energy levels of the system described by this
Hamiltonian may be labeled with the irreducible representations of the
cubic double-group. Then, a question arises: What irreducible represen-
tations of the cubic double group are derived from the 25+1[" term ?

For the purpose of answering this question, we examine the transfor-
mation property of wavefunction ¥(«SI'My) on the rotation R°S. From
(2.19) and the argument given in Section 7.2.1, one sees

R®™P(aSTMy) = ¥ P(aSTM'y") Dh(R®) DER®), (7.45)
M’y

where D{fh,(R®) and D{)(R°) are the matrix elements of the represen-
tations (not necessarily irreducible) of the cubic double-group. Now, just
in the same way as done in (2.21) and (2.22), we look for the unitary
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transformation* U which reduces the product representation D) x D)
into irreducible representations DYP of the cubic double-group. Then,
it follows that the wavefunctions

Y(STTyyy) = Y. Y(aSTMy)Usp, 1y, (7.46)

M,y

are the bases of irreducible representation I'; of the cubic double-group
as shown by

08 _ ’ (T_])

R™W(aSTTyy,) = Y. W(aSI Ty, )D) (147)
where the y,’s are the degenerate components of I', . However, for the
purpose of merely knowing what irreducible representations are obtained
by reducing D' x D we may use the relations (2.23) and (1.78),

X(R%) = x"Y(R®) X x'"(R)
= ¥ xTI(R). (7.48)

Iy

Since we know from Table 7.2 the reduction scheme of D) with half-
integral S into DY and from Table 1.4 that of D) with integral S,
it is easy to show what irreducible representations of the cubic double-
group are derived from the #+1I" term if one knows how the product
representations are reduced. The scheme of reducing the product
representations, which is partly given in Table 2.1, is supplemented by
Table 7.3. The table is derived by using Table 7.1.

TABLE 7.3

Provucts OF DouBLE-VALUED REPRESENTATIONs OF Cusic DousLE-Group

A4, 4, E Ty T, E, E, G

E, | E, E G E,+G E,+G A +T, 4,+T, E+T, + T,
E, | E, E G E+G E+G A +Ty 44 +T, E+T +T,

E,+E E -+E E-+E E+T, E+T, A +A4A, +E

Gle ¢ + G + 2G + 2G + T, + T, + 2T, + 2T,

For example, 4T, is reduced to G X T, = E; + E, + 2G, 3E to
T, x E=T, + T,,and%4,to(E, + G) X A, = E, 4+ G. Theresults
of Section 7.1.2 may be interpreted on the basis of the group theory as

t In the present problem, the same D7)’ may appear more than once when DS} x D!
is reduced as we will see later. Then, the unitary transformation is not uniquely deter-
mined.
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follows: Since the 27, term is reduced to E; x T, = E, + G, the term
splits into two levels. One of them has twofold and another fourfold
degeneracy in agreement with the result in Section 7.1.2 if the state
described by ¢,’s is G and that described by ¢,’s is E, . The 2E term is
reduced to E, X E = G so that no splitting is expected. The group
theoretical consideration also explains the previous result that the
spin-orbit interaction connects the 2E term and the fourfold degenerate
component of the 2T, term, as both these states are labeled with the
same G irreducible representation.

7.3 Method of Operator Equivalent
7.3.1 AprpPLICATION OF WIGNER-ECKART THEOREM
In this subsection, the factorization for the matrix elements
(aSTMy | Y &)1, + s, | o« ST"M'y" (7.49)

will be discussed. For this purpose, we rearrange the terms in J#,, as
follows:

1

Hgo = 3 [—V31(1T) + iV 16(174)]
1 .

+ V3 Voao1T3) + iV (1T7)] + Vo (1T7), (7.50)

where
Vir(1Th) = ¥ Sesrtia (7.51a)
Vie(1Ty) = Z Simalig s (7.51b)
VollT1) = Y. sty » (7.51c)
Sty = q: % (sia) :t isiy)’ (7.523)
Si0 = Siz>» (752b)

and

tia = E(rz)lza: ’ (7533)
tig = E(r)ly, (7.53b)

Ly = E(rz)lzz . (753C)
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Then, (7.49) is expressed as the linear combination of
aSTMy | V(1T | /ST M'y'> (7.54)

where ¢ = 0, +1,and y = o, 3, 7.

First note that spin operator S transforms like a vector, consequently
like the base of irreducible representation D) with § = 1 in the
spin-rotation group, and operator t like the base of T in the cubic-group
if £(r) is the function with spherical or cubic symmetry.* Then, it turns
out that on rotation R°® operator V,(1T;) transforms like ¥(*T,g¥).
Therefore, the following linear combination of V(17y) ¥(«'S'T"M'y"),

Y ST M%)y = ¥ V(1T)) V(ST MY )(S'M'1g | S"M"
Mg
v’y

X LY Ty | Ty, (7.55)

transforms on R°8 like the y” base of irreducible representation I'” and
is the eigenfunction of $2 and S, with eigenvalues S”(S” + 1) and M".
By using this property, one may derive

¥ f dTPHSTMy) P! S"T"M"y")
= [(28 + D)X aST|| V(T || «'ST) 8r7r 8,7, 8575 8p7ae,  (7.56)
which is similar to (6.87). In (7.56) the reduced matrix
ST V(ITY) | /ST

is independent of y, y’, and ¥ as well as M, M’, and ¢. From (7.55) and
(7.56) one finally obtains the formula
aSTMy | V(1T | o« S'T" My’
= [(2S + (] V& ST || V(1TY) || o/ ST
X (SM | S'"M'1¢>Ty | Iy T3>, (7.57)

which is the expression of the Wigner—Eckart theorem for the matrix
of the spin-orbit interaction.

*In crystals and complex ions, the Hamiltonian of the spin-orbit interaction may
differ from (7.1). However, in Chapter X we will show that, even in this case, the following
argument is still applicable.
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As seen from the example in Section 7.1.2, the matrix elements (7.54)
are purely imaginary and have the property

(uSTMy | Vs(1Ty) | o/ S'T" My
— —(—VKST'MY | V(1 Ty) | ST My, (7.58)

which assures the Hermitian property of 5, ,
CuSTMy | #o | S T'M'y> = (/S T'M'y | # | aSTMy>*. (1.59)

Applying the Wigner-Eckart theorem to (7.58), and using the relations

(DY Yy | Ty Tyyy = —(I") VKT | TyTyp (7.60)

and
@S + D)VKSM | S’'M’1gy = (—D(—1)55Q2S" + 1)VXS'M’ | SM1 — ¢,
(7.61)

one can show the relation
@ST|| VAT) | ST = (1) ST || V(IT) | «ST.  (7.62)

Relation (7.60) is derived from (6.90) and (6.91). Since Wigner
coefficients and C-G coefficients with the cubic bases in (7.57) are real,
(aST'|| V(1TY))| o/ S'T") are purely imaginary.

Problem 7.4. Check (7.11) and (7.22) by using the Wigner—Eckart
theorem.

Problem 7.5. Show that with the trigonal bases the matrix elements of
H,, are given as

(aSTMM | # | S T"M/M">
= (=DM MRS + DO XaST I V(T | ST
X (SM, | ' M1 M—MJ>I'M | I"'M'Ty M/ — M),

where the M’s indicate the trigonal components x,,, a,,, and u,, for T},

T,, and E, respectively, and they are zero for the components of 4,
and 4, . In deriving the above formula, note that

'}fso: Z (_l)qVq-q(lTl)v

¢=0,4+1
where

1 .
Vas(1T) = + ”ﬁ [Var(1Ty) F iV p(1T1)],
Voo(1Ty) = Vo, .
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Here, all the components, «, 8, y of | and &, y,  of s in V, _(17T}), are
referred to the coordinate system introduced for the trigonal system

(see Fig. 6.2). <

7.3.2 FIrsT-ORDER SPIN-ORBIT SPLITTINGS OF CUBIC TERMS

The extensive use of formula (7.57) derived in the previous subsection
provides a simple method of calculating the first-order spin-orbit
splittings of the cubic terms 25+1I". It is clear that the terms with
I'=A4,, A,, and E show no first-order splitting as the orbital angular
momentum is quenched in these terms. Therefore, one may confine
oneself to the splittings of terms 25+1T and 25417, .

For the purpose of obtaining the simple method to calculate the
first-order spin-orbit splittings of the 25+1T, and 25+1T, terms, let us
introduce purely imaginary operator T(7T,) whose component T,(T))
transforms like the y base of irreducible representation T;, of the
O,-group and whose reduced matrix is given as

Ty | T(T) [T = <aTy || T(Ty) | «T> = V6. (7.63)

Applying formula (6.89), one can show that, for example, the matrices
of T,(T,) in the T, and T, states are given as

© o O
o B v
0 (% 0
T(Ty) = [(i)i 0o ol (7.64)
0 0 o0

in which the signs and bases in brackets are for the T, state. Comparing
(7.64) with (7.8), one sees that the matrix of T,(T)) in the T state is
identical to that of L, in the P state and the matrix of T,(T}) in the T,
state is identical to that of —L, in the P state. The same relation is found
between the matrices of T,(T}) and L, and between Ty(T,) and L, .

On the other hand, if one considers the matrix element of AS,Ty(T})
in the ST term as

(ST My | XS, THTy) | «STM'y’>
= [2S + IYD)VAST || ST(Ty) || ST
X (SM | SM'1g><I'y | I'y' Typ>, (7.65)

where X is a constant and the S;’s (¢ = 0, 4-1) are the components of

resultant spin § = ¥ s; defined in a way similar to (7.52) for s, , one
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notices that (7.65) is identical to (7.57) for oSI' = 'S’ when A is
given as

_ (ST V(AT || ST
~ (STST(Ty| STy -

NaST) (7.66)

This means that, when the first-order spin-orbit splittings of the ST
terms are calculated, 5, may be expressed as

Ho = NaST) S - T(Ty), (1.67)

in which A(«ST’) in general takes different values for different «.ST" terms.
Expression (7.67) is called operator equivalent of the spin-orbit interaction
(7.1), and is quite similar to A(wSL) S * L for calculating the spin-orbit
splittings of the 2S*1L terms in free atoms and ions.

Now, from the previously mentioned simple relation between the
matrices of T(7,) in the T, and T, states and L in the P state, it is
evident that AS + T makes the 25+17 term split just in the same way as
AS - L does for the ?*1P atomic term, and the splitting pattern of the
25+1T, term is just inverted to that of the 2+1P term. Therefore, 25+1T)
and 25*1T, terms split at most into three sublevels, leaving more
degeneracies unlifted than those expected from the group theory. In
this way, the patterns of the first-order splittings of the 25*1T) and
25+1T, terms are obtained without performing any calculation. The
splittings of the terms with S = 1/2, 1, 3/2,and 2, are shown in Table 7.4,

TABLE 7.4

THE FIRST-ORDER SPIN-ORBIT SPLITTINGS

Eigenvalues Symmetries of the
BSHT(T,) of AS-Ts split components
2 FA E, (E,)
F2A A, (4,)
T(T FA T1(Ty)
+2 E, T,(E Ty
F 522 E; (Ey)
T(TY) FA G(G)
+3)/2 E,,G(E,G)
F3 T, (T,)
T(T2) FA E, T,(E, T7)
+2A Ay, Ty, T2 (4, Ty, T)

¢ The upper signs are for 25+1T; and the lower signs for 2$+1T, .
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in which labeling of the split components is performed by using the
method discussed in Section 7.2.3.

As mentioned previously the values of A are different for different terms
and determined by (7.66), in which the denominator is

ST ST(TY ST =S| SHSXKIIT(T I
=i V6 [S(S + 1)(2S + D]~ (7.68)

The numerator of (7.66) may be expressed in terms of the reduced
matrix of V(1T)) for a single electron. This will be discussed in the next
section. The values of A for some interesting terms are calculated in

Problem 7.6.

7.4 Spin-Orbit Interaction in Many-Electron Systems

7.4.1 CarcuraTioN oF {aST|| V(1T «'S'T"

In dealing with the spin-orbit interaction in many-electron systems,
the reduced matrices {(t,"emSI’|| V(1T,)| t2’em' S’y are left for the
calculation as shown in (7.57). Since £, is given as the sum of one-
electron operators, these reduced matrices can be expressed in terms of
those for the one-electron system, {Z, || o(17,) || > and (&, || v(1T}) |l t5>-
The reduced matrix {e|| v(17,)| e) does not appear as there is no
spin-orbit interaction in the E, state. By using an argument similar to that
given in Section 6.3.1 for low-symmetry fields, one can show that

Qe ST V(T || 827%™ STy =0  for |k|>2, (7.69)
(t"e™ST| V(ITy) || 157%™ STy = Colty | 0(1T1) || &), (7.70)
(t5memST || V(ITy) [ 157emS'T"y = Cilty | 01T 1 1), (7.71)

where C, and C, are numerical constants depending upon the terms in
the matrix element of interest.
The calculation of C, and C, is straightforward as the wavefunctions

are already known. For example, C, for
EPCTh)e *T || VATY [ 15 Th)e 4T

can be calculated as follows: We had better choose a nonvanishing
element involving the reduced matrix we want to calculate, which is as
simple as possible for the calculation. In the present case, it is
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(2(3T,) e 4T, 3¢ | Voo (1T))| £,2(3Ty) e *Ty37). By using Table 3.4 and
formula (3.34), one obtains

<t22(3 Ty)e Ty 3 & | Vo, (1T1) | £:°(T)e 1T, 3 ”’l>

=3 [dr V3 ntul + I nfo 1* T st 3 [—V3 | Leu] + | Lo ]

=3 {tin| 0T |61 €). .72)

Noting the relations

<t22(3T1)e 4T2§ £ l Vo (1Ty) | 8.2 (3T)e *T, % ”’I>
\/— @RETe * Ty || V(1T || t2(CTh)e Ty (7.73)
and
(todn | 00, (1T7) | 236> = — ¥t (| o(1TY) || £, (7.74)
one finally obtains
V5

BACTy)e T, || VAT || 455G Ty)e Ty = —

W2 o lo(1TY) || 2>- (7.75)

If we assume the d-function approximation and use S, in (7.1), (7.74)
is given as —{/2 as seen in (7.11). Therefore, to this approximation, one
has

(Gl o(1Ty) [ 2> = 3il. (7.76)

The next example is the calculation of C, for
(2 2E | V(ITy) || t°CTy)e * T

We choose (2,3 2E%u | V_,(1T))| t,2(3T,) e *T,3¢) for this purpose. By
using Tables 3.2 and 3.4 and formula (3.34), one can show that

<t23 2E% u
- ijhi[l G — | Bl 1% Y setiay [V3 [ mta | + | 220 ]
1
_ 2\/2 \/3< ‘v_h(lTl) e§u>

e % 1)>] (7.77)

3
V_1(1Ty) | t,2(3T1)e °T, 3 §>

+ tz—zslv_h(m)
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On the other hand, one has the relations

(t2*E3u|Vo(T)

LCT)e T, 1 €)

— — } 0 E | VAT || 62CTy)e *Ty, (1.78)
(6 —3¢]eati) |eg0) = 2 culoumilo,  09)
and
(ty — 3| va(I1Ty) | edod = Ky || o(1Ty) | 3. (7.80)
Therefore, one finally obtains
&P 2B || VAT || 130Ty STy — zgz GIWIT) . (1.81)

If we use the d-function approximation and 5, in (7.1), (7.80) is given
as —il/4/2* as seen from (7.22). However, even if the d-function
approximation is used, the e, orbital may have the radial function which
differs from that of ¢,, . Therefore, we replace { by {’. Then, to this
approximation, one has

(llv(1Ty) [ &) = —3v2iL. (7.82)

All the nonvanishing reduced matrices of the spin-orbit interaction
in N-electron systems (N = 1,2,...,5) are given in Appendix VIIL
The reduced matrices in the remaining systems with N = 6, 7, 8, 9, are
related to those already calculated. This point will be discussed in the
next subsection.

74.2 THE <aST'|| V(1T,)| «’S'T"> 1N COMPLEMENTARY STATES
Let us first consider Fi- in 4. 41) and Fre-" in (4.43) in the case in
which one-electron operator F is V(17T}). In this case it follows from
(4.30) that for o, = (3L ,m,y,) with m, = 4} one has
Fi(l’c—"N = _<K°‘p' | vm"(lTl) | Ko‘p>
= (=1 —myyy | 0(1Th) | —myyy, (7.83)

where p’ = N + ¢ and quantum numbers s = 1/2 and I', are not

* Note factor 1/v/2 of V_i,(1T}) in 5, as shown in (7.50).
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written for simplicity. In (7.83) we have used the fact that the orbital
functions are real. By using (7.58), (7.83) may be reexpressed in the form

Fur = (="  —myyy |0 (1Ty) | —my'y,>
= (—=1)""myy, | v5(1Ty) [ my'yy'>
= —op | U5(1T) | oy10?
= —Fg . (7.84)
In deriving (7.84) the relation*
Smy | 0g5(1T) | m'y"> = —(—my | v_5(1Ty) | —m'y"> (7.85)
is used. Quite similarly, one can show that*
10

Y = Y (Ko | v5(1Ty) | Ko

i=N+1
10
= Y <o log(1Th) | o). (7.86)
i=N+1

Furthermore, since F; is the matrix element of ¥ (1T;) in the 14, state,
it is zero. After all, (4.52) shows the relation

(S, Ty) €™(SoTy) STMy | Vs (1Ty) | 13 (S TY) €™ (S, Ty) ST'My")
= — S (SoT) STMy | V(1 Ty) [ 157 (Sy'Ty) 4™
X (S Ty) S T'M'yy  (n+m=n'+m #5), (7.87)
which leads to
(SyTy) €™(SoT) ST | VATY) | 3 (Sy'Ty) e (Se'Ty') ST
= (ST ™S, Te) ST V(ITy) [ 457 (Sy'Ty) €™ (Sy'Ty) ST
(n+m=n+m #£5). (1.88)

Equation (7.88) is similar to (6.129) for the case of low-symmetry ligand
fields. Because of this similarity, relations similar to all those derived for

¥ This can be proved by using the relation
{famyjamg | frjajamsy = (— 1Y 1tiats2ms Gy —my o —my | j1fafs —madt

M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr. “The 3-j and 6-/
Symbeols.”” Technology Press, MIT, 1959.
§ In our problem of I'; = ¢, and e, F}} and Fi2~" are zero.
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low-symmetry fields in the systems of half-filled subshell configurations
also hold in the present case: Corresponding to (6.131) and (6.132), one

can show that
GAST || V(I TY) || t2STS = 0, (7.89)

GBST| VAT || t2S'T"y £ 0 (ST # S'T") (7.90a)
only for the combinations
ST = %4, ,%E,*T, and ST =°T,, (7.90b)

and vice versa. Corresponding to (6.135) one can show that (7.88) holds
even for n +m = 5 if n 5 3 and #’ 5 3. Furthermore, corresponding
to (6.136), (6.137), and (6.138), one has, respectively,

S (S,Ty) €(SeT) ST || VAT || 5 (Sy'Ty) €™ (Sy'Ty) ST
= —papeCtsX(S: ) (S o) ST VAT || 457 (Sy'Ty) ™ (Sy'Ty) ST
' #£3, m£2), (19])
CE¥(S10y) €(Sele) ST || V(I1TY) || £3(S, 1) e¥(So' T) ST = 0
for STy, S, Iy, STy, and SyTy giving pypep/py = 1, (7.92)

and
CE¥(S1T7y) €X(SoTs) ST || V(1TY) || £.3(S, 1) €X(S,I3) S'T" = 0. (7.93)

Problem 7.6. Calculate M(«ST') in terms of <t, || ©(17T})|| #,), and then
confirm the following values of A(wSI') obtained with the d-function
approximation:

N=1 Nt *T,) = ¢

At23T) = —{/2,

N=2 g AMt,e 3Ty) = /4,
ANze3T,) = —(/4,

At 2Ty )e 4T,) = /6,
N =3 { NP CTh)e *Ty) = —(J6,
A2 (4,) *Ty) = —J3,

g’\(tzz(le) e (A4y) 4Ty) = /4,

N =4 N °T,) = 1)4,
Mt 3T,) = /4,
' (CTh)e *Ty) = —(/6,

N=5 (3 Ty)e 4Ty) = (/6

At (CTy)e 2 Ty) = —/6,
ALY (3Ty)e °Ty) = /6.

The values of A(wSI") for N > 5 are easily obtained from those for
N < 5 by using (7.88). &
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Problem 7.7. In ruby where Cr3* ions are at the Cy-symmetry site, the
effective electric-dipole transition moment P, for the intersystem
combinations ¢,% 44, M, < 1,2 2EM /M’ is approximately calculated from

Pess(t,? *A,M, <> 1,3 2EM, M’)
= Y <PM,| B e T MM
r"M*

X (t2e T"MM" | 5, | t,3 2EMJ/M"M[W(RE) — W),

where P is the effective electric-dipole moment combined with odd-
parity ligand fields as introduced in Section 6.2.3, and M, and M are
those explained in Problem 7.5. Show that in this case intermediate states
t,%¢ 4" are essentially restricted to only one term, £,%(37\)e 4T, . Then,
calculating P,y , show that the dipole strengths which are given as
absolute squares of P, are calculated as follows:

g
“AzM}\ M/M tu, —3u. —}u, $u_
3/2 7af2 940f2
172 0.af3 04af6 m[6 0_o/3
—1/2 0_of6  04f3 0.3 w6
—3/2 7,2 o_of2
where
4 Ppo 2
o= - §'2 - e
3 WEE) — W('Ty) 1’
_4 e I I R
T T35 | WEE) = WCTy) I
and

Py =y | Py [ T .
Suffix « of P, indicates « component of P. Note that
< 2E|| VAT | 25CT1)e * Ty

has already been calculated in (7.81). The dipole strengths calculated
here are used for the analysis of the Zeeman patterns of the R lines in

ruby. &
Problem 7.8. By using the argument given in Section 3.1.2, show that
™ S1T1) €(Sels) ST VAT N ,%(Sy' Ty') e(Se ' Ty) ST
= 8(5,Sy) 8(I2Ty)
XE™(S1Iy) €(Selp) ST V(IT) || (81 TY) €7(Sel2) ST, O



Chapter VIl FINE STRUCTURE
OF MULTIPLETS

8.1 Kramers Degeneracy

8.1.1 TiMe-ReVERsAL OPERATOR

Operator K was introduced in (4.30) for the purpose of obtaining
¥Y(uST'My) from ¥(aSI" —My) in a simple fashion, and was called a
time-reversal operator. However, the physical implication of this operator
was left unexplained. This operator was also used in Section 7.2.1,
where K was shown to commute with rotation operator RS in the spin
space. In this subsection we will clarify the physical meaning of this
operator, which helps one to understand Kramers degeneracy.

Let us first consider the time-dependent Schrédinger equation
involving no spin,

i 6—"5(;—) = HY(t). 8.1)

By denoting the time variable as ¢’ instead of ¢, the complex conjugate
to (8.1) is

— i f"—/’;(,—t') — M) = HYH(Y), 8.2)

in which £* = 5 is assumed as it is the case for o = #, + H# in
(7.42). Replacing ¢’ in (8.2) by —¢, one obtains

i f"/’*é—t_t) = HYH(—1), (8.3)

179
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which shows that *(—¢) is also the solution of Eq. (8.1). Therefore,
Yy*(—1) represents the states in which all velocities have opposite
directions to those in (f). State Ofi(t) = *(—t) is called the time-
reversed state of Yi(%).
In time-independent problems, the time-reversed state of (r) is
given by
B4(r) = Kol(r) = $(r) (84)

In (8.4) operator K, is the complex conjugation operator introduced in
(4.30). Equation (8.4) indicates that K, is a time reversal operator for
orbital functions, and this reversal is called Wigner’s time reversal.
Using the well-known relation,

KoYin(09) = Yim(0p) = (—1)" Yin(0p), (8.5)
one can show that the orbital angular momentum operator is transformed
by K, as

KolKg' = —1I, (8.6)
which confirms the property of time reversal of K, .
The proof of (8.6) is as follows: The relations
KOlzKalKOYlm(6¢) = (_l)mI<OlzI<61 Yy m(bp)
= mKoYin(0p) = (—1)"mY,_n(0p) 3.7
and
Kol:Ko' KoY im(bp) = (—1)"KoliKo' Yi_n(f9)
= [l + 1) — m(m £+ 1)]'/* KoY ,(bp)
= (="l + 1) — (=m)(—m F DI Yi_u(0p)  (8.8)
indicate that

Kol K3 = —1 (8.9)
and
Kol:Kg'= —Ix, (8.10)
which means
Kol K5' FiKol Ko = —(I, Fil,); (8.11)
thus
Kol Kot = —1,, Kol K5' = —1,. (8.12)

Quite similarly, using the relations (7.24), (7.25), (4.30), and (4.33), one
can prove the transformation

KsK—! = —s. (8.13)
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Equation (8.13) shows that K is a time reversal operator for the systems
involving spins.

8.1.2 KramEers THEOREM

Kramers theorem states that, in a system with an odd number of
electrons whose electron Hamiltonian is invariant to time reversal, the
electronic energy levels are at least twofold degenerate.

To prove the theorem it is convenient to express K in the following
form:

K = ﬁ (—ic,); Ko, (8.14)

=1
where N is the total number of electrons and
a B
0 —i
o = o] (8.15)

1 i

is a transformation matrix (Pauli matrix) for spin functions o and 8 of
electron j: the equivalence of —io, to K in (4.30) is seen by comparing

@A T =6 - (8.16)
with (4.31). Then, it follows from (—i0,)? = —1% that
K? = (—1). (8.17)

Now, since the eigenvalue equation
HY = E¥ (8.18)
is also satisfied by K¥ if K#K~' = 5, one has two possibilities:

() K¥ = ey,
or
(i) KV £ ey,

where 8 is a real number. In the case of (i), one sees that
K2 — 9Ky — @ (8.19)
contradicts (8.17) if N is odd. Therefore, in the system with an odd

* The number 1 is the unit matrix.
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number of electrons, K¥ and ¥ represent different states with the same
energy, which proves the theorem.

Kramers theorem does not exclude the possibility that some electronic
levels in a system with an even number of electrons are doubly degenerate
due to time reversal. Regardless of whether NV is odd or even, if K¥ is
different from ¥, the pair of these states are degenerate. This degeneracy
is called a time-reversal degeneracy, and K'¥ and ¥ are called time-reversal
pair states. The time-reversal degeneracy is lifted if an external magnetic
field is applied, as the interaction energy of the magnetic moment
proportional to the angular momentum with the magnetic field changes
its sign when the direction of the magnetic moment is reversed by time
reversal.

8.2 Higher-Order Splittings of Cubic Terms

As shown in (6.131), (6.133), (6.138), (7.89), (7.91), and (7.95), the
terms of half-filled subshell configurations undergo no first-order
splitting due to low-symmetry fields and the spin-orbit interaction. These
terms, however, may split due to the higher-order action of these
interactions. In this section, we shall show several examples of the
higher-order splitting of the cubic terms by using the perturbation
theory. A general treatment of the splittings of the cubic terms including
the higher-order perturbations will be found in the next section.

8.2.1 SPLITTING OF THE #,32E TERM

Let us first consider the splitting of the #,3 2E term in a system of the
Dy-symmetry. As shown in (6.131) and (7.89), this term undergoes no
first-order splitting due to either the trigonal field or the spin-orbit
interaction, so that we have to consider the second-order splitting.

As discussed in Section 6.2, the even-parity field in this system is
expressed by the tensor operator V, (T,,) = V(Ty,). If we ignore the
t,% 2I" terms whose energies are much higher than that of #,3 2E in the
range of Dg/B ~ 2to3 as seen in Fig. 5.3, the trigonal field may
connect £,® 2E only with the spin doublets within the #,3 electron confi-
guration. Furthermore, (6.132) shows that the trigonal field may connect
£ °F only with #,* *°T, . The nondiagonal matrix elements of V(T5,)
between the ¢,32E and ¢,327, terms with the trigonal bases,
t3PEMM | V(Ty,)| 1,3 *Ty M M'>, are calculated by using (6.89) and
the method given in Section 6.31 as follows:

(43 B EMM | Vi(Ty,) | 13 2T,MM"> = —/6 K §(MM’),  (8.20)
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where the relation

2B V(To) || 32T = v/2 {ty | o(Tay) [ 125 (8:21)
is used and K is defined as
G| oTy) i) = —3V2K. (8.22)
The definition of K in (8.22) is identical to that of K in (6.56). From(8.20)
one sees that the second-order perturbation energy
Y, <t EMM | ViTy) | 2 *T, MM
b
X (1 *TM M | Vo(Ty) | 1° (EMM”H[[WEE) — W(Ty)]

— (MM"6K?[W(E) — W(T,)] (8.23)
is independent of M, giving no splitting of ¢, 2E. In this calculation the
spin-orbit interaction is not considered, and this result is evident from
the group theoretical view as irreducible representation E of the
O-group goes to E of the Dg-group without any decomposition.

Next, we consider the nondiagonal matrix elements of 3, which
connect £,® 2E with the other terms. We ignore the #,% 2I" terms also in
this case. Equation (7.90) shows that the spin-orbit interaction connects

t,% 2E only with 2,2 2T, if we confine ourselves to the terms of the t,3
configuration. The nondiagonal matrix elements

(13 EMM | # | 13 *TyM /M

are calculated by the use of the formula in Problem 7.5 and the method
in Section 7.4.1 as follows:

2f 2T, M" X, x_ Xy
N e
1 —1 0 -0 42 0 0
Y1 1 -0 o0 Vi 0 :
....................... X —2, (8.24)
L3 0 0 -1 0 V2 6
- 3 —v2 0 - 0 —I 0 0
where the relation
GPPEN VAT 6 2Ty = —Q3)/%t, || o(1Ty) || £ (8.25)

is used together with (7.76). If the t,%e*I" terms are considered in
addition to the #,3SI" terms, it will be found that the spin-orbit interaction



184 VIII. FINE STRUCTURE OF MULTIPLETS
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Fic. 8.1. Coupling scheme among terms of d° through V(T,,), 5, , and L.

also connects t,® 2E with £,2(3T,)e 4T, but not with 2,%(3T)e *T, . The
coupling through V(T,,) and 5, among the terms of the #,® confi-
guration (*4, , 2E, 2T, 2T,) and the t,% *I" terms (*T,, *T;) is shown in
Fig. 8.1, where the coupling through L is also indicated for later use.

Problem 8.1. Show that there is no nondiagonal matrix element of 5,
between the #,3 2E and t,2(3T,)e 4T, terms. <

From the group theoretical consideration, it is evident that the
second-order perturbation involving 5, twice does not split the 2E term:
Such a perturbation still exists in a cubic system, where 2E is reduced to
E; X E = G. Therefore, we have to consider the second-order pertru-
bation involving V(T5,) and ##,, . The perturbation energies of this type
are calculated from (8.20) and (8.24) as

[T <t 2EMM | V(Ty) | 2 5T, M M7
2
X (82 T, MM’ | i | 1,5 (EMIM">
+ ¥t EMM | Hio | 12 T, MM
P

X Ctg® MM | V(Ty,) | 157 EMIM) |[[WCE) — WCTy)]
2K S(MM) S(MM")[[W(E) — WCTy)]  for MM = thus,
—2KL S(MM) (MM [WCE) — WCT)]  for MM = thus,
(8.26)
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which gives the splitting
4K{

WCE +hus) — WCE £4uv) = g —wery -

(8.27)
The doubly degenerate split components, +-3%, and - 3u-, cannot be
split further because of Kramers theorem. The splitting of the #,® 2E
term calculated here may be observed in the spectrum of ruby as the
separation of the R, and R, lines, and it has been found that the second-
order perturbation calculation described here explains well the observed
separation.

Problem 8.2. Examining the transformation properties of the wave-
functions associated with the split components, 4-4%, and + 3u , show
that they are, respectively, labeled with double-valued irreducible
representation A; + A, and E of the double Ds-group given in
Problem 7.3. &

Problem 8.3. Calculate the splitting of the £,22F term in the
D;-symmetry system. <

8.2.2 SPLITTING OF THE #,° %4, TERM

Here we will discuss the splitting of the £,°44, term in the D,-
symmetry system. In the cubic system the 44, term shows no spin-orbit
splitting as G X 4, = G, but in the Dy-symmetry system G is decom-
posed into A; + A, -+ E so that the ¢4, term may split: The decom-
position of G in the Dj-symmetry system is achieved by comparing
Table 7.1 and the table in Problem 7.3. It follows from Kramers theorem
that the 44, term may split into two Kramers doublets labeled as
A, + Ayand E.

From the above-mentioned argument, it is evident that the pertur-
bations involving only 5#,, give rise to no splitting of 44, . It is also
evident that the perturbations involving only Vy(T,,) give no splitting
as 4, is an orbital singlet. Therefore, to calculate the splitting, the
combined action of J#, and Vy(T,,) has to be taken into account. A
detailed examination shows that the lowest-order perturbations giving rise
to the splitting are the third-order ones involving 5, twice and V(Ty,)
once. If the t,2 eI terms are ignored, the coupling scheme of Fig. 8.1
shows that the third-order perturbations of this type are given by the
following processes:

Vo(Tag) o

A) 1,344, 25 12T, 1,2 4T, X% 1,344, (8.28a)
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a t,3 44, o), 1% 4T, Ko, t,% 4T, Ko, 1,3%4,, (8.28b)
t,3 %4, LN t,% 4T, Hso, t,%¢ 4T, YolTa), t,344,, .
am 1,344, M t,2e 4T, ﬁ, t,3 2T, ﬁ, t,344,, 6.250
1344, 2% 13 2T, 705 1200, BT, 104y,

All these perturbation processes give comparable contributions to the
splitting of the 2,3 %4, term. For example, process (I) is calculated as

follows: It follows from (6.89), (6.127), and (8.22) that

(126 STMM | V(Ty,) | t2 ST MMy = — 3K S(MM,) S(MM?) o M),
(8.29a)
where
oM =+1)=—1, oM =0)=2. (8.29b)
From the formula in Problem 7.5, (7.82), and
V10
(144, | VAT | 1% 4Ty = 50 (1Tl e, (830)
one obtains (2,3 ‘A,Me, | ., | t,2e *T,M S M"> as
44, T, M’ x, x_ X,
M, M, % % -F-%:% %+ -3-%3: % F -4 -4
3 0 0 0 0:0+46 0 0:--3 0 0 0
3 -6 0 0 0-0 0 2v2 0 -0 -1 0 O
-3 0 2v2 0 0-0 0 O ve - 0 0 1 0
-3 0 0 -v6 O -0 0 0 0-0 O 0 3
i’
X =3 (8.31)

Then, by using (8.29) and (8.31), one knows that ¢4, splits into two
Kramers doublets, M, = -3 and 4%, and their separation is
1 . 34 (2K
WM, = +5) — W(M, = +3) =3 [Ty — WEAE

5 (8.32)

This separation could be enhanced or canceled by comparable contri-
butions from the other processes, even from those not mentioned in
(8.28), so that the calculation of the small splitting of the orbital singlet
such as £,% 44, requires a very careful treatment.

Problem 8.4. Calculate contributions to the splitting of the £,% 44, term
from processes (II) and (IIT) in (8.28). <
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8.3 Effective Hamiltonian

8.3.1 SpiNn HAMILTONIAN

Let us consider an orbital singlet with the 2.5 + | spin multiplicity,
114 (A = A4, or 4,), which is well separated from the other terms.
This state, in general, is mixed with the other terms through low-
symmetry fields and the spin-orbit coupling and shows small splittings.
Therefore, the (28 + 1) wavefunctions of this state are given by a linear
combination of the wavefunctions of various terms. We denote such
(28 + 1) functions by ¥, ¢, ,..., P51 » and suppose that, with these
functions as the bases, the matrix of the total Hamiltonian involving
low-symmetry fields and the spin-orbit interactions is partially diagonal,
i.e., the nondiagonal matrix elements connecting the orbital singlet with
all the other terms are zero as shown below:

25+1 4
Y1 s asa
‘/11 X X eee X
w511 Yo A : 0
‘/IZS+1 X e s X
X X
0 X

In principle it is possible to obtain functions ¢; by applying a unitary
transformation to the wavefunctions of the cubic terms, but here without
trying to look for the explicit forms of ;s we assume that these functions
have already been obtained. Then, our problem of calculating the
splitting of the orbital singlet is to diagonalize the small (25 + 1)-
dimensional secular matrix. This secular matrix is, of course, hermitian
and reflects symmetry properties, including time-reversal symmetry, of
the system. Our purpose in this subsection is, without knowing the #,’s
and the small secular matrix, to find an effective Hamiltonian which
involves only spin operators and which reproduces the same small secular
matrix with spin functions @(SM) as the bases. This effective
Hamiltonian is called spin Hamiltonian. In doing this it is inevitable to
leave unknown parameters in the spin Hamiltonian.
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For this purpose, we first study an example with S = 1/2, 24, . In
this case the Hermitian secular matrix is given in the form

a5 ) 3

where a, b, ¢, and d are real numbers. Considering the matrices of 1,
Sz, S, , and S, with bases @(3M) as follows,

M=% —3%

1 0
1= [0 ) (8.34a)

0 1
S, = [1 0] X %, (8.34b)

S, = [0 _i] X } 8.34
v = | 0 2> (8-34c)
S, = [(1) _(1)] X3, (8.34d)
one sees that the matrix of the spin Hamiltonian,

Hy = Ya + b + (a — b)S, + 2¢S, + 2dS, , (8.35)

with bases @(3 ) and O(4 — }) is identical to (8.33). The spin
Hamiltonian in the form of (8.35) involves as many unknown parameters
as in (8.33), thus providing no advantage. However, if one considers
that bases @(} 1) and @(3 — ) have, respectively, the same transfor-
mation properties* as those of ¢, and i, with respect to the symmetry
operation which bring the system into itself, one notices that the spin
Hamiltonian should be invariant to those symmetry operations as the

* 'The wavefunctions of the 25+14, cubic terms may be the bases of irreducible repre-
sentations I”’s of the double group of a certain symmetry. Since low-symmetry fields and
the spin-orbit interaction connect the states with the same I', #,’s (or the linear com-
binations of ¥;) may also be the bases of the I"’s. Furthermore, since the transformation
properties of wavefunctions W(25+14,Me;) are the same as those of spin functions &(SM),
we may conclude that the transformation properties of @(SM) and the ¥,’s (or the linear
combinations of ;) should be the same. A similar argument may also be applied to the case
of 25414, : In this case @(SM)f(A,) transforms in the same way as ¥(35+14,Me,) does,
where f(4,) is a function which transforms as the base of irreducible representation 4,
of the O-group. The presence of factor f(A4,) in the bases of the spin hamiltonian brings
no essential difference in the argument. Afterall, it may be said that, as long as orbital
singlets are concerned, the spin Hamiltonian should be invariant to the symme tryopera-
tions which bring the system into itself. An example of *E for which this is not the case
will be discussed later.
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real Hamiltonian is. Now imposing the condition of time-reversal
invariance on (8.35), we know that the linear terms in S,, S, , and S,
should be zero, i.e.,

Hy = Ya + b, (8.36)
Spin Hamiltonian (8.36) indicates the absence of the splitting of the 24,
(or 24,) term in any symmetry system in agreement with Kramers
theorem: spin doublets (S = %) always appear in the system with an odd
number of electrons.

In the case of 34, ,, the secular matrix corresponding to (8.33) is
three-dimensional and, in general, involves nine unknown parameters.
By using spin functions @(11), 6(10), and ©(1 — 1) as the bases, the
diagonal elements involving three parameters may be reproduced by a
suitable linear combination of operators 1, S, , and S,2 whose matrices
are independent of each other and are given as

1 0 0

1= 1 o, (8.372)
lo o 1
10 0

s,=|0 o ol (8.37b)
0 0 —1.
10 0

Sx=10 o0 of (8.37¢)
o o 1l

The independence means that none of the matrices can be expressed by
a linear combination of the others. The elements one-off the diagonal
involving four parameters may be reproduced by a suitable linear
combination of the following Hermitian matrices:

0 1 O 1
S,=1|1 O 1} X —, (8.38a)
2
0 1 O v
0 — O 1
S,=17¢ O ——i] X —=, (8.38b)
. 2
0 i 0 v
0 1 O 1
S.S, + S,S, = (1) (1) —(IJ X Vi’ (8.38¢)
0 — O 1
S,S, + 8.8, = L(; 0 6} X —\—/—5, (8.38d)
—1
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which are independent of each other. Finally, the elements two-off the
diagonal involving two parameters may be reproduced by a suitable
linear combination of the following Hermitian matrices:

1

0],

0
—1

0],

0
which are also independent of each other. From all these it follows that
the spin Hamiltonian for 34, , is given by a linear combination of 1,
Sz Sy, Sy S8, + 8.8, SuSe -+ S.S,, S8, + 8,8, S, and
S,? — S,% Imposing the time-reversal invariance on J#; , one sees that the
terms linear to S, , S, , and S, should be zero. Furthermore, for example,
if the system has the D,~symmetry whose twofold symmetry axes are x, y,
and 2, only the terms proportional to 1, S,2 and S,2 — S, should be

nonvanishing as they are invariant to the rotations of the D,-group. Thus,
one finally obtains the spin Hamiltonian

0
82— 8,2 = [o

1
(8.39)

0
8,8, + 8,8, = [0
i

oo oOoo

A, = D[S? — 35(S + 1] + E(S2 — S5,2). (8.40)

In (8.40) the constant term is included in —4DS(.S + 1) so that the trace
of the matrix be zero. The trace gives the shift of energy levels as a whole,
which we are not interested in. In (8.40) D and E are undetermined
parameters. The secular matrix of (8.40) with bases O(SM) (S = 1) is
easily obtained by using (8.37) and (8.39) as

M= 1 0 —I
D30 E

[ 0 —2Dj3 0 ] (8.41)
E 0 D3

whose eigenvalues are

_2

—E = -—.

D
3 (8.42)

D
EI:"3—+E, €y =

Equation (8.42) shows that 34, , split into three nondegenerate com-
ponents in the D,-symmetry system.

Considering these examples, we can find the general method of
constructing the spin Hamiltonian with spin S for the %+14, , terms.
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For this purpose we introduce irreducible spin tensor operators S%*
whose components are denoted by S¥. The S¥s are obtained first by
symmetrizing the polynomial expansion, ZC,g,x92 (« 4 8 + y = k),
of the cubic harmonics of the kth order, and then by substituting S, , S, ,
and S, for x, y, and 3, respectively. For example, S,S, 4 S,.S, in (8.39)
is a component of $® and is derived by symmetrizing the polynomial
expansion of the second-order cubic harmonic V((T,,) = xy asxy -+ yx,
and then by substituting S, and S, for x and y, respectively. The
symmetrization is necessary to make the spin operators hermitian.

As seen from such a process of constructing the irreducible spin-tensor
operators, S®) has 2k + 1 components, which are transformed like the
y base of irreducible representation I" of the O-group. Therefore, g of
S may be denoted by I'y. Furthermore, as seen in examples of the
matrices of S{¥ given in (8.37)—(8.39), the matrices of all the components
of $®’s (k = 0, 1, 2,..., 28) with bases O(SM) (M = S, S — 1,..., —8)
are independent of each other.

Now considering that the (2S5 -+ 1)-dimensional hermitian matrix
generally involves the (25 + 1)? parameters, one sees that this matrix
may be equivalent to the matrix of a suitable linear combination of 1,
SP,..., S with bases @(SM): In this case the total number of S¥’s is
Y220 (2k + 1) = (28 + 1)% Imposing the symmetry requirements on
this linear combination, one finally obtains the spin Hamiltonian for the
state with spin S.

For example, let us construct the spin Hamiltonian for the 44, state
in the D;-symmetry system. We first make a linear combination of the
components of irreducible spin tensor operators, 1, S®, $®, and $®.
Then, requesting the time-reversal invariance and the invariance to any
rotation in the Dy-group, one obtains

Hs = D[S — §S(S + 1)), (8.43)

where the Z-axis is along the trigonal axis. The eigenvaiues of (8.43) for
the state with the fictitious spin S = 3/2 are obtained as

& =D (twofold degeneracy),
' ¢ (8.44)

e = —D (twofold degeneracy),

in agreement with the result in Section 8.2.2.

Parameters are left undetermined in the spin Hamiltonian. These
parameters are determined from experiments or by the theoretical
calculation as described in the previous section. The method of the
spin Hamiltonian demonstrates its great power when the splitting due
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to an external magnetic field is treated. This will be discussed in the next
section.

So far we have confined ourselves to orbital singlets. However, it is
generally true that the (25 + 1)-dimensional Hermitian matrix may be
replaced by the matrix of a suitable linear combination of S{¥
(0 < k < 2S) with bases @(SM). Therefore, in principle, for any cubic
term with a (2S -+ 1)-fold degeneracy including both spin and orbital
degeneracies, one may construct a ‘‘spin Hamiltonian” with the fictitious
spin S. For example, the 1E term may be dealt with as though it has a
fictitious spin of § and the “‘spin Hamiltonian” in the form of (8.35) is
applicable. The most serious drawback in this case comes from the fact
that the transformation properties of ¢, and i, may not necessarily be
the same as those of &(3 %) and O(§ —3). This makes us unable to
simplify the linear combination of spin-tensor operators by using
symmetry arguments. To show this, let us consider an example of the
t,21E term in the D,-symmetry system. The group theory shows that
this term splits into 4, and B, , while ©(3 §) and (3 —3}) transform
as the bases of E; of the double D,-group. Therefore, the *spin
Hamiltonian” cannot be expected to satisfy all the symmetry requirements
which are satisfied in the real Hamiltonian. Actually, if one calculates the
diagonal matrix element of the D,-symmetry potential, V,(E,), as

(G21Ey | V(E) | 2 By’ = —(2[3)1/28,, B ta || v(Ey) || 120, (8.45)
where

Bu = —1/\/2’ and Bv = ]/\/2’

one sees that the splitting of the #,% 1E term really occurs. This contradicts
the result obtained from (8.36). This means that we can not impose the
time-reversal invariance on the “spin Hamiltonian” in (8.35). This
example shows that great caution is necessary when the terms with
orbital degeneracy are treated with the “spin Hamiltonian.” However,
in the treatment of a Kramers doublet, we may always assume the
time-reversal invariance of the “‘spin Hamiltonian,” since i; and i,
as well as ©(3 1) and (3 — %) are the time-reversal pair states.

Problem 8.5. By using the method of spin Hamiltonian show that six-
fold degeneracy of the 64, term is partially lifted in a cubic system. <

Problem 8.6. 'Treat the 2E term in the Dy-symmetry system as if it has
a fictitious spin of 3/2. O
8.3.2 GeNeraL EFFECTIVE HAMILTONIAN

In the previous subsection, we showed that the method of spin
Hamiltonian is simple and powerful in predicting qualitative features
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of the splitting of orbital singlets but not necessarily so for the terms
with orbital degeneracies. This defect may be eliminated if one chooses
in placeof spin functions bases which transform in the same way as the
n functions ¢, , associated with the term of n-fold degeneracy including
both orbital and spin. With these functions i, the nondiagonal matrix
elements of the total Hamiltonian connecting the term of interest with
the others are assumed to be zero. This choice of base functions makes
one unable to construct simple effective Hamiltonian by using spin
operators only. However, we will show in this subsection that a relatively
simple effective Hamiltonian may be constructed by using both spin
operators and irreducible tensor operators X(I'), introduced in
Section 6.2.

Let us start with the simple case of obtaining the effective Hamiltonian
for spin singlets having orbital degeneracies, I (I = E, T;, T,). Note
that the (I')-dimensional secular matrix with bases ,’s involves (I")?
parameters. This matrix may be replaced by the matrix of a linear
combination of irreducible tensor operators X (I') (I' x I' = 2T') with
bases @(I'y). Here @(I'y) is any given function which transforms like the
y base of the irreducible representation I' of the O-group. The reason
why this replacement is possible is clear if one considers the fact that the
matrices of X;(I") with different Iy are independent of each other and
the number of operators X,(I') with I" appearing in I" x I' is (I')%
Furthermore, since §(I'y)’s transform in the same way as ¢,;’s do, the
linear combination of X (I") should satisfy the symmetry requirements
which are satisfied by the real Hamiltonian.

For example, the primitive form of the effective Hamiltonian for the :E
term is given by

Hetr = aV(Ayg) + bT(Ay,) + cV(E,) + dV(Ey), (8.46)

where a, b, ¢, and d are real unknown parameters. In (8.46) X(4,,),
X(E,), and X(E,) are given by real operators V,(I') and X(4,,) by
purely imaginary operator T(4,,), as we are dealing with diagonal
matrices [see (6.93) and (6.95)]. Requiring K%, (K~! = 5, for (8.46),
one knows that all the irreducible tensor operators should be real so that
parameter b should be zero. Furthermore, since 5,;; should be invariant
to any rotation of the Dj-group, all the terms except V(4,,) should be
zero. Thus, the final form of the effective Hamiltonian for 'E in the
D3-symmetry potential is obtained as

Hoyr = aV(Ay,), (8.47)

which shows that no splitting is expected in this case.
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For the 'E term in the D,-symmetry whose twofold symmetry axes

are x, v, and 2, a similar consideration leads us to '
Herr = CVu(Eg) + dVv(Eg)$ (848)

where constant term a¥V(4,,) is omitted for simplicity. For this effective
Hamiltonian, bases ¢(Ey) may be chosen so that

(HE) | V(E) | §(E)) = 2, (8.49)

]

which gives

u v

—1 0

Vu(Ea) = [ 0 1
0 1

1 0

(8.50)
VEy) = [ ]
Then, the use of (8.48) gives the splitting,
1,2 = (¢ + @) (8.51)

Now, let us discuss a general method of constructing effective
Hamiltonian for the terms with both orbital and spin degeneracies,
25+1]", We look for an effective Hamiltonian whose matrix with given
bases W(SI'My) is identical to the (2S -+ 1)(I')-dimensional secular
matrix with bases i, . Here, ¥(SI'My) transforms in the same way as
unperturbed wavefunction ¥(aSI'My) as well as ; does. Considering
the arguments previously given for the spin Hamiltonian for spin
singlets, we immediately notice that the effective Hamiltonian we are
looking for is given by a suitable linear combination of the products
S@X(T), where 0 < k < 2S and I X I' = ZT. The number of these
products is (25 4 1)%I")? which is equal to that of parameters in the
(2S + 1)(I')-dimensional secular matrix. It is evident that the matrices
of these products with bases ¥(SI'My) are independent of each other.
The final form of the effective Hamiltonian is obtained by making the
linear combination invariant to any symmetry operation which brings
the system into itself.

For example, the effective Hamiltonian for the 2E term in the D,-
symmetry is obtained as follows: We first make a linear combination
of the products of an element in (1, S,,S,,S,) and an element in

(V(4yy) T(Asy) VLE,), V(E,)) as
Harr = V(AyNad + @S, + @3S, + a,S,)
+ T(Ag )byl + 5,8, + 835, + 8,5;)
+ ViE el 4 €Se 4 €Sy 4 €4S2)
+ VAENd 1 + d5S, 4 d,S, -+ d,S,). (8.52)
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Then, imposing time-reversal invariance on (8.52), one may simplify

(8.52) as
Hetr = a4 V(Alg) + T(A29)(b2Sx + b3‘S'u + b4Sz) +¢ Vu(Ea) + dl Vv(Ea)' (853)

Furthermore, imposing the D;-rotation invariance on (8.53), one finally
obtains

Hett = AT(Ay,)Sz, (8.54)

where S, = (S, + S, + S,)/V3,* and 4 is an undetermined parameter.
In (8.54) the constant term @,V (4,,) is omitted. It should be remarked
that T(d4,,) alone is not invariant to rotations in 3C, as shown in
Table 6.1, but T(4,,)S; is the trigonal invariant. And ¥(2EM M) may
be chosen so that

CPCE)| T(Ay) | PCE)) = —i V2, (8.55)
which gives the matrix of T'(4,,) as follows:
M= u, u_

1 0
T(d,,) = [o _1]. (8.56)
Then, the secular matrix of ., in (8.54) with bases P(EM,M) is
calculated as

u, u_
T
1 0
o -1 ©
..... S xogg, (8.57)
- —1 0
0 1
which gives the splitting of the 2E term as
o(lus) — o(duz) = 4. (8.58)

Although P(2EM M) are not wavefunctions ¥(x 2EM,M) of the o 2E
term, the transformation properties of ¥(2EM M) and ¥(« 2EM M) are
the same. Therefore, we may conclude from (8.58) that the « 2E term
splits into two components, « 2E +1u, and o 2E 4 {u- .

* Here Z is the trigonal coordinated axis introduced in Fig. 6.2.
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In the method of effective Hamiltonian several parameters are left
undetermined. They should be determined by experiments or by other
kinds of theory. To calculate the values of these parameters one may
use the perturbation theory as described in Section 8.2. For example,
A(2,® 2E) was already calculated in (8.27).

Problem 8.7. Calculate the splitting of the « 27, term in the Dj-
symmetry by the use of the effective Hamiltonian method. <

8.4 Zeeman Effects

8.4.1 TReaTMENT BY THE ErrFecTive HamMILTONIAN METHOD

With the aid of the relativistic theory, it is known that the total
magnetic moment M of electrons in a many electron system is given by

M= —pu, Z (I; + 2s;) = —ps(L + 28), (8.59)

where
pp = eh2me, (8.60)

is called Bohr magneton and e is positive for an electron. When an
external magnetic field H is applied, this magnetic moment interacts
with the magnetic field giving the interaction energy as

H#y = usH - (L + 28), (8.61)

which is called a Zeeman term. The purpose of this section is to discuss
the additional term-splitting induced by the Zeeman term, which is
called Zeeman splitting.

To study the effects of the Zeeman term by the effective Hamiltonian
method, it should first be noticed that (8.61) changes its sign under
time-reversal K acting on the electron system, but it is invariant to the
time-reversal acting on both the electron system and the source of the
magnetic field: The magnetic field is induced by a current which changes
its direction by time-reversal. This time reversal will be denoted by K.
It follows that the total Hamiltonian including the Zeeman term is
invariant to operation K.

A similar generalization of symmetry operations may also be done for
rotations. We first note that the magnetic field transforms like an axial
vector if a rotation is applied to the source of the magnetic field. Then,
it follows that the Zeeman term (8.61) is invariant to any simultaneous
rotation of the electron system and the magnetic field source by the same
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angle, as L and S also transform like axial vectors by rotations, and (8.61)
is the scaler product of two axial vectors. Such a simultaneous rotation
will be denoted as R°s, where R°® are elements of the group to which the
rotational symmetry of the system belongs. It is clear that the total
Hamiltonian including the Zeeman term is invariant to rotations R°s.

Now we are ready to construct the effective Hamiltonian for the 25+1I"
term in a magnetic field. Since the (25 + 1)(I')-dimensional secular
matrix is still hermitian when the Zeeman term is included, it has to be
expressed by the matrix of a suitable linear combination of the products,
SWX(T) (0 < k < 2S; I’ x I' = 2T, with bases ¥(ST"My). However
in the presence of a magnetic field, the coefficients of the linear combi-
nation should be functions of the field. If these coefficients are expanded
in powers of the magnetic field, the effective Hamiltonian will be given
in general as

Har = ¥, o7 (H) ST,
r
mH) =Y ¥ 4G qp) HSAHH, .

n=0 a,B8,y
at+-B+y=n

(8.62)

Since the higher order terms in the expansion in powers of H are
usually small, we retain only the terms with # = 0 and 1 in the following
argrument.

To see how Zeeman splitting is calculated by the effective Hamiltonian
method, let us consider an example of the 2E term in the Dy-symmetry.
In this case the final form of the field-independent terms in (8.62) are
already obtained in (8.54). Imposing the K invariance on the field-
dependent terms, one sees that

A;Bv(o Alg ,0 elq) == A;Bv(l Azq s q ezq)
= A% (0E,,09) =0 (8.63)

for all possible combinations of ofy. At this stage, the form of the
effective Hamiltonian is

Hetr = AT(Ay)(S: + S, + S)[V3 + [ay(H)S, + a(H)S, + a(H)S,]
+ by(H) T(4zy) + Vi(Ep)leo(H)Sz + 6(H)S, +- c(H)S,]
+ Vo E)d(H)S, + dy(H)S, + dy(H)S.], (8.64)

in which a¢;(H), 5,(H), ¢,(H), and d(H) are linear functions of H
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(without terms independent of H), and V(4,,) is replaced by unity as
it is equivalent to a unit matrix.

Now let us further impose the rotation invariance for R°® in the
D;-group on the field-dependent terms in (8.64). For this purpose it is
convenient to introduce H,; and H, defined by

Hiy = F — s (Hx £ ifly),

73
(8.65)
Hy=Hz
and S, and S, defined by
1 .
Sy = F V3 (Sx £iSy),
(8.66)
Sy =Sz,

in which X, Y, and Z are the coordinate axes introduced in Fig. 6.2 for
the trigonal system. Clearly H,, and S,,(M = +1, 0) transform like the
M trigonal base of irreducible representation T under the rotation R°®
in the cubic group. Then, by using a method similar to that used for
deriving low-symmetry ligand field potentials, the trigonal invariants
given by linear combinations of the products of H,, and S, are obtained
as follows:

—H,S_, — H_ S,y + H,Sy = HySx + HySy + H;Sz, (8.67)
HS_, + H S,y + 2H,S, = —(HySx + HySy) + 2H,S,. (8.68)

Equation (8.67) transforms like the base of A, and (8.68) like the x,
base of T,, which are both trigonal invariants. These invariants have
to be obtained from the second term in (8.64) by assuming appropriate
relations among nine parameters. By making suitable linear combinations
of (8.67) and (8.68), the trigonal-invariant form of the second term in
(8.64) may be given by

&pHzS7z + g ps(HxSx + HySy), (8.69)

where g, and g, are undetermined parameters. The trigonal invariant
form of the third term in (8.64) is easily obtained as

&1 rHzT(Ay,), (8.70)

where g,’ is an undetermined parameter. It would not be difficult to see
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that the trigonal-invariant forms of the fourth plus the fifth terms in
(8.64) are given as

Y HySp Vol TM'EM" | TM”{T,MT,M" | Aye;>

MM’
M M”
o Ho(SuVy + SeV_) + H_y(SoVy — S, V) + Hy(S,V, + S,V.),
(8.71)
Y HySw Vi {TYM'EM" | T,M"{ T,MT;M" | T,0>
M
o Ho(SuaVy + SgV) + Hoo(SoVy — S V) — 2H(S,V, + SuV0),
(8.72)
Y HySyu Vil TiM'EM” | TM™y(TyMT,M" | T,0>
v
o« H+1(S+1V+ — SV) — H—I(SOV+ + S—IV-—)’ (8-73)

where the V.’s are V,,(E,) with M = +1. Making suitable linear
combinations of (8.71), (8.72), and (8.73), one may finally obtain the
trigonal invariants of the fourth and fifth terms in (8.64) in the following
form:

g[SV (E) + SuV (E)/V2
—& ' mp[H S 1V (E) — H (S V_(E,)]
—V2 g pplH 1 SoVE,) + H_1 SV (E)], (8.74)

where g, g,” and g| are unknown parameters. Summing up all the
trigonal invariants, we obtain the final form of the effective Hamiltonian
as follows:

Hetr = AS7T(Ay,) + gupsHzSz + g, 'nsHzT(Ay;)
+ &iueHz[ SV (Ey) + SV A(E)/V2 (8.75)
for H|| Z, and
Hetr = AS7T(Ay) + g 1sHxSx
+ & neHx[SuV(E) + SLVA(E)]/v2
+ 81npHxS 2V (E,) — V(E,)] (8.76)
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for H || X. Base functions P(2EM M) are chosen so that the matrices of
V.(E,) are given by

vaey =0 o)
o (8.77)
VAE) :[ 6 0 ]

The matrices of S, are easily obtained from (8.34). Then, the matrix
of H#,, for H || Z is calculated as

du, —
4+ (g, +&0 st —&weH :
—gnel 4 — (gy + g, )usH X
0
du_ — Uy
0
.......................... X 1, (8.78)
-4+ (gy — &, )usH 0
0 —4 — (g, — &, st
and the matrix of #,;, for H || X is calculated as
u,  —u tu_ — du,
4 0 © —giugH g pupH
0 4 : gippH  glpgH
. x 1. (8.79)
~gpupH g upH - —4  g/psH

gipngH glugH © gugH  —4

The eigenvalues of (8.78) are easily obtained. The result shows the
Zeeman splitting with H || Z as illustrated in Fig. 8.2. Such a splitting
has been observed in ruby,* and the linearity of the splitting to a magnetic

¥ In ruby the site symmetry of Cr®* ions is C;, so that we have additional terms in
(8.75) and (8.76). However, the final result for C; does not differ from that for Dj; .
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field has been confirmed by using pulsed magnetic fields up to 200 kOe.
The proportionality factors to pgpH, called g-values, have been found
to be 1.48 4 0.08 for the +3u, component and 2.44 4 0.08 for the
-+ 3u: component. The observed relation, 1.48 4 2.44 ~ 4, shows that
g1 in the effective Hamiltonian is small, as the sum of the g-values is
2g, ~ 4 if gy is neglected: g, is expected to be close to the spin-only

value, g, ~ 2.
Ly
2 +
‘—@’)24-9" ] P‘B
L

u

|

a
zh-
. ‘<Eﬁ JpgH
[

—=u

2+

I+
ro|—

Fic. 8.2. Zeeman splitting of the ?E term in the Dg-symmetry with H || Z.

By assuming that g, H and $g7pzH are small as compared with 4,
the eigenvalues of (8.79) are obtained as shown in Fig. 8.3. In this case
no Zeeman splitting has been found in optical experiments for the
two components of #,®2E in ruby. This shows that g,’ is very small.

gf+g 2,2
s Tan e
I
izu2
A
LQ’,uH
+Lu_ ———d 2"
tx5ug
Q 24
t\\ a7 gl 2,4 2
——aa "

Fic. 8.3. Zeeman splitting of the 2E term in the D;-symmetry with H || X. Relations,
g.pugH € 24 and g’ ugH < 24, are assumed.

However, a more accurate experiment by the use of an optical detection
of electron spin resonance in the 4-4u, component* has confirmed the
presence of nonvanishing g,’, although this parameter has been found
to be very small, 0 < g,” < 0.06.

* 8. Geschwind, G. E. Devlin, R. L. Cohen, and S. R. Chinn, Phys. Rev. 137, A1087
(1965).



202 VIII. FINE STRUCTURE OF MULTIPLETS

Problem 8.8. Derive the spin Hamiltonian linear to H for the ¢4, term
in the D,-symmetry in a magnetic field H. &

Problem 8.9. Derive the effective Hamiltonian linear to H for the 27,
term in the D,-symmetry in a magnetic field H. O

8.4.2 CALCULATION OF g-VALUES

Undetermined parameters in effective Hamiltonian may be calculated
theoretically by the use of either the perturbation theory or more
elaborate methods. Here, we present two examples of calculating
g-values in effective Hamiltonian. The methods of calculating g-values
in the other cases are inferable from these examples.

The first example is the calculation of g in the spin Hamiltonian

H#, = gugH * S. (8.80)

for the 2,2 4, term in a cubic system. For simplicity, the magnetic field
may be assumed to be along the z-direction without any loss of gener-
ality, so that the Zeeman term in the original Hamiltonian is given by

H#; = ppH(L, + 25,). (8.81)

The main contribution to g comes from the diagonal matrix elements
of —2up,HS, in the t,® 44, term, and it gives the spin-only value, g, = 2
(more exactly g, = 2.0023). What we are interested in is the deviation
of g from g, , g — g, , which is called a g-shift. The g-shift may be inter-
preted as coming from the contribution of the orbital angular momentum
which is brought into the orbital singlet because of the spin-orbit
interaction: Otherwise, the orbital angular momentum is completely
quenched in the orbital singlet.
In the %4, term, g in (8.80) is calculated from

1 3 3
¢ =5 |« (Me=5) — < (M=—3)] (8.82)
As seen from the physical argument given above, the g-shift comes from
the second-order contribution to (8.82) involving ##,, and pzHL, in the
perturbation calculation. By using the coupling scheme in Fig. 8.1, the
second-order contribution to (8.82) is found to be
dg = 3[4, § | L, | *To DT 3L | Ho | *4: B

+ My § | Hoo | TR 3OCT 3L (L, | 4, 8

— My — § L 1T, — 30T, — 30| Ho [ 44 B

— My — § | Hoo | 4T, — 30T, — $L| L, | 44, — 3)]

X [W(t2 44,) — W(ty2e 1T,)] 7, (8.83)
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in which 2,2 for 4T, is suppressed in the matrix elements. Since the
matrices of L, and 5, are hermitian and each term in (8.83) is real,
(8.83) may be simplified as

2 (4, | L | 2Ty
3 10Dgq

X [<4T2%C|9fso
2 <12C L] e-v>

dg = —

=)

3 3
"4, §> — (T, — 51| Ao |24,

1
T3 ioDg l‘%“ ’22C> < 2_§C>]

_ AL L | ev)edu | Ao | 13D

3 10Dgq

. 8 k,C,

~ 310Dg’ (8.84)
where 10Dyq is the cubic field splitting parameter equal to

Wi(t%e *Ty) — W(t5* *4,)
and %’ is defined as
(LI L] evs = 24k (8.85)

Here £’ is unity in the d-function approximation as seen from (7.5). In
deriving (8.84), use was made of the relations

ATy £+ 3| oo [ 44y, £ 3D = (e £ 40| Ho | 12 £ 30D, (8.86)
Gy [ L 14Tl = <L | L | ev), (8.87)

which are easily derived by using the explicit forms of the wavefunctions.
The method of calculating the matrix elements of the orbital angular
momentum in general is explained in detail in Appendix VIII. Since
10Dg ~ 10* cm~, {’ ~ 10*cm™! and &’ ~ 1 for the systems involving
iron-group transition metal ions, (8.84) shows that the g-shift is of the
order of 1072

The next example is the calculation of g, in (8.75). Since the term
g,/ pgHT(A,y,) involves no spin operator, the perturbation processes
giving g, should involve spin operators an even number times. Further-
more, the orbital operator of type T(A4,,) has to be found in the reduction
of the products of orbital operators appearing in the perturbation
processes into irreducible representations. Of course, the perturbation
processes should involve operators L, or S, once as the term of interest
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is linear to H, . From these considerations and the coupling scheme in
Fig. 8.1, it follows that none of the first- and second-order processes
may contribute to a nonvanishing g,’;

L Vo(To,) Vo(Ty,)
1,3 2EYuy > 1,3 2T Jay —22 13 2T b, — 25 ¢t 32F4u, ,  (8.88a)

@ ; conjugate complex of the above [V(To,)V(Ty,)L,],

VoTs, Vo (T,
(D) ;3 2By 202 1320, 2 po e a, 00 ysepy,, o (3.88D)

(T4} S Hso
2pL Uy ——> i 20 3 2T2%xi —z> t23 2T X+ ——) t23 2E—ui

III ‘

() 3 conjugate complex of the above [#50S,V(Ts0)], (8.88¢)
1,3 2Efu, M 1,3 2T x, if;—» t,3 2ELu, Sz 1,3 2ELu, |

vy {4 B T 6 T 00 0 B, T 13 B, g e

Sz Vo(Tag) Hso

t 3 2Elui _ t23 2Elu LZL) t 3 21 Z%x:i: —> t23 2E%ui s
Sz Hgo Vo(Typ)

3 2E1ui —> t23 2EL sl ~—> t23 ZTZ%‘X’ RALLUN t23 2E%ui .

The detailed examination of these processes shows that processes (II1)
and (IV) cancel out, and one obtains

r— 12K2
8 T W R — W TR ) — W o)
6K?2
W E) — W )P

(8.89)

where K is the trigonal splitting parameter defined in (8.22).
In ruby K ~ —350 cm~Y, W(E) — W(T,) ~ —700 cm~), and
WQEE) — W(T,) ~ —6500 cm™!, so that (8.89) gives g,' ~ —0.34
which almost explains the observed g-values, g(4-3u,) = 1.48 -+ 0.08
and g(++ 3us) = 2.44 + 0.08, if g, is assumed to be the spin-only value.

As seen in these examples, the form of effective Hamiltonian gives us
some 1insight into the perturbation processes effective in calculating
undetermined parameters in the effective Hamiltonian. This is also one
of the merits in using the effective Hamiltonian method.

8.4.3 ELECTRON SPIN RESONANCE AND OPTICAL ZEEMAN PATTERNS

As discussed so far, the application of a magnetic field induces Zeeman
splitting of terms, and transitions between the Zeeman levels within
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a term (or within a split component of a term) are observed in electron
spin resonance experiments, and transitions between the Zeeman levels
of two different terms (or of two different split components of a term in
far-infrared spectroscopy) are observed as Zeeman patterns in optical
experiments.

In electron-spin resonance experiments, the transitions are mainly of
magnetic-dipole type and are allowed between the two Zeeman
levels with quantum numbers M, and M, which are related by
| M, — M| = 1. Here M, and M’ are to be associated with the base
functions @(SM,) for the spin Hamiltonian as there is a one-to-one
correspondence between these base functions and the real wavefunctions
; . Therefore, it is straightforward to calculate transition intensities
once the eigenvectors which diagonalize the matrix of spin Hamiltonian
are obtained.

The calculations of transition intensities in optical Zeeman patterns
are more complicated than those of transition intensities in electron-spin
resonance experiments. Here we mention only one example of calculating
the Zeeman pattern for the electric-dipole transitions between the £,3 44,
and 2,3 2E terms in the Cg-symmetry system, ruby. The caltulations of
Zeeman patterns in many other cases may easily be inferred from this
example. In this example with a magnetic field parallel to the trigonal
axis, the calculations by using the effective Hamiltonian method show
that the 44, term splits into four Zeeman levels specified by M, = 3/2,
1/2, —1/2, —3/2, and the 2E term also into four specified by MM = u, ,
—3%u_, $u_, —3u, .* The electric-dipole transition intensities between
these Zeeman levels were already calculated in Problem 7.7. In
Problem 7.7, one can show that

PO = § PN,

(8.90)
P

ai = 8a¥1P%1 >

if one calculates transition moments P>#* by using the method described
in Section 6.2.3. Then, the Zeeman pattern in this case is given in terms
of m=my,0, =0, y,ando_=o0_,_,.

Besides performing the calculation as described in Problem 7.7, it is
also important to examine the selection rule governing the transitions
between the Zeeman levels. The selection rule may be found by consid-
ering the transformation properties of the initial and final states as well as
those of the effective transition moment operator. In the present problem

* We assume that g, = 0.
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the selection rule may be found as follows: We first note that P in
Problem 7.7 can be reexpressed as

(2,3 4A,M, | (R —1RosP( Rosy-1Ros t,2e *T"MIM">
2 2 8
r"M”

M

X (t,2 ST"M/M ”| (RS)ROSH;,(R®)LR* | 1,3 2EM/M">
X [W(E) — W)

Peff =

= ¥ (4,3 44,M, | (RS)LROP(R%) W oqq | ty2e ST"MIM">

rM”

M

X (12 ST MIM" | H,oR | 1,3 2EM/M’>

X [WEE) — W(Er, (8.91)

where R8s a rotation in the double C,-group. In deriving (8.91) we have
used the relation

Y Ros | STM,MY(STMM | (R%5)™

MM,

= Z | SI"MS’M’> UM,'M'.M‘MUITI:M",M,M<SPM;/M” |

MM,M,/M’
M;M"
= Z | STM/M">(ST'M/M" | Z UM,'M'.M,MUX},M.M:M”
M/M M M" MM
= Y | SIM/M'STM/M’|, (8.92)
MM

where U is the unitary representation matrix for operation of R° on the
ST term. Since all the elements in the double C;-group are generated
from a single element C,, it is sufficient in our argument to consider
only the case of R°® = C,. Now, by using Table 6.2 and (7.36), one

can show that

C,Y(EMM) = exp | — 2 M, + M)| PEEM,M), 8.93a
3 )
Co¥(*4,M,) = exp [~ 2;” Ms] P(rA,M,), (8.93b)

_ Qi
C,PyCyt = exp [~ : M] Py, (8.93c)
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where Py, are P, , P_, and P, defined in (6.64) for M = +1, —1, and 0,
respectively. Then, Eqgs. (8.93) enable us to reexpress (8.91) as

2 ) ’ ’ AT
Post.st = exp | =3 (M, + M) + M — M| Pest,  (8.99)

which shows that for Peg 57 7 0
M, — (M, + M)+ 3n =M (8.95)

(n = positive and negative integers including zero). The relation in (8.95)
gives the selection rule we wanted to obtain. This selection rule, of
course, is consistent with the result given in Problem 7.7, but cannot
predict some of the zero-intensity transitions calculated there: For
example, according to the selection rule, the m-transition (M = 0) is
possible between *4,% and 2E —$u_ as M, — (M, + M’) = 3, but its
intensity was found to be zero in Problem 7.7. In the trigonal system,
(M, 4 M) of the S'M M state are called crystal quantum numbers. 1t is
possible to establish a more elaborate theory on this line for more
complicated symmetry systems.*

Next let us consider the case in which a magnetic field is applied
perpendicular to the trigonal axis (H| X) and the magnetic field
strength is in the range of guyH > 2D and g ,puzH << 24. Here 2D
(0.38 cm~1 in ruby) is the initial splitting of the #,3 44, term defined in
(8.43), g, and 4 (29 cm~! in ruby) are defined in (8.76), and g,” and g’ in
(8.76) are assumed to be zero. This situation often occurs, as magnetic
field strengths easily available are of the order of 10 to 100 kOe
(2upH ~ 1 — 10 cm~'), while in many cases the initial splittings of
orbital-singlet ground states are ~0.1 — 1 cm™!, and those of the
excited states are larger than 10 cm~'. In this case the 44, term splits
into four Zeeman levels specified by M* = 3/2, 1/2, —1/2, —3/2, in
which the quantization axis is the X-axis instead of Z. On the other hand,
the Zeeman levels of the 2E term may still be specified by M M as in
the case of H || Z. Then the effective transition moments are calculated by

Pese(t, *A,M™X — 1,> EM,'M’
2 2°"%s 2

= Y (S =3 MP|S =3 MP) Pey(t,® *4,MP — 12 2EM/M"), (8.96)

M@

#* T. Murao, F. H. Spedding, and R. H. Good, Jr., J. Chem. Phys. 42, 993 (1965);
T. Murao, W. J. Haas, R. W. G. Syme, F. H. Spedding, and R. H. Good, Jr., J. Chem.
Phys. 47, 1572 (1967).
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where (S = § M | S = $ M!?> is the matrix elements associated with
the transformation of the quantization axis from Z to X. It is known?*
that, when the quantization axis is rotated by angle (6, ¢), the wave-
functions ¥(ym’) associated with the jm’ state (j: angular momentum)
quantized along the rotated axis are given in terms of ¥(jm) associated
with the jm state quantized along the unrotated axis as follows:

P(jm') = Y P(jm) U2 (89), (8.97)

where U, (6p) = e~meU),.(80) and

(j -+ m)! ! I
G—ml G+ mig—m)

<[y ™ (emsg) ]

Ui (60) = (—1y™ |

d ™ ;
w [(-&- pmi(] — gy } 8.98
[( dt ) ( ) ]t=(cos 6/2)* ( )
For example,
T 1
2 2
—b
umdeo) =, "] (8.99)
] : -+ -1
& —v3ab  Viar B
x 2 . 5 . o 3 2
e = | Vaar O T M) V] @100

v3abt —b(1 —3a?) a(l —3b%) —+/3a%
b V3 ab? V'3 a%h a3

where a = cos (/2) and b = sin (6/2). From (8.96) and (8.100) with
6 = /2, one may easily calculate the dipole strengths in terms of 7, o, ,
and o_ .

Problem 8.10. Calculate the dipole strengths of the
t23 4A2MS(X) s t23 2EMSIMI
transitions. <

¥ J. Schwinger, ‘“Quantum Theory of Angular Momentum’ (L. C. B. Biedenharn and
H. Van Dam, eds.), p. 229. Academic Press, New York, 1965.
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8.5 Linear Stark Effects

In the theory of atomic spectra it is well known that an external
electric field E interacts with electrons and induces shifts and splittings
of energy levels. This effect is called the Stark effect. The interaction
Hamiltonian in this case is given by

Hs=eE-Yr,. (8.101)

i

Since S changes its sign by inversion at the origin, it has no matrix
element between the states with the same parity. Therefore, if the
system has inversion symmetry, we can expect no Stark effect linear to E.
In this subsection, using the effective Hamiltonian method, we treat the
Stark effect linear to E in the system without inversion symmetry. For
this purpose we cite a particular example of the 2E term in the C,-
symmetry system. It will also be shown that no linear Stark effect is
expected for this term if the symmetry of the system is D; where no
inversion symmetry exists. In the course of the argument we should
keep in mind that Kramers degeneracies are not lifted by an electric
field as £ is invariant to time reversal.

If one reexamines the arguments given for obtaining (8.62), it is
evident that the primitive form of the effective Hamiltonian in the
presence of an electric field is also given by a form similar to (8.62) in
which H is replaced by E. Therefore, in our specific problem, after
imposing the time-reversal invariance condition, the effective Hamil-
tonian is given by

Herw = ASzT(Ay,) + a(E) V(4y,) + B(E) V(E,) + «(E) V, (E,)
+ T(Ay.)d(E)S, + do(E)S, + dy(E)S.], (8.102)

where a(E), b(E), ¢(E), and d,(E) are linear functions of E without terms
independent of E. Now we notice that, if RS is defined as a rotation
acting on both the electron system and the source of an electric field,
the Stark term in (8.101) is invariant to the operation of any rotation R°®
as the electric field transforms like a polar vector and the Stark term is
the scalar product of two polar vectors. Therefore, the total Hamiltonian
is invariant to the operation of R°® in which R°® is an element of the
group to which symmetry of the system belongs. In the present problem
Ros is an element of the Cy-group.

The trigonal (Cs)-invariants should transform as the bases of 4, , 4, ,
T:;M = 0,and T,M = 0 of the O-group, and they are obtained from the
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terms of (8.102) by assuming suitable relations among the parameters
as done in (8.71)—(8.73). To obtain the trigonal-invariants, we define

1 .
Eil = :F VE (Ex:t ZEY), EO = Ez . (8.103)

The trigonal-invariant of the second term in (8.102) is
EoV(4,), (8.104)

which transforms as the 7y M = 0 base. The trigonal-invariant forms of
the third plus fourth terms are

BV, —E,V.)) (T, M=0), (8.105)
and
E,V,+E,V_ (T.M=0). (8.106)

The trigonal-invariant forms of the fifth term are

(EaSo1 4 E1Sia — EoSo) T(Ay)  (4y), (8.107)
UE+1S—y — E4S4y) T(Ay) (T, M=0), (8.108)

and
(E1S—1 + E_1S4y + 2EoSo) T(Ay,) (Ty M=0). (8.109)

Then, the final form of the effective Hamiltonian is obtained as

Hogg = AS,T(A,) -+ oEV(A,)[2 + iBEV, — E, V)2
+ BELV, + EqV)|V2 — ifES_y — E1S4) T(4y,)
+ Y EeSoT(Ay,) + v'(E11Sy + E1S4) T(4y,). (8.110)
It should be remarked that factor 7 in the terms proportional to 8 and y is
important, as, due to the relations
KSLK — S+,

@8.111)

KELK — —Esy,
these terms are time-reversal invariants only if factor 7 is included. The
first relation in (8.111) differs from (8.11) because of the different
definitions of S,, and S, . The base functions ¥(SI'M,M) of the
effective Hamiltonian will be chosen so that the matrices of V,(E,)) are

given by (8.77).
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The secular matrices of (8.110) for E||Z and E| X with bases
W(ST'M M) are calculated as

du, — du_ du_ — du,
A4-(a+y)Ez 0 : 0
0 A+ (B,
.................................. X _é.
. ~d+(a-y)E; 0
0 A+ (a-7)E;
8.112
and ( )
4 0 : @B —BYEy —(iy +y")Ex
0 4 : —(y —y"YEx —(B + B)Ex
............... S X b (8.113)
~8 +B)Ex Gy +y)Bx  —d 0
(v —v)Ex @B—B)Ex' 0 4

These secular matrices show that a linear Stark shift is expected only
when an electric field is parallel to the trigonal axis. If the symmetry of
the system is Dy, the rotation invariants should transform only as the
bases of A4, and T,M = 0, so that « = B’ = y' = y” = 0 in (8.110).
In this case no linear Stark shift can be expected even if the system lacks
inversion symmetry.

Parameter « in (8.110) is given by the second-order perturbation
process involving odd-parity potential V(7},) and 5 , while y" is given

)60 r x
120 - x
E L]
L
Z 80 *
Fic. 8.4, Pseudo-Stark splitting 4v of ruby versus & "
applied electric field E, parallel to the trigonal axis. w .
Data are obtained from the R,(®) and R,(X) lines.
40} xe
O 1
0 05 1.0

Av (cm™)
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by the third-order process involving an odd-parity optential, J#,, and
Hy . Therefore o thay be expected to be larger than y'. In ruby there are
two different sites of Cr3+ where the odd-parity potentials are different
only in sign, so that we have to assume « with different sign for Cr3+
ions in two sites. Then, the linear Stark shifts in opposite directions are
superposed and observed as if it were a linear Stark splitting. This is
called pseudo-Stark splitting, which has been observed* as shown in
Fig. 8.4. Since « comes from odd-parity potential V(T),,), the observa-
tion of the pseudo-Stark splitting in ruby emphasizes the importance
of V(Ty,)- In the experimental data the presence of ' has not been
confirmed as seen in Fig. §.4.

t W. Kaiser, S. Sugano, and D. L. Wood, Phys. Rev. Letters 6, 605 (1961).



Chapter IX INTERACTION BETWEEN ELECTRON
AND NUCLEAR VIBRATION

So far we have assumed that the nuclear framework of the systems
of interest is at rest. However, in real problems the systems undergo the
vibration of the nuclear framework even at 0°K (the zero-point vibration),
and the interaction of electrons with the nuclear vibration causes the
release of the parity-selection rule as briefly discussed in Section 5.2.1,
the broadening of spectral lines, and so forth. In particular, as seen in
the dynamical Jahn-Teller effect which we will discuss later on, the
separation of the electron and nuclear motions in degenerate states is
sometimes impossible. These problems will be discussed briefly in this
chapter.

9.1 Nuclear Vibrations

9.1.1 ADIABATIC APPROXIMATION

The nonrelativistic Hamiltonian of the system having N electrons and
N, nuclei is given by

H = He + Hn + Hen, (9.12)
where
> # X 4 N o et
o= =5 Z it Y > (9.1b)

213
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N
LAV AT
Hy = 4, + , 9.1c
" Z 2Mk y k>zl:;1 Ry ( )
No N 7.
Hm=—Y Y ’f (9.1d)
k=1 i=1 Vik

In (9.1) 4,; is the Laplacian operator of the ith electron coordinates;
4, is the Laplacian operator of the kth nuclear coordinates: Ry, is the
nuclear distance between nuclei k2 and [; 7, is the distance between
electron 7 and nucleus k; Z;e is the charge of nucleus k; and M) is the
mass of nucleus k. We observe that 5, involves the electron coordinates
only, 5%, the nuclear coordinates only, and 5, both the electron and
nuclear coordinates. To solve the Schrédinger equation with the
Hamiltonian (9.1), we first assume that the electronic wavefunction
Y(r ; R), obtained by keeping the nuclei fixed at R, has a physical
meaning. This assumption seems reasonable if one considers a great
difference between the velocities of the electron and nuclear motions due
to the difference between the electron and nuclear masses; the electron
velocity is of the order of 108 cm/sec while the velocity of the nuclear
motion is of the order of 10° cm/sec. The wavefunction ¥(r ; R) satisfies
the equation

VAYA
(F+ ¥ L

E>1 kL

+ Jﬁm) Y(r:R) = U(R)P(r:R), (9.2

which is derived by dropping out the nuclear kinetic energy terms in
(9.1). Here R represents the positions of nuclei, R, R, ,..., Ry , and r
the electron coordinates, r;, r, ,..., Fy . Subscript p is a set of quantum
numbers. We regard ¥(r ; R) as a function of r with parameter R. By
using this wavefunction we express the total wavefunction for the
Hamiltonian (9.1) as

®(rR) = ¥(r : R) x(R). 9.3)

Then, x(R) may be determined from
[—3 212M,) 4, + U(R)] xuolR) = EuotunlR), ©4)
k
only when the following replacement is permissible*:
A2 A2
~Y a3z 4w¥(r - R) x(R) > ¥(r : R) [-¥ L Lux®)]. 69
k k

* This replacement is permissible if V,¥ - V,x and x 4,¥ are negligible compared
with ¥ 4,x. To compare the magnitudes of these quantities, we notice that ¥ spreads
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Now, as shown in (9.2) and (9.4), the equations of motion for electrons
and nuclei are separated in the present approximation. This approxima-
tion is called the adiabatic approximation or Born—-Oppenheimer
approximation. As shown in (9.2), the displacement of nuclear positions
may induce a deformation of the electron orbital but not an electron
jump from one orbital to another. This means that electrons follow the
nuclear motion adiabatically. As shown in (9.4), U,(R) serves as a
potential for the nuclear motion so that it is called an adiabatic potential.
The adiabatic potential is calculated as the eigenvalue of (9.2) with
parameter R. Therefore, its form depends upon the electronic state p.
It is important to note the Hamiltonian (9.1) as well as the Hamiltonian
in (9.2) is invariant to any symmetry operation on the electron and
nuclear system which brings the system into itself. Consequently, the
adiabatic potential is also invariant to such a symmetry operation.

9.1.2 NORMAL MODEs OF VIBRATION

Now let us consider the problem of solving equation (9.4) for nuclear
motion, which may be reexpressed in terms of nuclear displacements
multiplied by (M,)!/2, Q, = (M,)!/2 (R, — Ryy), as follows (R, are the
equilibrium positions):

[—%Zg(a& + ag} + @Z}z) + U@)] x(@) = Ex (@), (9.6)

where @ represents @, , @, ,..., @y, . For the purpose of solving (9.6),
we first consider a 3V,-dimensional vector space whose basic unit vectors,
rz > Exy > €x, (R = 1,2,..., N), are the basic vectors of the orthogonal
coordinate system fixed at the equilibrium position of the kth nucleus.

over the distance of the order of 1 atomic unit while x extends over the amplitude of
nuclear vibration x,. Then, it follows that

Vn,}’ 'an/,}’ Anx ~ Xo,
x A [ Ay ~ xg.

On the other hand, denoting the electronic energy as E®, the vibrational energy as EY,
the vibrational frequency as v, and the force constant responsible for the vibration as &,
one has the relation, EV = hv = #(k/M)'/? = #i(k/m)'/? (m/M)'/2, which shows that
Ev|E® ~ (m/M)'/?: in atomic unit E¢ ~ 1 and k ~ 1. Considering the relation,
Ev ~ kx,? one obtains ¥y ~ (m/M)'/%. Then, one learns that the adiabatic approximation
is valid if (m/M)'/* < 1. It is interesting to note that vn/ve ~ (m/M)3/* follows from
Ee ~ mve? and EV ~ Mwvn?, where ve and vy are the electron and nuclear velocities.
Therefore, the condition xy <€ 1 for the adiabatic approximation to be valid is stronger
than vy/ve € 1 and EV/Ee £ 1.
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In this space vector @ is given by its 3V, components with respect to
basic vectors é,; (1 = x, y, 2) as

Q= (le s Qlu ’ le s Q2m s Qzu FAXE) QNoz)' (97)
For an arbitrary scaler A, AQ is defined as
AQ = (AQy; , 201y ooy AQy, 2)s (9.8)

and the sum of two vectors,

Q® — (Q(I) (0 ',Q(I) )

1z s X1y s Ngz

(m an ~dan an
Q = (le s XK1Y 200y QNoz)’
is defined as

Q? + @™ = (R + O, 0F + 001 OF OV 99)

This vector space 1s called the displacement vector space. Now we consider
the transformation of basic vectors é,; by operation R which brings the
system into itself:

R, =Y 8,AP(R). (9.10)
1]

Matrix A whose elements are A3 is considered to consist of three
dimensional matrices A‘% as shown in Fig. 9.1. Matrix A is nonzero

{11)} gl12}] Ji3M
AV AT A"

o

Fic. 9.1. Matrix A consisting of three-dimensional
matrices AF),

I
|
I
)
(
1
.{
'
'
)
e = -

only when nucleus £ is transformed to nucleus / by R, and all the nonzero
matrices A(¥ are the same and equal to the transformation matrix
for the basic vectors of a three-dimensional space: for example, when R
is the rotation around the z-axis by angle ¢, the nonzero matrix A% is
given as
cosp —sing 0
AR — 1sing cosp O], (9.11)
0 0 1

which is independent of / and k. We can show that the aggregate of the
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3 N,-dimensional matrices A(R) for various R’s forms a representation
of the group to which the R’s belong. However, this representation 4,
in general, is reducible. In order to learn what irreducible representations
appear in reducing representation 4, we use the property of characters
similar to (1.78).

For example, let us consider an XYq molecule with the Oy,-symmetry
in which atom X is surrounded by atoms Y, octahedrally. The basic
vectors in this system are shown in Fig. 9.2. The characters of representa-

Fic. 9.2. The basic vectors in a XY,
molecule. O, X atom; @, Y atom.

tion matrices A(R) for pure rotations in classes £, C,, €2, C;, and G,
of O, are obtained from

X(R) = Ng(1 -+ 2 cos ), (9.12)

where N, is the number of the atoms which do not move on rotation R,
and g is the rotation angle around the symmetry axis.* The character of
A for rotation-inversions in classes I, C,I, C2I, C,I, and C,I are obtained
from

X(R) = —Ng(l + 2 cos ), (9.13)

which may be derived if one considers the that, for inversion after
rotation around the z-axis by angle ¢, At® is given by

—cos @ sin ¢ 0
A =1 _sing —cosg 0]. 9.14)
0 0 —1

* If the symmetry axis is the 2z-axis, (9.12) is evident from (9.11). When the symmetry
axis is not the z-axis, the matrix corresponding to (9.11) is given by UAU¥U~1 where
U is an orthogonal transformation matrix. Since the character of UA®™U-1 is the
same as that of A% (9.12) is valid for the rotation around any symmetry axis.
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By using (9.12) and (9.13), one can calculate the characters of A for all
the symmetry operations in the O,-group as shown in Table 9.1, in
which N and x(R) for atom X and the group of atoms Y, are separately
given; the sum of these y(R) is the character for XY¢. Comparing
Table 9.1 with Table 1.7, one sees that representation A4 is reduced to

Ala + Eg + Tlg + 3T1u + Tza + Tzu . (915)

TABLE 9.1

CHARACTERS OF REPRESENTATION A IN THE O4-Group

E 6 C2 C6, G I Ca Cgl Cp G

@ 0 w2 L 27/3 £ 0 w2 m 2a/3 7

v 3NR 6 2 2 0 0 0 0 4 0 2
¢ x® 18 2 -2 0 0 0 0 4 0 2
Nz 1 1 1 1 1 1 1 1 1

x(R) 31 -1 0 -1 -3 —1 1 0 1

XY, ¥R 20 3 -3 o0 -1 -3 -1 5 0 3

Note that y(R) for atom X is the character of T;, . The number of bases
of the irreducible representation is 1+ 2+ (3 X 6) = 21, which
agrees with 3N, = 21.

The transformation of A(R) into an irreducible form is achieved by an
orthogonal transformation C as follows:

Y, Chudi (R) Cilrry = Di(R) 8(oa) 3(IT), 9.16)
1. ki
where « is introduced to distinguish the same irreducible representation
appearing more than once. When the same irreducible representation
appears more than once, the orthogonal transformation is not uniquely
determined from (9.16) only. Now, we denote the unit basic vectors of
the irreducible representations as %), which are given by

&) =Y 6,090, . 9.17)

With respect to these basic vectors, a displacement vector in the 3/V,-
dimensional space is now given as

Q=(.0%.), (9.18)
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where new components Qf;) are given by

Q(a) I(‘(:') kixl ki » (919)

and they transform by operation R in the following way*:

RO® — zc;cgk,.RQk,- = Y CELAFR)Qy

ki, U3

() (%0 («”) () (r) ( )
= Z Cryidi; (R) Cyj 1yQry = Z D, Or, . (9.20)
ki.lj,
P 2%

In deriving (9.20), we used the inverse relation of (9.19),

=Y 08, (9.21)

aly

Returning to the problem of solving (9.6), we reexpress (9.6) in terms
of OF). Since U,(Q) is invariant to any operation R in the group to which
the system belongs, U,(@Q) may be expanded in powers of Q) as follows:

U(Q) = U0 +1 ¥ K00k, (9.22)

1"/

in which K{&*7 are numerical constants, and only the terms up to the
second power of Qf) are retained. In (9.22) no term linear to Q{% appears
as the system is in equilibrium at @ = 0. The fact that (9.22) is invariant
to R may be seen in the following: U,(0) is obviously invariant to R and
the second term in (9.22) is transformed under the operation R as

R[ y KeQuo )] =Y KLaI:g:')RQ(Ig;RQg)
aa'Ty aa’ly
= ¥ ¥ K&DUNR) DINR) Q0L

y'v" aa’Ty

Z K““;‘,” (a) (a) (9_23)

aa’ly

in which we used (9.19) and the orthogonality relation

Y. DEXR) DINR) = 8(y'y"). (9.24)

% Strictly speaking, RQ %) should be written as RQ{¥R-1, because Q) is an operator.
y
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The kinetic energy term in (9.6) is reexpressed in terms of Q) as

2 =002 2 aQ;_ay) aQ(;:'m Ty kil ry ke
-3 I' 'y
- 2 ; {aQ(a) 2 (9.25)
aly
By using (9.22) and (9.25), (9.6) is now given as
e 2 1 (a0 @)
[ 2 ;:y PO + 2a§yKur Ory ]XM(Q)
= [E, — U,0)] x.(Q), (9.26)
which is separable into the equations with different Iy as
(Clt! ) (N) (N
[_ 2 Z {aQ(a)}z +3 Z K.ir QOr Or, ]
% XMV(Q(IJ’ ’Q(ar))
— MXMV(Q(I)’ ’Q(ar)) (927)
if x,(Q) is assumed to have the form
(@) =[] %02 ..., 0¥7). (9.28)
. Iy

Functions y,., involve QF), O®,.. QYD when the I' irreducible
representation appears g times. In (9.27), ¢, is independent of y and
E, is related to e, as

Y (N er =E, — UL0), (9.29)

where (I') is the dimension of T

When a certain I" appears only once, (9.27) is the wave equation for
a simple harmonic oscillator with angular frequency w,r = (K,r)'/?;
in this case K,, is always positive as the equilibrium configuration is

stable. Then, the eigenvalue of (9.27) is
&=+ HHEN?  v=01,2,.., (9.30)
and the eigenfunction is known to be

X2 (6) = N H(£) exp(— 3¢9, (9.31)
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where H,(£) is the vth Hermite polynomial given by

HE) = (—1)7 exp(€) g exp(—2), ©32)
¢ =a0r,, ot = K, [h?, (9.33)

and normalization constant N;%/2 is given as

N, = (’{/;—0‘2:;3)1/2' (9.34)

When a certain I” appears g,- times, we apply an orthogonal transforma-
tion to Q)’s;

o~ Z B, 09, (9.35)

so that U,(Q) — U,(0) has the following form:

U (@) — U0) =} T K2Q@0®), (9.36)

8I'y

Now K!® and the orthogonal transformation can be determined by
solving
Y, K BosByw = K. 8(688) (9:37)
or "
Y K Big = KBos, (9:38)

a’

which gives the g.-dimensional secular equation. It should be emphasized
that the additional orthogonal transformation B can be determined
without violating (9.16) as (9.16) does not determine the transformation
C, uniquely. Transformation B depends on the physical property of the
adiabatic potential, and is not determined by symmetry considerations
only. Even when the Qs are used the kinetic energy term has the same
form as that given in (9 25), so that with the potential-energy term of
(9.36) the wave equation is now reduced to that for a single harmonic
oscillator having angular frequency w!? = (K®)1/2.

The oscillation specified by BI' is called the BI" normal-mode, and Q'
is called the y normal-coordinate belonging to the SI" normal-mode. In
the XY, molecule described in Fig. 9.2, eight kinds of normal-modes as
given in (9.15) are obtained. However, it is evident from a physical
point of view that in general six degrees of freedom out of 3N, are
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ascribed to the free translation and rotation of the system. For example,
in the XYq molecule one T, mode belongs to the free translation and
one T, to the free rotation. The normal coordinates of the free
translation and rotations are easily obtained by insight and the K®s
for these modes are, of course, zero. Therefore, the procedure of
determining transformation B is simplified if the normal-coordinates of
the free translation and rotation are subtracted from the Qs from the
beginning.

9.1.3 ExprriciT ForMs OF NORMAL COORDINATES

In principle, the explicit forms of the normal coordinates are obtained
by determining both the transformation matrix € from (9.16) or from its
modified form,

Y AP(R) CW, =Y C&), DINR), 9.39)
ki 1%

Iy’ i y'y

and the transformation matrix B from (9.38). However, it is much
simpler for the systems of high symmetry to use geometrical insight
in determining the normal coordinates.

In what follows we consider the example of the XY, molecule whose
normal modes have already been classified as; 4,, , E, , Ty, , 3Ty, , T,
and T, . Among these normal modes the modes of internal vibrations
besides the free translation and rotation are 4,,, E,, 2Ty, , T,,, and
T,, . To determine the normal coordinates of the internal vibrations,
we first note that in the internal vibrations both momentum and angular
momentum of the system are zero. From the fact that the velocity
components are in the ratio of the displacement components, the
conditions of vanishing momentum and angular momentum are expressed
in terms of the displacement components S;; = Q,,/(M,)!/2 as

Y M S =0, (9.40)
k
Y MS: X Ry); =0 (i =x7,2) (9.41)
k

in which
sk = Z Skiéki .

The normal coordinate of the A,, mode is easily obtained as shown in
Fig. 9.3. It is given by the displacements which keep the original
symmetry, O, . These displacements clearly satisfy (9.40) and (9.41).
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Therefore, the basic unit vector €, of the normal coordinate O, _is given
as

| P P
éAw = :/_g (bro + oy + &, — 84y — &, — &,). (9.42)

From the arguments given in Chapter VI, it is clear that the presence
of the E,u normal-mode reduces the symmetry of the system to Dy,
whose fourfold symmetry axis is the z-axis, as Qg , transforms as the u
component of the E, irreducible representation. From such a symmetry
consideration, Qg, is immediately given as shown in Fig. 9.3 with

F1c. 9.3. Normal coordinates of a XY, molecule.

displacement vectors having different lengths S, and S,”. Then, the
orthogonallty relation between O, and Qg ,, determmes S to be 2S5, .

It is needless to show that these dlsplacements satisfy (9.40) and (9.41).
After all, one obtains

1 s 4
éE,u = 'm [zesz - zesz - (éla: + ézu — by — ésv)]' (943)

By a similar consideration, it is easy to obtain

v %(élz - ézy - é4:c + ésv)’ (943’)
éngC = lf(élv + é2m - é4y - éSz)) (9.44)
éTguC = 3(é1, — & + éy — &52) (9.45)
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The displacement vectors of these normal-modes are shown in Fig. 9.3.
For obtaining the displacement vectors in the T,,{ normal-mode, it is
convenient to use the fact that the { base of T, transforms like 2(x2 — y?)
as shown in Table 6.4. In normal-modes 4,,, E,, T,,, and T,,, the
displacements of the central atom are zero. They contribute only to the
T,, mode as shown in Table 9.1.

Some complication arises in determining the normal coordinates of
the two T, vibrational normal-modes. As seen from Table 9.1 two Ty,
modes and one T, mode are obtained from the displacements of six Y
nuclei and a single X nucleus, respectively. Therefore, if one ignores
conditions (9.40) and (9.41), it is a simple matter to obtain three kinds
of mutually orthogonal displacements of symmetry 7,,y as shown
in Fig. 9.4. The free translation is obtained by superposing the dis-
placements in (a), (b), and (c) of Fig. 9.4 with the equal weight and
phase. The displacements in the two 74,y vibrational normal-modes
may be those given in Fig. 9.5. From the orthogonality between O , and

OfP_, one obtains the relation
1u.

doc/ M + 288'M — M, = 0, (9.46)

S

{a) {b) {c}
Fic. 9.4. Three independent modes of nuclear displacements of Ty, .

2
BSg I BSe
aSg a’Sg
! ose s
Se y
x
(1) (I
Q
T Tw?”

Fic. 9.5. Two vibrational normal modes of Ty, .
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and from (9.40)
M, + 28M — daM = 0, (9.47)

My — 28'M + 4a’M = 0, (9.48)

where M, and M are the nuclear masses of nuclei X and Y, respectively,
and «, B, o', and B’ the parameters determining the lengths and signs
of the displacements as shown in Fig. 9.5. Relations (9.47) and (9.48)
are equivalent to the orthogonality relations between the free translation
mode and Q%) and those between the translation mode and Q%7 . Since
there are four unknown parameters and three equations that they should
satisfy, the values of the parameters cannot uniquely be determined. To
determine the parameters completely, it is necessary to know the
explicit form of the adiabatic potential. It has been known that a simple
choice of 8 = 1 nearly diagonalizes a reasonably assumed form of the
adiabatic potential in some cases.* If § = 1 is assumed, one may
determine all the parameters from (9.46)—(9.48) as follows:

o = (M, + 2M)}4M, B =1.

(9.49)
w =0, B = My2M.

The displacements with the parameters given in (9.49) are visualized in
Fig. 9.6. The basic vectors corresponding to the normal coordinates in
this case are given as

@O — [ M ]1/ *
Twr ™ (M, + 6MYM, + 2M)
M, 2M
3[_21_14%_] (bre + &yp + 8y, + &5,) — M2 (8, + &) - (Mo)l/zét)zg
9.50
and ©-30)

. M 12 M
an . j 125 0 /a4
Ty [MO(ZM T Mo)] X | (Moy 128y, — 50 e + 8] 951)

Normal coordinates Q. are obtained simply from €., by substituting

Oy for &; .

Problem 9.1. Derive the normal-coordinates of a X; molecule with
the shape of a regular triangle (Dj,-symmetry) by using (9.39). &

Problem 9.2. Derive the normal-coordinates of a tetrahedral MX,
molecule by symmetry considerations.

+8S. Koide and M. H. L. Pryce, Phil. Mag. 3, 607 (1958).
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M
Mo
Se
() m
Qrmr T

Fic. 9.6. Two Ty, normal-modes for a particular adiabatic potential.

9.2 Linear Interaction in Nondegenerate Electronic States

9.2.1 INTERACTION HAMILTONIAN

The interaction Hamiltonian between electrons and nuclei is given by
Hop in (9.1) or (9.2). This Hamiltonian is invariant to any operation on
the electron plus nuclear system which brings the system into itself.
Therefore, it may be expanded in powers of the normal coordinates as

Hn(r @) = V(r @ =0) + ¥ V(N OE + -, 9.52)

By

in which V(r @ = 0) is the ligand-field potential that we have discussed
so far. In (9.52) the terms linear to Q%), except the term with the identity
representation, are vanishing within the p electronic state when the state
is nondegenerate as shown by

f A (r: @ = OV (r) Pu(r: @ = 0) = 0 (9.53)

(I' # the identity representation). In (9.53) ¥,(r: @ = 0) is the
unperturbed nondegenerate electronic wavefunction obtained at the
equilibrium position @ = 0, and it is the base of the one-dimensional
irreducible representation I', . Equation (9.53) holds as I', x I, is the
identity representation. The nonvanishing linear term of the identity
representation within the nondegenerate electronic state should be
canceled by the linear term U,Q, in the expansion of ¥ Z,Z,e*/R,,:

Y 2.2} Ry = Uy + U0, + Y UE 080, (9.54)

k>1
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in which U, U,, and U#*" are numerical coefficients and Q is the
normal coordinate of the identity representation. Expansion (9.54) is
mainly based on the symmetry property that ¥ Z,Z¢*/R,, is invariant
to any operation of the group to which the system belongs. The
cancellation

j TP @Q@=0)V ()P (r:@=0)+U,=0 (9.55)
is necessary as the adiabatic potential in the u electronic state,

AV A

U (Q) = j ¥ (r: @ = 0) [xg +E R

+ xgn] Y(r:@ =0),
(9.56)

is quadratic to Q¥). In degenerate-electronic states the situation is quite
different, and in the next section we will discuss why nonvanishing linear
terms are important in degenerate electronic states.

Although the matrix elements of V{ in nondegenerate states are
vanishing, the nondiagonal matrix elements of V{? between a non-
degenerate state and others are, in general, nonvanishing and play
important roles in giving the intensities of parity-forbidden transitions.

9.2.2 INTENSITIES OF PARITY-FORBIDDEN TRANSITIONS

In Section 5.2.1 we discussed the parity-selection rule that may
be released slightly by the instantaneous distortions of the system
induced by nuclear vibrations. In what follows we will explain this
mechanism on a2 more rigorous theoretical basis.

Let us consider the parity-forbidden transition, & — v. The electronic
wavefunctions ¥, (r : Ry) and P,(r : Ry) are assumed to be obtained by
solving (9.2) with a fixed value of R, R = R, . These wavefunctions are
nothing but those employed in the ligand-field theory?; in calculating
¥(r: Ry) the first term Vy(r: R,) in the expansion of 5%, as given in
(9.52) has already been taken into account as a ligand-field potential. The
second term in (9.52) which is linear to nuclear displacements from R,
may be regarded as a perturbation to the solution of the ligand-field
theory.

For simplicity we deal with a rather particular case in which the
equilibrium nuclear positions as well as the angular frequencies of the
corresponding normal-modes in both the x and v electronic states are the
same; R, = R, = Ry, and 0, = 0, = »{). Then, it is evident

* In many cases we use as R, an equilibrium-nuclear configuration determined by x-ray-
or neutron-diffraction experiments in the ground state.
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that V{)(r) with odd-parity I' in the second term of (9.52) gives the
instantaneous odd-parity field induced by the nuclear vibration of the
BI-mode. In this case the effective electric-dipole transition moment of
the parity-forbidden po — vo’ transition is given as

Per(po - w') = ¥ o | Y VE(r)OF | doaav)

Aodd oddsry
X Qoaat’ | P | v0'>[E(pv) — E(oaav’)] ™
+ ¥ <po | P doaa®dPoaav | Y, VE OB | w0

Aad oddary

x [E@v') — EQoaav)] ™, (9.57)

in which the A 44’s are the electronic states of odd-parity and E(uv) is the
energy of the electron-nuclear system given by

E(uo) = U,(0) + ¥ ¥, (9.58)

where number v; is a quantum number of the ith vibrational normal
mode (7 = Bly). In (9.58) €} is the energy of the harmonic oscillator ¢
as given in (9.30). As we did in (6.60), (9.57) may be simplified in the
closure approximation as

Pert(puw — v0') = 2/AE)Xpo [P Y VEMOL [w),  (9.59)
oddsry

in which 4E is a suitable average of the denominators in (9.57). By using
the relation

B o\1/2
@019 =(5-) B8y en+ @+ 1800l (9:60)

Eq. (9.59) may be expressed as
, 2 5 o\12
Pert(po ~w') = 75 2( S, )
X g | PVAD) ) [@ 2 8y, 00 + (@i + 1)V2 80 ]
(9.61)
Now, if uv and »o’ are the good quantum numbers of the system, we
may expect nonvanishing electric-dipole transition lines at the photon

energies E,, + fiw; (i ; odd-parity normal modes) where E,, is the
electronic excitation energy taking no account of nuclear vibrations. The
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dipole strengths, S, = | Py, ; |2, of these lines for the k-polarization are
given from (9.61) as

SuBu o) = () e i | PV (0]

X 323‘; Tl o absorption,
i (9.62)
X ézg +1 for emission,

where () is the thermal average of v given by

_ Yoo v exp[—(fiw/kT)0] 1
@ = S ol (hwlATR] eplalRT) — T

(9.63)

In deriving (9.62) the initial state is assumed to be in the thermal
equilibrium. In the absorption the intensity of the E,, — #w; line is zero
at T = 0, while in the emission the intensity of the E,, + fiw,; line
is zero at T = 0 as {(v);_, = 0. At high temperatures the intensities
of the both E,, 4 fiw, lines are proportional to 7, as

1 kT
expho[kT) — 1  fiw

fiw
for Ny <1. (9.64)

So far we have considered a particular case in which the equilibrium
nuclear positions as well as the angular frequencies of the corresponding
normal-modes are the same in both the initial and final states. However,
in many real problems this is not the case; The equilibrium position and
the angular frequency of the harmonic oscillator of a certain mode
associated with the v electronic state are, in general, different from those
of the corresponding mode associated with the p electronic state. We
denote the Tth vibrational function of the v state for a certain vibrational
mode as y,’(Q), and expand it in terms of the vibrational wavefunctions
of the p state as follows:

%(Q) =3 251, %(Q). (9.652)

This is always possible as (@) with v = 0, 1,..., form a complete
orthonormal set. In (9.65a) coefficients a;, satisfy the relation

Ylan =Y las* =1 (9.65b)
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Then, Py (uv — v7) involves the matrix element
@|Q0) =) apv|Q |0, (9.66)

where 7" indicates the ¢’ vibrational state associated with the p electronic
state. As seen from (9.66), O may connect any ¢ with v as far as 4; ,_; and
a; .41 are nonzero. Therefore, we expect many nonvanishing electric-
dipole transition lines for a certain mode at the photon-energies,
E,, + fi{wv — &7) where & is the angular frequency of the harmonic
oscillator of the corresponding mode in the » state. In many cases these
lines are difficult to resolve and observed as a broad band. The integrated
dipole strength of this band induced by the sth odd-parity mode is
obtained from

Sk ) = () e G| PV P

XYY exp [~ 22 o] gy 2010 | 03R[T exp [ — i o],

v 9.67)

which is identical to the sum of Si(E,, + fiw;) and Si(E,, — #iw,;) given
in (9.62) because of (9.65). Therefore, the temperature dependence of
Si(n — v) is given by the factor

fiw;

2kT

2> + 1 = coth (9.68)

which is again proportional to T at high temperatures.

9.2.3 SPECTRAL LINE SHAPES

As seen from (5.5) and (5.16), the absorption coefficient k(v) at the
photon energy Av is given as
872N | P(v)|?
3c T hdv ’

k() = (9-69)}

# In deriving (9.67), the relation

Y 1Y azo Q107
p

2
=Y lasy 1w Q o)

by’

v

was used. This relation may be proved by using the relation
*®
Z Apy'@gy” = By'y” -
B

8 In dielectric media of refractive index », the right-hand side of (9.69) should be
divided by n.
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where N is the number of absorption centers per cubic centimeter and
| P(v)|? is the dipole strength in the photon energy range k& 4v at hv. The
dipole strength | P(v)|? divided by & 4v is called a spectral shape function
and is denoted by F(v). This function gives the spectral line shape. The
spectral shape function for the u — ji electronic transition at temperature
T is given by

Ful) = (1/adv) Y3 Kuv | P| @0, , (9.70)

where the summation over v and ¥ should be performed with the
restriction, hv << E;; — E,, << h(v + 4v),

Puv = XP(—EpofKT) [ exp(—E o KT),

and P is the effective electric-dipole moment operator for a certain
polarization. The restriction on the summation in (9.70) may be removed
if one uses the delta function in the following way:

Fa) = XX Puo Kuv | P| p0)? 8§(Ez5 — E,p — hv). 6.7

Elaborate theoretical works have been done on the calculation of the
shape function in the systems with a single vibrational mode* and also
with many vibrational modes.® In order to simplify the problem without
losing the physical insight, we adopt a semiclassical approximation for
the calculation of F(v), which is valid at high temperatures.

Let us suppose that the adiabatic potentials U,(Q) and U,(Q) are given
as shown in Fig. 9.7. Note that the following argument is valid only when
O, 1s much larger than the vibrational amplitude of the ground state. For
simplicity, we assume that the system has a single nondegenerate
vibrational mode whose normal coordinate is Q. The absorption takes
place around Q = 0, and the important final states for the transition will
be the excited vibrational states with large vibrational quantum numbers
if the dipole strength does not depend upon Q appreciably. Since these
vibrational states can be treated classically, the final vibrational state
x5 (Q) will oscillate rapidly except near the classical turning points, i.e.,
the points Q for which U, (Q) = E;; . Therefore, a good approximation
to the sum over @ can be obtained by replacing E;; in the delta function

# K. Huang and A. Rhys, Proc. Roy. Soc. A204, 406 (1950).
8 M. Lax, J. Chem. Phys. 86, 929 (1952). R. Kubo and Y. Toyozawa, Progr. Theor. Phys.
(Kyoto) 13, 160 (1955).
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! Fi16. 9.7. Adiabatic potentials U, (Q) and Uz(Q).
Uo Uo
/UF- Q)
/
—Q
Q=0 Qo

in (9.71) by U,(Q). The summation over & can now be performed with
the closure relationship

2 X490 x:"(Q) = ¥Q — 0,
and (9.71) simplifies to the form,

Foa(v) =Y Puv J‘ dQ | ByQ)? | x.X(Q)2 8[UxQ) — E,o — W], (9.72)
where

Py(Q) = [ dv.(r : Q=0yP¥y(r : 0=0).

Furthermore, if the temperature is high enough so that many initial
vibrational levels v are populated, E,, in (9.72) may be replaced by
U, (Q) with the result

Fual) = J dQ | P,(Q)*.(Q) S[4U(Q) — v, (9-73)

where

4U(Q) = UHQ) — U.(©), 974)
pQ) = exp[—UQRT]/ [ dQ expl—UL(QYRT].  (975)

The semiclassical approximation, under which (9.37) was derived, is
called the Franck—Condon approximation. The physical implication of
this approximation is intuitively clear. It shows that the electronic
transition takes place so rapidly that the nuclear positions do not change
during the transition.
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In the treatment of the parity-forbidden transitions in the ligand-field
theory, P, (Q) is calculated as

Bs@) = 22 [ 08, (r : 0=0)*Vasa(r) ¥y(r : 0=0)

= 0P (9.76)

a5

where V,44(r) is the coefficient of odd-parity normal coordinate Q in the
expansion of £, . Assuming the adiabatic potentials*

UQ) = $KQ, (9.77)
UiQ) = U, + 3K(Q — Qo) (©.78)

one can calculate the semiclassical shape function (9.73) which is now
given in the form

| P, |2 [ dQ 0° exp(—KQY/2KT) 3(Us — KQoQ + $KQF — h)
[dQ exp(—KQ¥2kT) ‘

By using the formulas for the delta function,
ax) = (1l @ )33, 050)

|~ f 8 — by ds = 160,

F, uﬁ(Q) =
9.79)

and performing the integration in (9.79), one obtains

_ PG 1T, — by (Uy — hy*
Fi(v) = 8(2n) PKSRQMETY 2 €xp ["— W]y (9.81)
in which U, is the excitation energy atQ = 0 as shown in Fig. 9.7. The
shape function obtained in (9.81) is schematically illustrated in Fig. 9.8.

F(v)
4Q, V2KkT
N
F16. 9.8. The calculated line shape of a
parity-forbidden transition.
U° — hy

# Here, to make the calculation simple, the same force constant K is assumed for both
the ¢ and g states. This simplification does not change any essential result of the calcula-
tion.
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The spectral shape thus calculated has a deep dip at iv = U, . This
reflects the fact that the parity-forbidden transitions are allowed only at
the moment when an instantaneous odd-parity distortion occurs: At
QO = 0 where no distortion occurs the intensity should be zero.
The separation of the two peaks is given by 4Q(2KkT)'/2 which is
proportional to 4/7. If the shape function is integrated over v, it is
proportional to T in agreement with (9.68) at high temperatures. Although
the calculated spectral shape exhibits a very interesting feature, it is
premature to apply the result to real systems* which are subjected to the
nuclear vibrations of even-parity modes as well as odd-parity modes. The
inclusion of the even-parity modes will change the spectral shape,
although it will not change the integrated intensity. Detailed theoretical
studies of the spectral shapes of parity-forbidden transitions have not
been worked out so far, and it is highly desirable to calculate the spectral
line shapes in the systems having both even- and odd-parity vibrational
modes. Moreover, in the systems with electronic degeneracy, the
dynamical Jahn—Teller effect plays important roles in giving the spectral
shapes. A brief account of the dynamical Jahn-Teller effect on the
spectral shapes will be found in a later section.

In concluding this subsection it is interesting to compare the shape
function in (9.81) with that for the parity-allowed transition, u — . In
the parity-allowed transition, the single vibrational mode to be considered
is the even-parity mode and the main part of P,,(Q) is independent of O;

P (Q) ~ P, = j dT¥ (r : Q=0)*P¥ (r : @=0). (9.82)

We assume the same adiabatic potentials as those given in (9.77) and
(9.78), although Q in the present case is the normal coordinate of the
even-parity mode. Then, the shape function to be calculated is

| P2, 12 [ dQ exp(—KQ¥2kT) 8(U, — KQ,Q + 3KOZ2 — hv)‘

[0 exp(—KQ2kT) 083

F:ﬁ(") =

This integral function can be integrated in the same way as in the case
of the forbidden transition. The result is given as

| PO ® (U, — )? ]

Fil) = 5 kT P [_ 2KOkT

(9.84)

$ If the system has inversion-symmetry, Q, in (9.78) is zero. Therefore, the argument
mentioned here may be applied only to the systems without inversion-symmetry.
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which is schematically illustrated in Fig. 9.9. If this shape function is
integrated over v, it is | P2; |2 and independent of temperature in contrast
to the case of the forbidden transition.

Fle)

F1c. 9.9. The line shape of allowed transitions.
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9.3 Static Jahn-Teller Effect

9.3.1 JAuN-TELLER THEOREM

In Section 9.2.1 we mentioned that the linear coupling between
electrons and nuclear motion is absent in nondegenerate electronic states.
However, this is not the case for degenerate states. We consider the
degenerate orbital wavefunction involving ¥ .(r : @) which is labeled
with degenerate irreducible representation I'. By using (6.89), the
strength of the linear coupling in the I" degenerate state is given as

[are(r: @) vew (r:-@)
=)V VP Ty | Iy' Ty (9.85)

((I') > 1, and T" 5 the identity representation) in which VEN(r) is a real
function in the interaction terms in (9.52) except the term with the
identity representation. In the case of O-symmetry, integral (9.85) is
nonvanishing if I indicating a normal mode is neither 4, nor T}, and if
it appears in reducing I' X I'. The first condition is derived from (6.93).
More explicitly, (9.85) is nonvanishing in the following cases:

T =E, r'=ET,T,,

(9.86)
F'=7T,, TI=1,,T,.

The same result can be obtained in a more general way. Note that
(9.85) may be reexpressed as

(9.85) = % [ Trr - @) Pri(r - @) + Pr(r : @) ¥ (r : @] VEX),
(9.87)

because the orbital wavefunction may be chosen to be real. We will show
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in Appendix IX that the function [¥., ¥, + ¥.¥.] in (9.87)
transforms like the base of the symmetric product representation [I' X I],
which is defined as

DI AR) = HIDSAR) DDAR) + DI(R) DO(R)L. (9:88)
In (9.88) R is a symmetry operation in the group of interest. Then, we can
conclude that (9.85) is nonvanishing if I" indicating a normal mode
appears in reducing symmetric product representation [I" X I']. In the
case of O-symmetry, [I" X I'}] with degenerate I" can be reduced as
follows:

[E x E] = 4, + E,

[Ty, x Ty] = 4; + E + Ty, (9.89)
[Ty x Ty) = A, + E+ Ty.

Therefore, we obtain the same result as given in (9.86).

Jahn and Teller* have shown by examining the systems belonging
to all the point-groups that in molecular systems, except in linear
molecules, we can always find the normal vibrational mode with
symmetry I" which appears in reducing the symmetric product of any
degenerate irreducible representation I". If (9.85) is nonvanishing for a
certain normal mode I', at least a linear term with I" appears in the
adiabatic potential, which in turn tells us that the initially assumed
nuclear configuration @, is unstable because the adiabatic potential is not
minimum at @, . Therefore, Jahn and Teller’s finding may be stated as
follows; Except linear molecules, degenerate orbital states in molecules
are unstable. This statement is called the Jahn—Teller theorem.

Later Jahn® extended Jahn-Teller’s work to the case in which spins
are involved in the wavefunctions. He found that the degenerate states

t H. A. Jahn and E. Teller, Proc. Roy. Soc. (London) Al161, 220 (1937).

$H. A. Jahn, Proc. Roy. Soc. (London) A164, 117 (1938). If the system has an even
number of electrons, the electronic state may be labeled with a single-valued irreducible
representation of the group. Jahn has shown that in this case (9.85) involving spin is
nonvanishing if I’ appears in [I" X I'l. If the system has an odd number of electrons,
the electronic state may be labeled with a double-valued irreducible representation I of
a double-group. Jahn has shown that in this case (9.85) involving spin is nonvanishing
if T’ appears in antisymmetric product representation {I' x I’} which we will explain in
Appendix IX. Thus, the problem is reduced to showing whether one can always find
normal mode I’ which appears in [I" x I'] for any I'((I') > 1) in the system with an
even number of electrons and in {I* X I'} for any F*((I*) > 2) in the system of an odd
number of electrons. When I’ is two-dimensional {I* x I’} involves only an identity
representation. Therefore, in Kramers doublets (9.85) is always vanishing as I is not the
identity representation.
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including spin, which are not Kramers doublets, are unstable in
molecules except linear ones.

9.3.2 E,-STATE IN A CuBIC SYSTEM

As a simple example showing Jahn-Teller instability, we shall
consider here the E -state in the system with O,-symmetry. We ignore
spin because the instability due to spin always occurs through
the spin-orbit interaction and thus is a small effect. Since
[E, X E;)}] = A,, + E,, the interaction term linear to the E, normal
coordinates are nonvansishing. In this case the adiabatic potential
U(Q,Q;) for normal coordinates, Q; = Q. ,, and Q; = Oy, is calculated

from (9.56) by the use of formula (6.89) as
U0 = hXQ + 01+ 4[5t P 990)

in which w is the angular frequency of the E, vibrational mode and 1 is a
two-dimensional unit matrix whose bases are # and v in this order. In
(9.90) a constant term arising from the matrix element of £, is discarded.
The constant 4 of the linear coupling is given as

A = KE, || Vgl E,). 9.91)

It should be noted that, since the electronic state is doubly degenerate,
the adiabatic potential is given in the form of a two-dimensional matrix.
This adiabatic potential matrix can be diagonalized if one uses bases
¥, and ¥, given as follows:
VY, =¥,cosa — ¥, sinq,
(9.92)
VY, =W¥,sina + ¥, cos a,
where
tan 2« = Q,/0; . (9.93)

If O, and Q, are expressed in terms of the polar coordinates in the two-
dimensional space as

O1 =pcosf, Qy=psing, (>0, 0<0<2n) (999

Eq. (9.93) shows that
« = 6)2. (9.95)

With the bases given in (9.92) and (9.95), two surfaces of the adiabatic
potential are given by
U, o(pf) = 30?? 4 Ap, (9.96)



238 IX. ELECTRON AND NUCLEAR VIBRATION INTERACTION

which is independent of 8. The minus and plus signs in (9.96) are
associated with U; and U,, respectively, and bases ¥, and ¥, are
associated with U; and U,, respectively. These two surfaces are
illustrated in Fig. 9.10.

U (p8)

F1c. 9.10. Two energy surfaces of the E, state.

7%

As shown in Fig. 9.10, the minimum of the lower surface occurs at
Pmin = | A |/o® with an arbitrary value of 6. Therefore, the stable
nuclear configuration of the system cannot be determined from (9.90).
To determine the stable nuclear configuration, we have to go a step
further and take into account the anharmonicity of the vibration. The
anharmonicity may be expressed by the cubic term Y B,,,0,*Q,™ with
n -+ m = 3 and should be invariant to any operation in the O,-group.
By using the same method as that used for obtaining low-symmetry
ligand fields (Section 6.1.1), the anharmonic term is readily obtained as

B(Q;® — 30:0,%) = Bp® cos 36. 9.97)

Adding this anharmonic term to (9.96), one obtains three minima
(maxima for B > 0) at

om,,,=2?”n, n=01,2

pmin = | 4 |[/w? (12| 4B [t < 1) for B<<0 (9.98)

and the maxima (minima for B > 0) at

oo _2r 135
max—_3‘» _‘5’5»5

f B < 0. 9.99
pmax = pmin (12| 4B |fut < 1) o F= ©-99)
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The stable nuclear configuration corresponding to these minima of the
energy surface for B < 0 are given from (9.98) as

0y (n=0) = puin , Q, (n=0) = 0; (9.100a)

0.=1) = —2pmm, Q=1 = Pomms  (©.1000)

0,(1=2) = —pwm, Q=) = — Lomm (1000

and for B > 0 by

O (”zé) = pmin, O, (”=%) = \/T?’Pmin; (9.101a)
O (”:%) = —pmmn, O (”Z%) =05 (9.101b)
O, (”:g) = %Pmin s 0, (”zg) = — \/Tgpmin . (9.101c)

The stable configurations for B < 0 are illustrated in Fig. 9.11. The
stable configurations for B > 0 with n = }, 3, and § are obtained,
respectively, from those with # = 2, 0, and 1 for B < 0 by changing the
sign of the displacement vector, S. As seen in Fig. 9.11, three stable
configurations correspond to the three equivalent tetragonal distortions
along the x-, y~, and z-axes.

n=0 n=1 n=2

Fic. 9.11. 'Three equivalent tetragonal distortions.

Problem 9.3. Calculate the stable nuclear configuration of the T, and
T, states in the cubic system. <
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9.3.3 ExXPERIMENTAL EVIDENCE

One of the experimental evidences for the static Jahn-Teller effect has
been provided by the paramagnetic resonance measurements® in a
CuSiF4-6H,0 crystal. The unit cell of this crystal determined by x-ray
experiments contains one [Cu(H,0)¢]** complex ion. However, the
observed paramagnetic resonance spectrum of the Cu?* jon at low
temperatures indicates the presence of three kinds of Cu*? ions with
different tetragonal symmetry axes; g, = 2.11 and g, = 2.46. At high
temperatures the spectrum shows an 1sotroplc g-value, g =224

Since the ground state of the Cu?* ion is t5,¢,% 2E, , one immediately
notices that the low temperature spectrum may be explained by
introducing the static Jahn-Teller distortions of the Cu®* sites, which
have to be tetragonal as discussed in the previous subsection. The
presence- of the three kinds of Cu?* ions corresponds to the presence of
three equivalent tetragonal distortions. The anisotropic g-value in the
low temperature spectrum may be calculated by using the basic function
¥, in (9.92) associated with the lower surface of the adiabatic potential,
U, . Taking into account the nondiagonal matrix elements of the spin-
orbit interaction and the Zeeman term as done in the example of
Section 8.4.2, one may evaluate the g-values in three directions as

=2+ l(fé (sm ~ — 4/3 cos 0) (9.102a)
2 ] 0\2
gy =2+ 102 (sm 3 + 4/3 cos ) (9.102b)
8¢ . B0\2
=2+ 10Dq (sm E) R (9.102¢)

where { is the spin-orbit coupling constant for a single electron. If the
system is stabilized at the potential minima at low temperatures, the
insertion of 6,,;, given in (9.98) and (9.99) into (9.102) leads to the
g-values, for example,

6{
g =8 =8 =2+ T0Dq (9.103a)
for B <0,
g =8 =2 (9-103b)
2L
g =8 =& =2+ 7op (9.104a)
81:9 for B >0,

* B. Bleany and D. J. E. Ingram, Proc. Phys. Soc. (London) A63, 408 (1950). B. Bleany
and K. D. Bowers, Proc. Phys. Soc. (London) A65, 667 (1952).
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corresponding to the distortion along the z-axis. At high temperatures
the system begins to rotate taking all the possible values of 8. Thus, the
high temperature g-value is calculated by averaging (9.102) over 6. The

result is

The experimentally determined g-shifts, dg = g — 2, in the low-
temperature spectrum are dg,r = 0.46 and dg = 0.11 and the
g-shift at the high-temperatures spectrum is dg¥ = 0.24, which is
almost equal to { dg, % and 2 dg * in agreement with the results given in
(9.104) and (9.105). The result in (9.103) is not supported by the
experimental data. From this one may conclude that parameter B is
positive in this crystal.

9.4 Dynamical Jahn-Teller Effect

9.4.1 QuaNTUM-MECHANICAL TREATMENT

In the previous section we showed that in the E, state the introduction
of anharmonicity may bring the system into stable nuclear configurations.
However, in the absence of such anharmonicity or in the case in which
the zero-point energy of nuclear vibration exceeds the stabilization
energy due to the anharmonicity, the system undergoes a motion from
one equilibrium configuration to another. In this case the motions of
electrons and nuclei are strongly coupled. This effect is called the
dynamical Jahn—Teller effect.

To illustrate the dynamical Jahn-Teller effect, we first consider a
simple example of the E state in which the Jahn-Teller motion is
confined to the lower surface of the adiabatic potential, U; . This is the
case in which the energy quantum of the oscillation, #w, is much smaller
than the Jahn-Teller stabilization energy, A% 2w? and only the lower
lying vibrational levels are dealt with. For simplicity the anharmonic
term will be neglected.

It is convenient to express the basic functions in (9.92) in terms of
the electronic wavefunctions #, and #_ defined in (6.25):

e \/Li (.2 — u_g—i0/?),
(9.106)
Y, = _\}_5 (1,601 + u_e=i/2),

These functions are considered to be the eigenfunctions of an equation
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similar to (9.2). Following the adiabatic approximation, we assume that
the total eigenfunction of the electron plus nuclei system has the form

H(r@) = ¥ (r: Q)y(Q), (9.107)

because the motion is mostly confined to the lower surface. Then, using

the relation
h2 o2
5 (o7 + Q o) Hlr: @) @)

#? 1 0 1
7 (ap o T ) FAr s @) x(@)
h

1

=2 e 2+ Lt Q)—;———4—2—Y’1(r:Q)

— s @) o V(s @) | X(@), (9.108)

one obtains the equation for y(Q) similar to (9.4) as follows:

Jarre: @) [— 5 (555 + ) + U@ s @) 1@
:[ ;;2 ( 32 +p % +712——;;2——4—1p2—)+%2p2—14p]x(9)
= Ex(Q). (9.109)

In deriving (9.109) the orthogonality relation between ¥, and ¥, was
used. By setting

X(Q) = p7112F(p) e, (9.110)
Eq. (9.109) gives the equation which F(p) satisfies:

&P
[—dp? — —5 — % + 24p + 2E| F(p) = 0. (9.111)

Here, for simplicity, # is taken to be unity. Furthermore, by changing
the variable p into % which is related to p by
1 = p — (A[e?) (.112)

and setting
Fp) = G(), (9.113)
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Eq. (9.111) can be reexpressed in the form

d2 12 s .
[ T e 28| Gn) = 0, (9.114)
in which
E == E + (4%)20?). (9.115)

Since we are dealing with the lower lying levels associated with the U,
potential surface, it is a good approximation to neglect 5 in the
denominator of the second term of (9.114). Then, the approximate
equation for G(y) is

2
( ;'72 — wip® - 2E") G(n) = 0, (9.116)
where
" 1 12

Equation (9.116) is the well-known equation for a simple harmonic
oscillator with eigenvalues (# + 4) Ziw with n = 0, 1, 2,... . Therefore,
the eigenvalues of (9.109) are now found to be

2 A?

A 2t @ =012.). (0118

1
E—= (n + 5) tiw -
In (9.118) possible values of / are determined from the condition that the

total wavefunction &(r@Q) is periodic with respect to # with the period
2x. It follows from (9.106) and (9.110) that if

! -+ 1 = integers,
or ’ 8 , 9.119)

&d(rQ) is periodic with the period 27.

The energy eigenvalues given by (9.118) correspond to those of a
one-dimensional harmonic oscillator whose center undergoes a rotatory
motion in the circular orbit of radius | 4 |/w? and with angular
momentum / at the bottom of the U, surface. The last term is the
energy at the bottom of the U, surface. The degeneracy of each level
is twofold corresponding to the plus and minus signs of /.

Next we consider the case in which the zero-point energy of the
oscillation, 3#iw, is larger than the stabilization energy 42%/2w? In this
case the Jahn-Teller motion is no longer confined only to the lower
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surface of the adiabatic potential. For treating this case, we start with
the zeroth order wavefunctions obtained by assuming 4 = 0. We use
the electronic wavefunctions, u,(r: @=0) and u_(r: @=0), and the
vibrational wavefunctions y(@) which satisfy the equation

[~ 5 (257 +ag7) + S©@ +00 —E]x@ =0 ©0.120)

o0,
As the solution of (9.120) we choose the form*
Xnm(Pg) = Fn[m[(P) émo, (9121)
E,p = tiwn, (9.122)

wheren = 1,2,...,andm = n — 1, n — 3,..., —n + 1. For the function
F,ni(p), see Pauling and Wilson’s book.* Thus, the zeroth order wave-
functions are given by

Dy = 4(F) Xum(P0), (9.123)

and the corresponding energy level has 2xn-fold degeneracy.
The Jahn—Teller interaction, which is linear in @ and treated as a
perturbation, is expressed as

Hi_r = Vu(r) 01 + Vo(r) 0,

P i __ —i6
=~ [V (r)e Vi, (r) e (9.124)

By using the matrix elements

ur | Vo (N 4y = <up |V, (Nugy =0

9.125
Cus | Vi (n)| us> = F v/24 0129

and the fact® that the only nonvanishing matrix elements of pe+ are

. . # 1/2
<Xn,m l Pe_w l Xn+1,m+1> = <Xn+1.1n+1 ' Pew l Xn,m> = [_iw— (” +m+ 1)] >

—i6 — i0 _[ % m—m— 1 1
Knom | pe | Xn—-l.m+1> <Xn—1,m+1 | P | Xnm) Yo ( m ) ’
(9.126)

# L. Pauling and E. B. Wilson, “Introduction to Quantum Mechanics.” McGraw-Hill,
New York, 1935.

§ H. C. Longuett-Higgins, U, Opik, M. H. L. Pryce, and R. A. Sack, Proc. Roy. Soc.
(London) A244, 1 (1958).
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one obtains the matrix elements of #,_, as follows:
<(D;:‘,m l ”-—-Tl ¢;',m'> = A<Xn,m | Peio | Xn'.m'>

# /2
=4 3 Do [P (m — 1)]§ 8 71 O, m1 » (9.1272)

<(D;,m l 'ZI—T l Q:;',m'> == A<Xn,m ] Pe_io { Xn',m'>

# i/2
-4 3 s[4 (m+ 1)]% 8t nis Smr.mas - (9.127b)

The matrix elements in (9.127a and b) show that, if we assign the
quantum numbers* j = +1 to @£, , #;_; connects the states with the
same quantum number,® I = m — (1/2)j (j = £1). The interaction
scheme between the @% ,, levels due to J_; is indicated in Fig. 9.12,
where the levels connected by broken lines interact with each other.

= .5 3 L L 32 s

2= -3 2 2z 2z H H

+ - £ = + = + - n=4
+ -, o+
—_-— = — 2

Fic. 9.12. The interaction scheme between the levels of @7, .

Now we are ready to construct the energy matrix with bases @i ,, for
the total Hamiltonian including perturbation #,_;. Because of the
interaction scheme shown in Fig. 9.12, this energy matrix decomposes
into the matrices labeled by quantum number /. For a certain value of /,
m can take two values,m =] — 1/2and / + 1/2 correspondingto j = —1
and +1, respectively. For m = I — 1/2, the possible values of n are
[1—1/2]1+1,|1—1/2|+3,|I—1/2|+5,...,and form = [ 4 1/2
theyare |/ 4+ 1/2| + 1,]714+1/2| + 3, |1+ 1/2| + 5,..., as seen from
(9.121) and (9.122). We arrange the bases in the order, n = | /| 4 1/2,
[ 1]+ 3/2, 111 + 5/2,..., irrespective of the sign of /. Then, from (9.122)

t Note that this j is equivalent to —j in the paper by H. C. Longuett-Higgins et al.,
Proc. Roy. Soc. (London) A244, 1 (1958).

§ For a more general argument, see W. Moffitt and W. Thorson, Phys. Rev. 108, 1251
(1957).
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and (9.127), one sees that the energy matrices with quantum member
+/lare identical (therefore theenergy levels are always doubly degenerate),
and are given by

n=[I+% [II+% |I[+% 1+% [I+8 -

[ mo+1 EVmg 1 ]
EVmy+1  my+2 EVT
EV1 mo+3  kVmy+2 ,
kVmy+2 my+4 EV2
kV2 my+ 5
L cee ---_l
) ) (9.128)
in which
mozll _%’
(9.129)

k = Ajw(fio)?,

and all the matrix elements are given in the unit of fw.

In our case of (1/2) #iw > (A?%/2w?) which is equivalent to k2 <€ 1, the
eigenvalues of (9.128) are obtained by using the second-order perturba-
tion theory as

Epl:p'*_'ll_%_(lll—{-%)kz (p=1’3’5’-")’
Ey=p+1ll—3+(l1—HE (p =2,4,6,..)

This result shows that the 2n-fold degeneracy of the #nth level in the
absence of the Jahn-Teller coupling is removed by 5#;_, and only
twofold degeneracy remains for all the energy levels. This twofold
degeneracy corresponds to the same degeneracy found in the opposite
case of k2> 1 [see (9.118) and (9.119)]. The energy of the lowest level,
l= 44, p =1,is given by

Eizqm =1—F, (9.131a)

(9.130)

or multiplying by #ew,
By zqp9 = fw — (4%w?), (9.131b)

which means that the zero-point energy of a one-dimensional oscillator,
(3) iw, is reduced by the amount equal to the Jahn—Teller stabilization
energy, A%2w?.

For various values of k2, the eigenvalues of the secular matrices given
in (9.128) with several values of / have been numerically calculated by
Longuett-Higgins et al.
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9.4.2 SpecTRAL LINE SHAPES OF ALLOWED TRANSITIONS

As one of the observable phenomena in which the dynamical Jahn-
Teller effect plays an important role, we briefly mention here the spectral
line shape of a parity-allowed transition in which the final state has orbital
degeneracy while the initial state is an orbital singlet.

The simplest problem of this sort is the parity-allowed 4 — E
transition in which only the E, vibrational mode couples with the
electronic states. The quantum mechanical calculation of the spectral
line shape in this problem is possible if the eigenvectors of the secular
equation obtained from (9.128) are known. For simplicity we assume
that the same vibrational functions x,,(@) in (9.121) are associated
with both the initial and the final states, although in real problems there
is no reason for the frequencies of the both states to be the same. Then,
by using the orthogonality relations among the y,,,(@)’s, it is straight-
forward to calculate the relative intensities of the 4, — E,, transitions
if the eigenvectors of the E,, levels are available. The calculation has been
made by Longuett-Higgins, et al., and the results for the A,y — E, (/5
transitions with 22 = 5, 10, and 20 are shown in Fig. 9.13. The intensities
of the A,y — E,; transitions with | | 5 1/2 are zero, as x;o(@) is not
mixed in the eigenvectors of the pl levels with | /| s 1/2 as seen from
Fig. 9.12. The appearance of two intensity maxima is a characteristic
feature of the results, and reflects the existence of two energy surfaces
in the final state.

k2=5

A-E ¥'H|ll[.,.

Fic. 9.13. The calculated intensities of the 2.
A,y — E, allowed transitions [H. C. Longuett- a._g | | ! I oy,
Higgins, U.Opik, M. H. L. Pryce, and R.A. Sack,
Proc. Roy. Soc. (London) A244, 1 (1959)].

c2 ol

Such a characteristic feature may also be reproduced in a much simpler
calculation* by using the semiclassical Franck-Condon approximation.
In the semiclassical calculation we assume that

Upa,2(Q) = Uy + 3Kp? F Ap,

(9.132)
UAQ) = 3Kp®.

tY. Toyozawa and M. Inoue, J. Phys. Soc. Japan 21, 1663 (1966).
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Then the spectral line shape function as given in (9.73) is calculated as
1
Fue(v) = 3 Z F4£0,2()
1.2

A Pag1* T J37 0 [ dp p exp[—Kp®[2kT] 8(U, F Ap — hv)
2 2 9 [ dp p exp[—Kp?/2kT]

_ | Pae ’K | v — Uy | ex [_ K(h"_Uo)z]

ST ST (9-133)

in which P} is the electric-dipole transition moment as given in (9.82).
The shape function in (9.133) is plotted in Fig. 9.14. This shape function
has two maxima corresponding to those found in the quantum mechanical
calculation (Fig. 9.13). The central dip of the spectral shape comes from
the mathematical nature of the adiabatic potential surfaces at @ = 0.

Facls)

VA

Ue et 4

F1c. 9.14. The calculated line shape of the 4 — E allowed transition [Y. Toyozawa
and M. Inoue, J. Phys. Soc. Japan 21, 1663 (1966)].

Toyozawa and Inoue* have shown that such splitting of the absorption
band appears when the point @ = 0 is the branch point of adiabatic
potential surfaces. When the point @ = 0 is the intersection point, no
splitting is expected. It should be remarked that, if the degeneracies of the
electronic state and the coupled vibration are the same, the point @ = 0
is always a branch point and, if the degeneracy of the coupled vibration
is smaller than that of the electronic state, the point @ = 0 is the
intersection point. The splittings of the absorption bands due to the
A,, — T, transition have been observed in alkali halide phosphors with
heavy metal impurities and they have been nicely explained on the bases
of the dynamical Jahn-Teller effect described here.

*Y. Toyozawa and M. Inoue, J. Phys. Soc. Japan 21, 1663 (1966).



Chapter X MOLECULAR ORBITAL
AND HEITLER-LONDON THEORIES

10.1 Strong- and Weak-Field Schemes

In the ligand-field theory developed in this book, we started with
accommodating a certain number of electrons in the one-electron orbitals
which are the bases of the irreducible representation of the symmetry
group of the system. However, as long as the physical quantities such as
reduced matrices are left as parameters to be determined experimentally,
it was unnecessary to know the detailed functional forms of these
one-electron orbitals. To simplify the theory we sometimes used the
d-function approximation in which the #,, and e, orbitals have only the
d-character, and we estimated the values of the physical parameters by
using the radial functions of free ions. In doing this the estimated values
for some parameters are found to be in fair agreement with those
experimentally determined, but, as we will show later, at the same time
we meet serious difficulties: the sign of the calculated crystal-field
splitting parameter is wrong and the calculated unpaired spin densities
on the atomic parts of ligands differs by orders of magnitudes from
that found by experiments. These difficulties show that the purely
ionic model employed in Bethe’s crystalline-field theory, in which the
electron transfer between the metal ion and the ligand is completely
ignored, cannot be the physical model of the ligand-field theory. In this
circumstance it has become quite necessary to discuss further the detailed
functional forms of the one-electron orbitals appearing in the ligand-field
theory to provide a sound physical basis of the ligand-field theory.

249
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The ligand-field theory called a strong-field scheme is formulated in this
book so that it gives a good description of the system with a very large
cubic-field splitting, and its nature is similar to that of the molecular
orbital (MO) theory: the #,, and e, orbitals may be regarded as one-
electron molecular orbitals with given symmetry. Therefore, the MO
treatment of these orbitals makes it possible to go a step beyond the
purely ionic model.

On the other hand, a theory may be formulated so as to give a good
description of the system with a very small cubic-field splitting, which,
though not discussed in this book, is called a weak-field scheme. In the
weak-field scheme the basic functions are those for free ions, dSLM M, ,
while they are t3,e,"SI'Myy in the strong-field approximation. Here L
is the resultant orbital angular momentum and M, is its component.
Naturally the weak-field scheme is faithful to the purely ionic model
employed in Bethe’s crystalline-field theory. In this scheme the matrices
of the Coulomb interaction are already diagonal, and both the diagonal
and nondiagonal matrix elements of the cubic-field potential appear in
and between the SLI" and SL'I" states with the same I'. However, both
the strong- and weak-field schemes are identical when, in addition to the
d-function approximation, all the configuration interactions between the
t2e,”ST terms and t§,e™ ST terms are completely taken into account in
the strong-field scheme, and all the nondiagonal matrix elements between
the SLI" and SL'I states are taken into account in the weak-field scheme.
This is because both methods use the same subspace spanned by different
sets of basic functions and take into account the same interactions.

We mentioned that in the strong-field scheme the MO treatment
of the t,, and e, basic functions provides a natural way of getting out of
the purely ionic model. Then, a question arises as to what kind of
treatment will play the same role in the weak-field scheme. The answer is
that the Heitler-London method provides a natural way of accounting
for the deviation from the purely ionic model, when a small mixture
of the excited configuration in which an electron is transferred between
the metal and ligand ions is taken into account.

Since the ligand-field theory discussed so far is formulated in the
strong-field scheme, in this chapter we will mainly stand by the MO
model and see how the physical quantities appearing in the ligand-field
theory may be interpreted. However, we will show later that the MO
model is identical to the HL model at a certain stage, so that the inter-
relationship between these two models will always be kept in mind and
discussed in some detail. The next two sections will be devoted to a
simple description of the MO method for the systems with closed-shell
and open-shell electron configurations.
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10.2 Simple Description of MO Theory

10.2.1 MorLecuLAR ORBITALS

Molecular orbitals (MO) are one-electron orbitals in molecules. In
the MO theory a single electron is considered to move in an average
field of the nuclei and the electrons, and its motion is described by an
MO. The theoretical foundation of this picture is provided by the self-
consistent field (SCF) theory of Hartree or Hartree—Fock, which we will
discuss in the next subsection.

As seen from the argument given in Chapter I, the MO’s should be
the bases of the irreducible representations of the symmetry group to
which the system belongs. Apart from the symmetry property, the
intuitively obvious characteristic of MO is derived from the consideration
that when an electron is near one nucleus, the forces exerted on it are
those chiefly from the nucleus and the other electrons near it. In other
words, the most important terms of the Hamiltonian for the electron near
nucleus A are those which comprise the Hamiltonian for an electron inan
isolated atom A. Such a consideration leads us to the approximate method
of expressing MO by a suitable linear combination of atomic orbitals
(AO), called the LCAO (Linear Combination of Atomic Orbitals)
method.

For example, we consider a molecule consisting of two atoms A and B
with atomic orbitals ¢, and ¢y, respectively. The LCAO MO in this

case 1is
‘l’ = Cypq + Cpys, (10-1)

in which C, and C are numerical coefficients. For simplicity we assume
that ¢ has no orbital degeneracy, and that the molecule has two electrons
accommodated in, i.e., it has a closed-shell configuration. In this case we
will show in the next subsection that the s with the lowest orbital energy
satisfies the equation

My = e, (10.2)

where % is an appropriate Hamiltonian for a single electron and e is the
orbital energy. In general, the occupied molecular orbitals of the system
satisfy Eq. (10.2) in the case of a closed-shell electron configuration, but
they do not when the system has an open-shell configuration. The
open-shell case will be discussed in the next section.

Now, ¢, C,, and C,, are determined by the following secular equations
derived from (10.2):

Culea — €) + Cp(B — S¢) =0,

(10.3)
CAB — Se) + Calez — ) =0,
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where
€4 :<<7>Alh]%1>» €B:<?’Blhl?’3>:
S = Lpal pm-

B={Lpulblop =<pplh|o0,
From (10.3) one may obtain the equation to determine e,
(10.4)

(eq — efeg — ) — (B — Se¢) = 0.

Since the second term of (10.4) is positive, the first term should also be

positive. This means that the two roots of (10.4), % and €, are located as
(10.5)

€ > ey and € > ¢p,

& < ey

e < ep.
Relation (10.5) is visualized in Fig. 10.1, in which ¢, < ¢ is assumed.

and

Formation of bonding and antibonding energy levels.

Fic. 10.1.
The MO’s, ¥ and ¢ having orbital energies € and €%, are called bonding

and antibonding molecular orbitals, respectively. These names come from
the fact that the system is stabilized by accommodating electrons in the
bonding MO while its energy is increased by placing electrons in the
antibonding MO. The bonding and antibonding orbitals are orthogonal
to each other.* It should be noted that e, and e, are not the orbital
energies of atomic orbitals ¢, and g5, but do correspond quite closely.
Here B is called the resonance integral between ¢, and ¢y and, together

t Strictly speaking, since ¢° is not the occupied orbital, it is not clear that y° satisfies
Eq. (10.2). As shown later, if ¢° is assumed to satisfy Eq. (10.2) as done here, one can
prove that ¢ is orthogonal to ¥°. A theoretically rigorous way of introducing ¢° is to
assume the orthogonality between ¢ and ¢® at the beginning and to derive ¢° from ¥® by
assuming that ¢ is given by a linear combination of the same set of AO’s as in ¢.



10.2  Simple Description of MO Theory 253

. with overlap integral S, is responsible for the formation of the MQ’s; if
B =S = 0, one has the relations, €® = ¢,, €* = €5, y* = ¢,, and
Y% = g, as seen from (10.4).

If B/(e — €,) and S are small compared with unity, the amount of the
energy gained by the molecular orbital formation, e, — €, is small
compared to €5 — €, . The same is true for €* — €5 . Then, the bonding
and antibonding orbital energies are simply calculated from (10.4) as

_ 2
o U2,
. (10.6)
€ A epg + ——(Be:_eBeA) .
The MO’s in this case are given by
b= Nb—1/2(q)A + '}’(PB)!
(10.7)

Yo = N(:l/z((PB - A‘PA)v

in which coefficients y and A are small compared with unity. From the
orthogonality between ¢® and ¢, A is related to y as

+S
A= —1”1—)/? (10.8)

In (10.7) N;'/? and N;'/? are normalization constants. By inserting (10.6)

into (10.3) and neglecting small quantities of higher order, the relation

y o~ — B—eaS (10.9)

€p — €4

may be derived. To the same approximation A is given as

a~n—LB=S s (10.10)

€p — €4

Now, in the ground state of our two-electron system both electrons
are placed in the bonding orbital. Therefore, the ground state is a singlet
and the wavefunction is given by the Slater determinant

Y o= |yt |, (10.11)

in which a normalization factor is included as defined in (2.15) and the
meaning of the upper bar was explained at the beginning of Section 2.1.3.
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By substituting (10.7), (10.11) may be expressed in terms of the AQ’s as

¥ = N;1[| PaPal + '}’(| Pa¥p! | PpPa |) + '}’2 | ?p¥B l] (10-12)

In (10.12) the first term | ¢, $, | represents the state in which two
electrons are located on atom A. This state corresponds to a purely ionic
configuration. The second term, | ¢ &5 | + | 9P, |, represents the state
in which one of the electrons on atom A in the ionic configuration is
transferred to atom B. This term may be interpreted as corresponding to a
covalent configuration in which the transferred electron makes a covalent
bond with the other electron having the opposite spin. Parameter y is
determined so as to minimize the total energy. The third term, | ¢p&; |,
represents the state in which two electrons are transferred to atom B and
may be neglected if y is much smaller than unity. Neglecting the third
term, we may express (10.12) as

¥ = Yon + ¥¥eoy - (10.13)

This is equivalent to the wavefunction used in the HL, method in which
the covalent configuration ¥, is mixed with the dominant ionic
configuration.

To compare the present problem with the opposite case of a small
ionic contribution to a predominantly covalent bond, we cite the example
of a hydrogen molecule, in which atoms A and B are identical. In this
case €, = €5 and (10.4) gives two eigenvalues,

_eA:l:ﬂw B — €4S
e;t__—lis _eAi_———I:tS . (10.14)

By inserting these energy eigenvalues into (10.3), the MO’s ¢+ and ¢~
associated with e+ and e, respectively, are found to be

gt = [2(1 £ S)]X(pa £ Pa)- (10.15)

In this case the coefficients of the atomic orbitals are independent of
B, S, and e, . They are determined by the symmetry of the molecule.
Since B — €,S is negative according to a numerical estimate, #* has an
orbital energy lower than that of ¢—. Therefore, the wavefunction of the
ground state is given by

P(H,) = |t |

- }{_ 9] UoaPe | + 1 PsPal + | 9aPal + | PaPr il (10.16)
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The first two terms in (10.16) represent a covalent configuration and the
last two a purely ionic configuration. Thus, the wavefunction in the MO
theory contains the covalent and ionic configurations equally:

YMO(H,) = Feoy + Pron - (10.17)

On the other hand, in the HL theory without ionic configurations, the
wavefunction of the ground singlet is given by

PH(Hy) = [2(1 + S 2[p (1) 8(2) + @5(1) p4(2)]
1
X 75 [ AR) — A1) (2]

=[2(1 + S*| [ 9a¥p | + | ppa ], (10.18)

which corresponds to ¥, . The better wavefunction lies between
(10.17) and (10.18) and is known to be rather close to (10.18). Therefore,
in the hydrogen problem, the simple MO theory gives too much weight to
the ionic configuration as a result of the coeflicients of the linear
combination being fixed by the symmetry.

10.2.2 HarTrReEE-Fock EQUATIONS

The theoretical foundation for the concept of one-electron orbitals in
a many-electron system is provided by the SCF (Self-Consistent Field)
theory of Hartree—-Fock, which leads us to the Hartree-Fock (HF)
equations for one electron-orbitals. In order to describe this theory in
a simple fashion, we consider the molecule having two electrons as
discussed in the previous subsection, and assume that ¢ is the MO of the
lowest orbital energy with no orbital degeneracy. As given in (10.11),
the total wavefunction is given by

Yo | i, (10.19)
The HF equation is derived by minimizing the total energy by setting
Y| #|¥) =0, (10.20)

with a subsidiary condition,

Gl =1, (10.21)
which assures the normalization of ¥. The total Hamiltonian in (10.20) is
H =3 fitgu, (10.22)

=1,2
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where f; is a one-electron operator acting on electron ¢ including the
kinetic energy and the nuclear attraction potential, and g, is the Coulomb
interaction operator between electrons 1 and 2. One obtains from (10.19)

and (10.22)
HHA N =2 | f1d) + < 1, (10.23)

in which the abbreviated notation for the Coulomb integral, {yuf [ yub>,
was defined in (2.76).

Now by using (10.23), our variation problem reduces to finding ¥
which satisfies the equation

W | W) — 2 | Y] = K | f 14D + K[| dnp) — 4O [ 4> =0
' (10.24)

for an arbitrary 8 and the normalization condition (10.21) at the same
time. In (10.24) 2¢ is Lagrange’s undetermined multiplier for the
condition (10.21). It is clear that (10.24) is satisfied for an arbitrary & if
the following equation is satisfied:

hp = e, (10.25)
where

h=f+ <@l (10.26)

Here, we have used the abbreviation

Wil = [ drhe ) st (2).

Equation (10.25) is called the HF equation and has already been used in
the previous subsection. Equations (10.25) and (10.26) show that an
electron moves in the averaged potential (s || > due to another electron,
in addition to the nuclear potential included in f.

The present example for a two-electron system can edsily be extended
to the cases of closed shells containing more electrons. Also in such a
many-electron problem, the HF equation like (10.25) for each occupied
orbital may be derived by applying the variation principle. The HF
Hamiltonian % in this case involves, in addition to f, the energy due to
the averaged Coulomb and exchange potentials due to other electrons.
Since the self-Coulomb and -exchange interaction energies cancel, one
may formally include them in the HF Hamiltonian. Then, the HF
equations for different orbitals are expressed by the use of the same HF
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Hamiltonian. This assures the orthogonality between different orbitals.*
For example, for the system of four electrons in nondegenerate orbitals
¢, and 4, , the HF equations are given by

by = 3y, My = exify , (10.27)

where

h=f+2[ g0 + Sl D] — [l Padp> + o ll Prgihpd].  (10.28)

In (10.28) Py, is the permutation operator between electrons 1 and 2, so
that

Wil Prgsy = [ d13.%(2) £1Prath(2).

By using the relation, ()| k| = by | B[ 4h>*, it follows from
(10.27) that
Py [ghod(er — &) =0, (10.29)

which shows that
iyl =0 if €& F €. (10.30)

Problem 10.1. Derive (10.27) and (10.28).

10.3 MO Theory for Open Shells

10.3.1 HarTrReEE-FoCK EQUATIONS

The MO theory or the HF theory for open-shell systems is slightly
different from that for closed-shell systems described in the previous
section. In the ligand-field theory magnetic electrons or chromophoric
electrons are placed in open shells, so that it is necessary to describe here
the theory for open shells.

For this purpose we consider a molecule having three electrons.
Suppose in the ground state two electrons are spin-paired in a non-
degenerate i, and a remaining electron with an up-spin is in another
nondegenerate orbital ¢, . The total wavefunction of this ground state
is given by a Slater determinant as

¥ = | Yaboifs |- (10.31)

* The orthogonality between different orbitals, as well as the normalization, is often
imposed as subsidiary conditions in the variation problem. This variation procedure
leads to the same result as ours if the system has a closed-shell configuration. In the
present variation problem, the orthogonality conditions are not included in the subsidiary
conditions, although the trial one-electron functions are assumed to be orthogonal to each
other to retain the simple form of (¥ | 5¢ | ¥>.
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The variation procedure to be taken is similar to that for closed shells,
but an important difference is that one has to impose an additional
subsidiary condition

ey =0 (10.32)

besides

i) = el = 1. (10.33)

It should be remembered that the orthogonality conditions between
different orbitals are automatically fulfilled in the case of closed shells.
The importance of the subsidiary orthogonality condition (10.32) in the
case of open shells will be realized later.

By using the total Hamiltonian for the present system,

H =

M""

fi + Z 8ii > (10.34)

1 i>i=1

k3

it is straightforward to derive the following HF equations:

hipy = ey + Ay s

(10.35)
hz‘/’z = €2‘r”2 + %A()‘l’l ’

where

hl = f+ 2<‘/’2 “ ‘/’2> - <‘/’2 ” Plz‘/’2>>

(10.36)
hz :f + <‘/’1 H ‘/’1> + <‘/’2 “ ‘/’2> - %<‘/’1 “ Plz‘/’1>-

Here 2¢, and 2e¢, are Lagrange’s undetermined multiplier for conditions
(10.33) and 4), for condition (10.32). Assuming that #; and ¥, are real
one can determine A, from (10.35) and (10.36) as

Ao = — iy i Pihe). (10.37)

Equations (10.35) are different from the HF equations for closed shells
in two important points: (1) They are not Schrédinger type equatlons
for one-electron orbitals because of the presence of the terms, 32y, and
Aoha; (2) The one-electron Hamiltonians, #, and 4, , are different from
each other while the same Hamiltonian can be employed in the case of
closed shells. The first point seems to invalidate the orbital picture in
which an electron moves in the average potential field coming from the
other electrons and nuclei. Therefore, in this case the physical meaning
of €, and ¢, is not clear. The second point together with the first does not
assure the orthogonality between ; and ,. For this reason the
subsidiary orthogonality condition (10.32) had to be imposed.
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10.3.2 OrBITAL ENERGIES

In the previous subsection a limitation upon the orbital picture in the
open-shell case was pointed out. However, here we will show that a
physical meaning may be given to ¢ and ¢, in (10.37), which to some
extent restores the validity of the concept of one-electron orbitals.

In order to define orbital energies in the open-shell problem, we use
Koopmans® theorem, which states that, if the orbitals are assumed not to
change their forms by the ionization of the molecule, the ionization
potential of an electron in a given orbital is equal to the negative of the
orbital energy of that orbital. In our problem the total wavefunction of
the state in which an electron in the i, orbital is ionized is given by

=iy |, (10.38)

which represents a singlet (S = 0) state. The energy difference between
states ¥ and ¥, is related to the ionization potential, I, , as follows:

—4 = XNV || ¥, (10.39)

where ¥ is the wavefunction given in (10.31), # the Hamiltonian in
(10.34), and s’ the two-electron Hamiltonian in (10.22). From the
relations

<'1y I H I 11y> = 2<‘/’2 [f! ‘/’2> + <‘/’1 If‘ ‘/’1> + 2<‘/’1‘/’2 ” ‘/’1‘/’2>

— e 1 hafn> + o || o, (10.40)
<'1y1 l A f '1y1> = 2<‘/’2 ff, ‘/’2> + <‘/’2‘/’2 “ ‘/’2‘/’2>y (10-41)

and

a = Gl =G lf 10 + 25 1 ) — Witda [, (10.42)

one obtains

=L = L f 1 + 2808 | ey — o | hihn> = €1 . (10.43)

Thus, ¢, turns out to be the orbital energy of i, .
When an electron in ¢, is ionized, there appear a singlet and a triplet
(S = 1) state. The singlet state is given by the wavefunction

psine _ \% [ e | — | e I, (10.44)

and the triplet state with Mg = 1 is given by

PP = | iy |- (10.45)
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The negatives of the ionization potential for the singlet and triplet states
are given as

—L = (WP — (P | P, (10.46)
—I'P — (P W — (PP | | ey (10.47)
From the relations

CEFTE | WS = ([ f 1>+ | f ] o>+t | oy it || b,
(10.48)

O 1 | O = (Y | f 1>+ | F | thod+Chath | it — Gt || b,

10.49
and ( )

€3 = <‘/’2 [ A | ‘/’2>
= | f 1) + atbe | ot + e[| b — 3t || ¥y,  (10.50)

one may show the relation
W30 — I = o, , (10.51)

in which the left-hand side is the average of —If™® and —I5i€ taking
into account the degeneracies associated with the states. In this way the
physical meaning of e, is clarified.

10.3.3 CovALENCY PARAMETER

So far we have not mentioned the details of ¢, and ¢, . In the problem
of transition metal compounds which we will mainly be concerned with,
Y, is predominantly of the character of the ligand orbitals with a small
mixture of the d-orbital of the central metal ion, and ¢, is predominantly
of the character of the d-orbital. The reason for this will be discussed in
the next section. In this case ¢, and ¢, have the following forms:

= N7V — Xy), (10.52)
e = Ny Y%(x + yo), (10.53)

where ¢ is the atomic d-orbital of the metal ion, y a suitable linear
combination of the atomic orbitals of the ligands, and N7'/2 and N;'/2
normalization constants. We assume that ¢, and ¢, given by (10.52) and
(10.53) satisfy the symmetry requirement of the system. Because of the
orthogonality relation (10.32), A and y are related to each other as

A=y +S)1 +S), (10.54)
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where
S=<plx (10.55)

is the overlap integral between ¢ and y. Comparing (10.52) and (10.53)
with (10.7), one notices that i, and ¢; correspond to the bonding and
antibonding orbitals, respectively.

The physical meaning of ¥ becomes clear when one inserts (10.52) and
(10.53) into the total wavefunction (10.31) with the result

¥ = [Nl — S [exx | + v exd ] (10.56)
In deriving (10.56), use was made of (10.54) and
Ny =1-—=2A8 4+ X,
N, = 1 + 2yS + 52

The first term | gy | in (10.56) represents the state in which two electrons
are placed in the ligand orbital. This state may be considered to
correspond to the purely ionic configuration. The second term | px@ |
represents the state in which a down-spin electron of the ligand orbital
in the ionic configuration is transferred into the metal d-orbital. As
mentioned in the previous section this corresponds to the covalent
configuration. Therefore, the parameter y measures the small degree of
covalency in the ionic configuration. We should mention that (10.56)
is equivalent to the HL. wavefunction including a small admixture of the
covalent configuration. The parameter y is called covalency parameter.
The covalency parameter y is determined by the variation principle
as follows; Inserting the explicit forms of ; and ¢, given in (10.52)
and (10.53) into the HF equations (10.35) derived from the variation
principle, one obtains the equation to determine A and y as follows:

(10.57)

(NN 2[(By — S4,) + M4y — Cy) — X¥(By — SCY)] = (1 — AS),
(10.58)

2NN V3 [(By — SCy) + p(Ay — Co) — ¥¥(By — S4,)] = A1 + S),
(10.59)

where
4, =<plh ey, B =<elhlx, C=&hklx @E=12).

Then, replacing A, in (10.58) and (10.59) by (10.37) and using the
expression N, and N, given in (10.57) and the relation in (10.54), one is
led, after some lengthy algebraic manipulation, to the equations

(B — SA)y+ XA — C) — 3B — SC) = 0, (10.60)
(B— SC) + A — C) — y¥B — SA) =0, (10.61)
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where

A=<Lpl|hlp), B=<plhly), C=<&lhlx,
and

h=f+ i + <dallgho. (10.62)

It should be noted that Eqgs. (10.60) and (10.61) are not independent of
each other because of the relation (10.54). Expressing A in (10.60) in
terms of ¥ by using (10.54), one can show that (10.60) is automatically
satisfied if (10.61) holds.

Neglecting the higher order small terms proportional to A% and »? in
(10.60) and (10.61), one obtains

AN 2 ts4 =B EsC (10.63)
aA_C i_C
hence
A~y 4 S

It is important to note that 4 in (10.62) is the HF Hamiltonian for the
down-spin electron in the bonding orbital i, .

Problem 10.2. Prove (10.60) and (10.61) and show that these equations
are not independent of each other.

10.4 Covalency in Ligand-Field Theory

10.4.1 'THE t,, AND ¢, MOLECULAR ORBITALS

At the beginning of this chapter we mentioned that the 7,, and e,
orbitals may be regarded as molecular orbitals with given symmetries.
The purpose of this subsection is to derive the explicit forms of the ¢,
and ¢, MO’s in LCAO.

First assume that the distance between the metal ion and the neigboring
ligand is large enough so that there is essentially no overlap of the
electron clouds of the metal ion and the ligand. In this case no electron
is transferred between the metal ion and the ligand, and the system is
purely ionic. Then, the #,, and e, orbitals are given in terms of the
d-functions of the free metal ion as given in (1.31) and (1.32).

Now we bring the ligands closer to the metal ion keeping the octahedral
symmetry of the system. Then, the electron clouds of the metal ion and
of the ligands overlap and some of the electrons are transferred or
exchanged between them. Suppose that the ligand jon has a closed-shell
configuration (1s)? (2s5)? (2p)® like an F~ ion when the metal and the
ligand ions are sufficiently far apart. At such a large atomic distance, the
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energies of electrons in the atomic 1s, 25, and 2p orbitals of the ligand are
lower than those in the d-orbital of the metal ion. When the electron
transfer begins to occur at a smaller distance, the metal and ligand
orbitals are admixed and the energies of the electrons mainly in the
ligand orbitals are depressed and those mainly in the d-orbitals are
raised, resulting in the decrease of the total energy of the system. The
stabilized orbital #® is bonding and the destabilized orbital 2
antibonding. The bonding orbital has mainly the ligand character with
a small admixture of the d-orbital, and the antibonding orbital mainly the
d-orbital character with a small admixture of the ligand orbital.

In order to obtain the explicit forms of the bonding and antibonding
MO’s, we first have to construct from the ligand atomic orbitals the
functions which are the bases of irreducible representations T, and E,
of the O,-group. In doing this we can use the same method used for
obtaining the normal coordinates of nuclear vibrations. When the ligand
atomic orbitals are restricted to the p, , p, , and p, type orbitals, we can
consider a space similar to the displacement vector space but spanned
by basic functions p,; (k= 1,2,..,6;7i=x19,2) and calculate
transformation matrix A corresponding to that in (9.10). Since the basic
functions of the p,;’s transform exactly in the same way as the é,,’s do,
it immediately follows that the 4,,, E,, T, 2T,,, T,,, and T,,
irreducible representations are obtained by reducing representation 4
and the basic functions of these irreducible representations are simply
given by replacing unit vectors &,; in the normal coordinates in
Section 9.1.2 by the ligand atomic orbitals p,;. For convenience we
denote the ligand atomic orbitals directed toward the central metal ion
as ¢, (k = 1, 2,..., 6) whose portions at the metal ion side are always
positive, and the other p,; atomic orbitals as g, (k = 1, 2,..., 6 ;7 = x, , 2)
whose positive directions coincide with those of the «, y, and z-axes.
Then, from (9.42), (9.43) and (9.44) the basic functions y of irreducible
representations T, and E, are constructed as follows:

Xuo = (12)_1/2(2(P30 + 2@60 T Pro T Pao — Poc — (P5o),

(10.64)
Xve = 3(P10 + Pao — Pac — Pso)s
Xen = %(‘Psy — Py + P — ‘Psz), (10-653)
Xnm = %((Plz — Qg T Pay — (Psa:)’ (1065b)
Xtr = HPry — Pay + Poz — Psa)- (10.65c)

As seen in (10.64) and (10.65) the basic functions y,, and y,, of irreducible
representation E, are constructed from the ¢,, orbitals and the basic
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functions y;, , xy» » and xy, of Ty, from the 7 orbitals directing perpen-
dicular to the ¢,,’s.

Similarly, when the ligand atomic orbitals are the s orbitals, we
consider a space spanned by basic functions ¢,, (k = 1, 2,..., 6) and
calculate transformation matrix A with these bases. In this case the small
matrix corresponding to AUX) is a one-dimensional unit matrix, so that
the character of representation A is simply given by N, . Comparing N,
given in Table 9.1 with the characters in Table 1.7, one sees that 4 is
reduced to irreducible representations, 4,,, E,, and T, . Furthermore,
considering that the transformation properties of ¢,, for symmetry
operations in the O,-group are the same as those of the ¢.,’s, one can
obtain the basic functions y,, and y,, of E, from y,, and y,, by replacing
Pro DY s -

Now the MO’s of the system are obtained by combining ¢, and
Xve (k = §, 0, m) with the same y as follows;

‘/’va = (Nva)_l/z((pv - Z’\KXVK)’

‘/’yb = (Nyb)—l/z(Xw( + .9 + Z 7KKIXVVI)’
K Fx

(10.66)

where ¢,* and 4, are the antibonding and bonding MO’s. For simplicity
we denote N2P, J2° o, , and y,, for y = u and v as N2? 42° o |
and y, (k = s, 0), respectively, and those for y = £, %, and { as N¢?,
$° ¢, and y, , respectively. Then, to the approximation in which only
one kind of the s orbitals (for example, 2s in F~) and only one kind of the
p orbitals (for example, 2p in F~) are taken into account, the antibonding
orbitals are given as

‘/,ea = (Nea)_l/z((pe - AsXs - A0)(0)’

(10.67)
Pt = (N @ — Agxa)s
where
N, — 1 — 208, — 21,8, 4+ A2 + A2,
(10.68)
Ne=1—2\S, +A2
and the bonding orbitals are given as
Peo = (Ne) ™%t + ¥5Pe + ¥20Xo), (10.692)
Poy = (N2) ™2 (Xo + ¥ Pe -+ Yosks) (10.69b)

‘/’tb = (Ntb)—llz(Xn + yn(pt)’ (10-690)
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where
Ny = 14278, + 7> + 270, » (10.702)
Nio =14 29,8, + %" + 27,7655 » (10.70b)
NP =14 2y,S, + y.2 (10.70c)

In these expressions, the following overlap integrals are used:

Ss = <q’e I Xs>! Sa = <q’e |X0>) Sn = <q)t ’ Xn>' (1071)

Assuming that A, y, and S’s are small quantities of the order of e (e < 1)
and neglecting small quantities of higher order, one obtains the relations

A~y + S, A, Ay, + S, Ay, + S, (10.72)

from the orthogonality relations

W [ = <" [ > = " 14> = 0. (10.73)
From the remaining orthogonality relation
(o | o) = O, (10.74)
one obtains
Yso + Yos — _(As/\a - SsSa) R 0; (1075&)
which shows
Yso X —Vos - (10.75b)

In the purely ionic bonding where

Ys =Vo =¥n =0, (10.76)
one has the relations
A, =S, A, =3S,, A, =S, (10.77)
and
Yso = Yos — 0. (1078)

In this case the antibonding orbitals are simply the d-functions
orthogonalized to the ligand orbitals.

10.4.2 Cusic-FieLp SpLITTING PARAMETER 10Dg

In the ligand-field theory the cubic-field splitting parameter, 10Dg, is
introduced as the difference of the e, and ¢, orbital energies. Let us first
consider a one-electron system. Since the energy of the antibonding
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orbital where an electron is placed is defined in Section 10.3.2 as the
negative of the ionization energy of this electron, the energy required
to excite one #,, electron in the #,, electron configuration to the e, orbital
is given by the difference between the ionization energy of an e, electron
in the e, electron configuration and that of a ¢,, electron in the 2,
configuration. This, of course, is the difference of the e, and t,, orbital
energies in the one-electron system. In this case, 10Dq is given by

10Dg = 2 | B2 > — 2 | b 4, (10.79)
in which
B=f+2 Y Wlldd>— Y &l P (10.80)
orcb(ilt‘g.ls orcb(ﬁgls

We next consider the three-electron system in which paired electrons
are placed in the #,, orbital and an up-spin electron in the e, orbital.
The energy required to excite the down-spin electron to the e, orbital
is given by the difference of the ionization potential of the down-spin
e, electron in the #,e? configuration and that of the down-spin i,
electron in the #le, configuration. Therefore, 10Dg in this case is
given by the same expression as (10.79) with the one-electron
Hamiltonian

B=f+Wlldy +<llb> +2 Y Willgd — Y &l Py,

core core
orbitals orbitals ( 10.81 )

which corresponds to neither 4, nor A, in (10.36) but to the HF
Hamiltonian acting on the down-spin ¢, electron which is involved in the
excitation.

After all, one can show that in any case the cubic-field splitting
parameter is given by the expression (10.79) with the HF Hamiltonian
acting on the electron involved in the excitation. This conclusion is
intuitively understandable from the viewpoint of the MO theory. It is
also possible to show that our expression of 10Dg in terms of one-
electron energies is identical to the expression

10Dg = C¥° | o | ¥°) — (W7 | ¥, (10.82)

in terms of the energies of a many-electron system. In (10.82) ¥7 is the
ground state wavefunction of the N-electron system with the t3e™
(n + m = N) electron configuration, and ¥¢ is the excited state wave-
function with the #*~'e)**! electron configuration which is obtained by
exciting one t,, electron to the empty e, orbital without rearranging the
other electrons.
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Now, if molecular orbitals % and #,* are assumed to have the forms
given in (10.67), the cubic-field splitting parameter can be calculated
numerically. In what follows we will cite an example of the numerical
calculation for (NiFg)*~ cluster in a KNiF; crystal to point out the
importance of the convalency. For this purpose we first consider the case
in which the overlap integrals and the covalency are zero. In this case the
cubic-field splitting parameter which will be denoted as dg;,, is given by

Adtag = (g, | k [ Qo) — (¢ | h [ P10y (1083)

with the appropriate HF Hamiltonian Z. It is instructive to divide 4
into three parts:

diag

Adiag = Apoint + dg + dexen - (10-84)

Here, 4, is the contribution obtained by shrinking the ligand-electron
clouds into their nuclei, and treating the ligands as point charges as done
in Section 1.1. Here 4 is the correction applied to 4,4, when the finite
spread of the ligand electron clouds is taken into account. Therefore, this
term represents the effect of the imperfect screening of the ligand nuclear
charges by the ligand electrons. This term which was first discussed by
Kleiner* is called Kleiner’s correction. Here, A, % represents the
contribution from the exchange interaction between the d-electron and
the ligand electron. Therefore, it has a quantum-mechanical origin. The
calculated values of these contributions for KNiF; are listed in
Table 10.1. In the calculation use was made of the HF 3d-wavefunction

TABLE 10.1¢

CoNTRIBUTIONS TO 10Dg FrROM VARIOUS SOURCES

Apoint 1390 cm—t
P —2080
4 exch —2880
Aaiag —3570 cm™!
10Dg (obs) 7250

¢ S. Sugano and R. G. Shulman, Phys. Rev. 130, 517 (1963).

of a free Ni?* ion and the HF 2s- and 2p-wavefunctions of a free F- ion.
The 1s orbital of the F-ligand is shrunk into the ligand nucleus and the

* W. H. Kleiner, J. Chem. Phys. 20, 1784 (1952).
§Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 11, 864 (1956).
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Is electrons are treated as'a part of the ligand nuclear charges. As seen in
Table 10.1, the point-charge contribution gives a small value with a right
sign, but this is canceled by the negative contributions of 4, and 4z, -
As aresult 44, is negative in qualitative disagreement with the observed
10Dgq. Although the values in Table 10.1 are given for a specific system
KNiF; , it has generally been admitted that such a qualitative disagree-
ment between the calculated 4;,, and the observed 10Dg is always found
in any cubic system.

The next step in the calculation of 10Dq is to take into account the
effect of the nonorthogonality between the d-orbital and the ligand
orbitals but still neglecting the covalency. The calculation at this stage
corresponds to the exact calculation based on the purely ionic model.
Denoting the contribution from the nonorthogonality to 10Dg as
A rosn » one may divide the cubic-field-splitting parameter in the
purely ionic model 4, into two parts:

Alon = Adlag + Anonorth . (10.85)

The detailed calculation®® for KNiF,; shows that the calculated value of
A0 om 18 in the range, 5000-6000 cm—. Therefore, 4;,, turns out to be
~2000 cm~? which is much smaller than the observed 10Dg ~ 7000 cm—1.
It is interesting to note that the negative contributions from 4y and dey e
are almost canceled by 4,,0mn, and d;,, is close to dpqiny, as was
predicted on theoretical grounds by Phillips.

In our covalent model, the unexplained part of 10Dg, which amount to
~5000 cm~! for KNiF, , should be ascribed to the covalency. Denoting
this part of 10Dq as 4, , one expects that

10Dg = Ason + Acoy - (10.86)

Actually, if one uses the convalency parameters determined by the
experiments on the transferred hyperfine interaction (see next
subsection), one may hope to explain the observed 10Dg.*

10.4.3 'TrRANSFERRED HYPERFINE INTERACTION

Fortunately, there is an almost direct way of measuring the covalency
in predominantly ionic complexes of transition metal ions. It is to observe
the transferred hyperfine interaction (THFI) at the ligands. The THFI

t+ R. E. Watson and A. J. Freeman, Phys. Rev. 134, A1526 (1964).

§ S. Sugano and Y. Tanabe, J. Phys. Soc. Japan 20, 1155 (1965).

€ J. C. Phillips, J. Phys. Chem. Solids 11, 226 (1959).

& J. Hubbard, D. E. Rimmer, and F. R. A. Hopgood, Proc. Phys. Soc. (London) 88,
13 (1966).
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arises from the unpaired spin density in the ligand atomic orbitals which
interacts with the magnetic moment of the ligand nucleus. Neglecting
small contributions to the unpaired spin density from the other sources
for simplicity, the unpaired spin density in the ligand molecular orbital
is given as

P 45| P, (10.87)

where ¥ is the total wavefunction of the system. In (10.87) 4¢ is given as
a sum of operators §,* acting on electron ¢:

41 =Y 52, (10.88)

in which, by using orbital operator p*, 8 is defined as

82 = 2pfsus
il =1, (10.89)
Il =X le =<Lp|p°|¢> =0.

For example, in the three-electron system described by ¥ in (10.56),
(10.87) can be evaluated as follows: By introducing orbital ¢, which is
orthogonal to y,

P = (1 — SH3(p — Sx), (10.90)
Eq. (10.56) is reexpressed as
¥ = (1 +2yS + )21 + ¥S) goxx | + (1 — SO [goxGo 1. (10.91)

Then, by using the formulas given in Section 3.2.1., we can show that
S [ dniow 1= 4 gk | = 3 [ dnigo*() o*(1) dp(1) o(1)
+ ;fdTlx*(l)cx*(l)Slsx(l)cx(l)
+ 3 [ droc() £4(0) b B

= SZ/(; — %), (10.92)

Y [ 471 gox@e 1* 4* L oo | = 1, (10.93)

; f dr | goxx |* 4° | poxFo | = '(1—_5"5'.2)17 . (10.94)
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From these results one obtains

(v + Sp X X

<¥I}A81¥I>:(l_S2)(1+2.YS+»);2):1—2/\S+/\2: N1

(10.95)

The same result is obtained simply by using the one-electron orbital
picture. Since orbital i, is occupied by both up- and down-spins, no
unpaired spin density is found in i, . Therefore, the unpaired spin
density comes from the electron only in ¢, and it is given by

3 [ dragy*(1) (1) Sa(1) (1) = WIN, (10.96)

in agreement with (10.95).

As seen from (10.64) and (10.65), the unpaired spin densities f, , f, , and
f» in the ligand atomic orbitals s, 6, and 7 are related to the unpaired spin
densities in the ligand molecular orbitals as

fs = A23N,2,  f, = A}3N,% and  f, = A2 4Ng. (10.97)

Therefore, the observation of the THFI is able tc determine A or y,
directly.

So far two different kinds of magnetic resonance experiments have
been performed to measure the THFI: One is the nuclear magnetic
resonance* (NMR) of the ligand nuclear spin and another is the electron
spin resonance® (ESR) of unpaired electrons. These experiments
determine f, and f, — f, separately. According to the NMR experiment
by Shulman and Knox,

fs ~0.5% for KMnF; and KNiF;, (10.98a)
fo—fa~4%  for KNiF;, (10.98b)
Jo —f» ~5% for K,NaCrFy. (10.98c)

The observed f, is almost explained by assuming A; ~ .S; which shows
that the covalent mixing of the ligand 2s orbital is small. In the ground
state of Ni** ions the 7,, shell is completely filled, so that no unpaired
spin density f, is expected. Therefore, we may conclude that f, ~ 49,
for KNiF; . In the ground state of Cr3* ions in a strong-cubic field, the

* R. G. Shulman and K. Knox, Phys. Rev. Letters 4, 603 (1960). R. G. Shulman, Phys.
Rev. 121, 125 (1961). R. G. Shulman and S. Sugano, Phys. Rev. 130, 506 (1963).

8 J. H. E. Griffiths, J. Owen, and I. M. Ward, Proc. Roy. Soc. (London) A219, 526
(1953). T. P. P. Hall, W, Hayes, R. W. H. Stevenson, and J. Wilkins, J. Chem. Phys.
38, 1977 (1963); 39, 35 (1963).
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e, orbital is empty, so that we may conclude that f, ~ 59, for
K,NaCrFgy . These observations clearly show that the covalent mixing
of the ligand 2p, and 2pn orbitals are relatively large. For example, in
KNiF;, the observed values of the spin densities give

v, =004, XA =012 (S, =0.08),

(10.99)
vy =023, A =034 (S, =0.11).

The fact that vy, is larger than S, emphasizes the importance of the
covalency. It is important to point out again that we may hope to explain
the observed cubic-field splitting parameter only when we use relatively
large covelency parameters such as those determined by the observed
THFIL

Theoretically the covalency parameter (or A) may be calculated from
(10.60), (10.61), or (10.63). However, at the present stage such a
theoretical calculation cannot account for the observed large covalency
and exposed to a fundamental difficulty related to the effect of the
electron correlation. We will discuss this problem in the last section of
this chapter.

10.4.4 OgrBiTAL ANGULAR MOMENTUM REeDUCTION FACTORS

As shown in Section 7.1.1 the diagonal matrix element of the orbital
angular momentum in the #,, orbital and its nondiagonal matrix element
between the e, and t,, orbitals are nonvanishing, and these matrix
elements have been expressed by using the two orbital angular
momentum reduction factors & and k" defined as

ol Ity = V6 <tE L | tyn) = V6 ik, (10.100)

Gl = —V3L L] ey = —2v/3ik;  (10.101)

to the d-function approximation we have & = &’ = 1. In this subsection
we examine the effect of the covalency on & and &'.

If the #,, and e, molecular orbitals in (10.67) are used, the matrix
elements of I, in (10.100) and (10.101) are given as

1L 1t = (N e | L o> — Alpel Lo | x>
—AXe [ L Loy + A2 xe L L L xols (10.102)

<t2Z ' lz , ev> = (NtaNea)_1/2[<<P§ , lz , <Pv>
- As<<P§ I lz ' st> - A<7<<P§ ’ lz ' Xov> - A1;'<X§ [ lz ' <Pv>
+ AsA11<X§ l lz [ st> + Aa/\fr<X§ , lz I Xov>]‘ (10103)
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In these expressions, it has already been shown that
<‘P§ { lz I ‘Pn> =1,
{prl | oy = 20.

By using the fact that the matrix of /, with real bases is Hermitian and

(10.104)

purely imaginary and also using the relations

lz‘Pf = _i‘Pn ’ lzq’n = i‘Pf ’
, . (10.105)
lz‘PC = _22‘}"«) y lz‘P’v = 22?’( ’
one may show that
<‘P§ [ lz ] X‘I]> = <X{- I lz I ‘P‘l]> = lSn ’ (101063)
<‘PC ] lz [ Xs'v> = 2iSs ’ <‘PC I lz I Xo'v> = 2ng ’ (10106b)
el L poy = 2iS, . (10.106¢)

The matrix element of I, between y’s are calculated by expressing /, as
follows:
I, = (r X p), = [(Ry + 1) X Pl
= I, — iR, X V), , (10.107)

in which r, is the electron coordinate whose origin is the kth ligand
nuclear position, ,, = (r, X p), is the z component of the angular
momentum around the kth ligand nucleus, R, is the position vector of
the kth ligand, and

2 0 s 0 0
R Fr
where 1, J, and k are the unit vectors along the x-, y-, and z-axes. By
the relations, ]
LePro = 1Pxy (10.108a)
LPry = —1Prz > (10.108b)
LePrs = s = 0, (10.108¢)

and assuming for simplicity that any integral involving atomic orbitals of
different ligands is zero,* the use of (10.107) gives

el LV x> = 1[2, (10.109a)
| Xso» = —14, (10.109b)
el b Xow> = —4, (10.109¢)

% This approximation is examined in detail by A. A. Misetich and R. E. Watson, Phys.
Rev. 143, 335 (1966).
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in which
4 = Rlp, | 0[0x | ps). (10.110)*

In (10.110) R, is the atomic distance between the metal ion and the
ligand. From (10.104), (10.106), and (10.109) one finally obtains

B L]ty = (N1 — 24,5, + A,%2)

~ il — \2[2), (10.111)
LI 1| evd = 2(NANS [ — AS, — A,S, — A, S, — A0, + A)/2]
~ 2 — (2 4 A2+ A2 — A0, + AN (10.112)

Comparing (10.111) and (10.112) with (10.100) and (10.101), one

arrives at the expression of £ and &’ as
Bal— 302

(10.113)
BFoal— 3024202+ 02 — IO, + A,

in which the higher-order small quantities are neglected by assuming
that the covalency parameters and the overlap integrals are small. As seen
from the example of Section 8.4.2, these parameters appear in the
g-values, often together with the spin-orbit coupling constant in the
g-values of ground states. Therefore, the detailed examination of the
g-values may provide the useful information about the covalency.

Problem 10.3. Confirm the results in (10.109). &

10.4.5 Sprin-OrBIT COUPLING CONSTANT

In Section 7.4.1 the matrix elements of the spin-orbit interaction have
been expressed by using two parameters { and {’, defined as

| v(AT)N 8y = 6<ty 3€ | wo,(1TY)| £, 30> = 3iL, (10.114)
ol o(1Tl € = —3 V2t 3L | v, (1T3)] edod
= —34/2i; (10.115)

to the d-function approximation one has the relation, { = {’. Here, we
examine the effect of the covalency on these parameters.

According to Misetich and Buch,? the spin-orbit interaction for a single
electron in our polycentric system is approximately given as

Heo = &)1 s+ &(r) i - s; (10.116)

% Here, A/R, has been calculated by Misetich and Watson to be —0.431 for F-.
§ A. A. Misetich and T. Buch, J. Chem. Phys. 41, 2524 (1964).
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instead of (7.1). In (10.116) r; and I, have already been introduced in
(10.107). We assume that £(r) and &,(r,) are extremely localized
functions around the origins of their variables so that any integral
involving &,(r;) and the atomic orbital localized at j(i # j) is zero; to the
first approximation £y(r) and &,(r;) are considered to be those for a free
metal ion and a free ligand ion. Then, by using the explicit forms of the
MO’s given in (10.67), it is straightforward to obtain the following
expressions for the matrix elements of the spin-orbit interaction:

(s 5 | 20 (1T4)] 22 3
= N <o | &0 9> + AXxe | T &) e xp]s (10117)
3

{2y 3L | 20, (1T1)] €0
= HNEN (<o | 8l0) L 190> +Atxe| T80 b 1o
(10.118)
in which the obvious relation Iy, = 0 is already used. It is evident that
$pe [ &) L | @0 =1L,
$pg | &o(N) L | @op = 2iL4,

where {; is considered to the first approximation to be the spin-orbit
coupling constant for a d-electron in a free-transition metal ion. By using
(10.64), (10.65), and (10.108), one may calculate the remaining matrix

elements as

(10.119)

{Xe | Z Ee(r) b L xoy = 398105
k

e | Y Ere) e | Xowy = —ilis (10.120)
k

in which {;,, is considered to the first approximation to be the spin-orbit
coupling constant for a p-electron in a free ligand ion. Now, by using

(10.119) and (10.120), (10.117) and (10.118) are expressed as

{1y 3¢ 1 00, (1TY)| 12 3>
= i2N) (L + 3. 10)
~ {1 + (S2 — 7.5 La + 30} (10.121a)
1y 3L | v,(1Ty)| €30
— iVANA (s — PALL)
~ [l + HSE — vd) + HSE — ) + S — v La — AL
(10.121b)
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Then, comparing (10.121) with (10.114) and (10.115), one finally obtains

{1+ (82 — v, Lo+ 3.0,

(10.122)
U~ [+ 383 — ) + 38" — ) + 35 — 7.9 Lo — 8AAal, -
When the ligand ion is a light element such as F-, ;, (~220 cm™* for F-)
is much smaller than £, (~640 cm™! for Ni?*) so that the térms involving
{,, are almost negligible. Then, (10.122) shows that, if the covalency
parameters are larger than the overlap integrals, both { and {’ are smaller
than §, .

10.4.6 SLATER INTEGRALS

In Section 5.3.3 we showed that the experimentally determined values
of Slater integrals or Racah parameters appearing in the ligand-field
theory are smaller than those of the free ions in many cases. In principle,
it is possible to calculate these Slater integrals by using the MO’s given
in (10.67). However, such a calculation involves the evaluation of many-
center integrals, and therefore is very difficult. Any reliable calculation
has not been done so far. The only conceivable way of explaining the
reduction of the Slater integrals is to assume that any term involving the
ligand orbitals is zero.* Then the reduction factor is simply given by the
normalization factors of the MO’s. Since the integrals contain four MO’s,
the reduction factor is given by (N,%)~*/2 X (N 2)~**/2 in which n is the
number of the e, orbitals contained in the integral. As seen from the
relations

(N2~ 1 — 3y — S8 — 3" — S

(10.123)
(Nta)——1/2 e 1 _ %(YWZ — Sﬂ?)’
the reduction could occur if the covalency parameters are larger than the
corresponding overlap integrals.

This type of argument was first given by Koide and Pryce.®! To
introduce the covalency effect in the analysis of the optical spectra, they
used covalency parameter e. To our approximation, this parameter may
be interpreted as the parameter given by

| —e=NgNs. (10.124)

* Actually the value of each of these terms is very small. However, the number of
these terms is very large so that this assumption cannot be justified without a detailed

calculation.
§S. Koide and M. H. L. Pryce, Phil. Mag. 3, 607 (1958).
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The values of parameter € for Mn?* jons have been experimentally found

in the range 0.03-0.05.

10.5 Calculation of Covalency

The nonempirical calculations? of the covalency parameters y, and y,, ,
which employ (10.63), have been performed for KNiF; . The calculations
use the HF 3d-wavefunction of a free Ni?t ion for ¢ and the HF 2s- and
2p-wavefunctions of a free F— ion for the ligand atomic orbitals. The
calculated values of the covalency parameters turned out to be very small
in disagreement with the experimental ones:

Calc Exp
y. 0.074 0.23 (10.125)
y. 0030 —

The failure of these calculations have been ascribed to the nature of the
approximation characteristic of the simple MO theory. This point will
be discussed in some detail in this section.

For this purpose we first examine the denominator of the expression
for y in (10.63). As shown in (10.62), % to be used for calculating 4 and C
is the HF Hamiltonian for a down-spin bonding electron. Therefore,
to the first approximation in which both the covalency parameters and
the overlap integrals are assumed to be zero in b, 4 = {p | k| p)> may
be regarded in the problem of KNiF; as the energy of a down-spin
electron in ¢ in the ionic configuration Nit(Fg)5~ and C = (x| & | x>
as that in y in the ionic configuration Ni?*(F¢)é-. This is clearly seen in
the example of the three-electron system described in Section 10.3. To
the first approximation % in (10.62) is given as

hy =f+ {piled + i, (10.126)
and by using (10.126), one may show that

plhgloy — byl x> =Kelfle + <ppllopd + {ox ex)]
—[Kxlflx + Oxllxo + elixed].  (10.127)

The three terms in the first square bracket represent the energy of a
down-spin electron in ¢ in the configuration ¢ ¢ x and the three terms

tR. E. Watson and A. J. Freeman, Phys. Rev. 134, A1526 (1964). S. Sugano and
Y. Tanabe, J. Phys. Soc. Japan 20, 1155 (1965).
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in the second bracket that of a down-spin electron in y in the configura-
tion ¢ y ¥ . Actually in the HL scheme with the excited covalent
configuration, where the total wavefunction is assumed to be

¥ = ¥ion + ¥¥eov> (10.128)

the denominator of the expression determining y is given by the energy
difference of the excited covalent configuration and the ionic configura-
tion. The excited covalent configuration is Ni+(Fg)’~ for KNiF; . Since
this HL, scheme is equivalent to the MO scheme if the same ¢ and y are
used in ¥, and ¥, as shown in (10.56), the denominator 4 — C in
our simple MO scheme may be interpreted as the energy required for
the transfer of the down-spin ligand electron to the metal ion without
readjustment of the distribution of the electrons. From this physical inter-
pretation of the denominator, one sees that the failure of the simple MO
treatment would be due to the neglect of the readjustment effect in the
electron-transferred configuration, Ni+(F¢)®~ in the case of KNiF; .

Although it is very difficult to take into account the readjustment effect
on a purely theoretical basis, the HL, picture may provide us an intuitively
reasonable way of estimating the readjustment effect. According to
Hubbard et al.,* the main readjustment effects are as follows:

(i) The readjustment of the d-electron distribution (the expansion
of the d-orbitals);

(i1) The polarization of the ligand electron clouds.

By using the observed ionization potential of a Nit ion, they have
estimated the first effect to reduce the denominator by 0.29 a.u. and by
using optical polarizability data of the ions in KNiF; the second effect to
reduce the denominator by 0.17 a.u. Since the denominator calculated
without taking into account the readjustment effect is 0.76 a.u., the
denominator including the readjustment effect is now about 0.3 a.u.,
(~8 eV). They also have estimated the numerator in (10.63) and found
that the readjustment effects in the numerator are not as important as in
the denominator. The covalency parameters thus calculated are

v, = 0215, 5, = 0.132. (10.129)

The calculated y, is in fair agreement with the experimental one,

yo(exp) = 0.23.

% J. Hubbard, D. E. Rimmer, and F. R. A. Hopgood, Proc. Phys. Soc. (London) 88,
13 (1966).
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Quite recently this intuitive method of taking into account the
readjustment or correlation effects has been criticized by Simanek et al.,?
who have used the HL wavefunction containing two excited configura~
tions as

¥ = a¥ion + by’cov + C'P(I:ov ’ (10130)

and applied the variation principle to determine & and ¢. In (10.130)
¥.,v is the state in which a down-spin electron is transferred to the
empty 3d-orbital of the metal ion without the readjustment of the
distribution of the other electrons and ¥, an excited state of ¥,y , 1.€.,
it contains one-electron excitation in addition to the electron transfer.
The correlation effect may be considered to be accounted for to some
extent by the inclusion of ¥,, . For example, the expansion of the
d-orbital is accounted for to some extent by the inclusion of ¥, in
which the 3d — 4d excitation is considered in addition to the electron
transfer, and the polarization of the ligands by the inclusion of ¥y, in
which the 2s — 3p excitation is included. Solving the secular equation
by assuming b and ¢ to be small, they have found that the method of
estimating the correlation effect by Hubbard, et al., is questionable. For
example, the effect of the ligand polarization cannot be calculated by
using the polarizability of the ligand, which measures the degree of
mixing ¥, into ¥, due to the electric-field perturbation when the life-
time of the ¥, state is longer than the time needed for the virtual
electron excitation, ¥ ., — ¥¢ov - This time 1s inversely proportional to
the energy difference (~10 €V) of the ¥ ., and ¥, states. In terms of
the time-independent perturbuation theory, the polarizability in this case
is proportional to H'?/(E,,, — E,,) where H' is the matrix element of
the electric field perturbation and E,, and E_,y are the energies of the
Y., and ¥, states, respectively. However, in our problem in which
Y.ov is a virtually excited state of a short lifetime, it is shown that the
ligand polarization responsible for the correlation effect has to be
calculated by using a different polarizability proportional to
H®|(E.,, — E;,;) where E;  is the energy of the ¥,,, state. Simanek
and Tachiki’s interpretation® for this fact is that if the ¥, state has a
lifetime shorter than the time needed for the excitation ¥ oy — Peov
the polarization process cannot be fully developed. A similar argument
may be applied to the readjustment effect of a d-electron distribution,
although it is uncertain if the inclusion of a single configuration ¥,

+ E. Simanek, Z. Sroubek, and M. Tachiki, J. Phys. Soc. Japan 22, 547 (1967).
§ E. Simanek and M. Tachiki, Phys. Letters 21, 625 (1966).
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with a relatively low energy is sufficient to account for this readjustment
effect.

So far the readjustment effects have been discussed in the HL scheme.
However, in view of the MO theoretical nature of the ligand-field
theory in the strong-field scheme, it is highly desirable to make efforts
along the line to take into account the readjustment effects within the
MO scheme in a way as simple as possible.



Appendix | CHARACTER TABLES FOR THE
THIRTY-TWO DOUBLE POINT-GROUPS, G

For brevity we do not include those groups which may be obtained
from those listed here by taking the direct product with group C;
consisting of two elements E and I. These groups are as shown in the
tabulation. The character tables of these unlisted groups are easily
obtained from those of listed ones by following the arguments given
in Section 1.2.5.

Cou = Cy x C;, D,, = D, x C;,
Cu = Cy x C;, Dy, = D, x Ci,
Cy=Cy x C;, D,, = D, x C;,
Ca = Cs x Cy, Dg = Dg x C;,
T,=Tx C;, 0, =0 x C;.

In the tables the I';’s are Bethe’s notations for irreducible representa-
tions and A, B, E, T, G with appropriate suffices and primes are
Mulliken’s notations. The half-integral suffices of E and G for two-valued
irreducible representations come from Herzberg’s book.* In the text,
however, we have used notations E; , E,, and G in place of E,, , Ey/, ,
and Gy, , respectively, for group O, and notations E and 4, + 4, in
place of E;/, and Ej, , respectively, for group D, ; These notations are
also popular.

* G. Herzberg, “Molecular Spectra and Molecular Structure III,” Van Nostrand,
Princeton, New Jersey, 1966.
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Grour C, Group C;
e} E R G, E R I IR
4 I,|1 1 4, I+ 1 1 1]L,,L,,L,
.............. A, I 1 —1 —1] %92
Bus il 1 —1 e
Bya.e Iyt —1 1 —1
Bipuw Iy~ —1 —1 1
Groups C, anp C,
C, C, E R C. C,R C.
C, G, E R c oR C,
A A Iy 1 1 1 z,L, x,y,L,
a” B T, 1 -1 -1 | %9L,L, | 2L, L,
r, —1 i —i
E, E,
1/2 1/2 T, -1 —i i
Groups D, anp C,,
C c’ Gy
b b E R z : - D
b 2 C,R CyR C.R 2
~ C, o oy
C. Cov E R ? Y v
e * C;R o,R oy’'R Co
A, 4 r, 1 1 1 1 1 2
A, B, r, 1 1 1 -1 -1 2L, L,
B, B, I, 1 1 -1 1 =1 L, x,L,
B, Bs r, 1 1 -1 -1 1 x,L, 3, L,
Ey E,p Iy 2 -2 0 0 0




282 APPENDIX 1
Grour G,
G, E R Cy CsR Cy? C42R
r, 1 1 1 1 1 z,L,
31"2 1 1 w? —w —w L 1
Iy 1 1 —w —w w? w? % ¥y S s By
E g I, 1 —1 w —w w? —w?
1/ Iy 1 —1 —w? —w w
Byja Ty 1 -1 -1 1 -1
w = exp(in/3)
Groups D, anp C,,
Cq Cg?
D. E R 3C, 3C,R D.
3 CJR  C,R 2 2 3
_ Csq Cy? _
Csy E R CiR  CR 3o, 3o,R Csy
A, ;i1 1 1 1 1 1 2
A, r,|1 1 1 1 —1 -1 z,L, L,
E r,| 2 2 —1 — 0 0 |x,vLy,Ly|%yL,,L,
E A4y I, |1 —1 —1 1 1 —1
o4y |1 -1 =1 1 —i i
Eyy, FEy T, 2 -2 1 -1 0 0
Grours C, anp S,
C, E R C, CR C2 CPR C¢& C£fR C,
S E R S, S,R CR C, S& S£R S,

A i1 1 1 1 1 1 1 1 z L,

B r,11 1 -1 -1 1 1 -1 -1 L, 2
gf’s 1 1 i i —1 —1 —i —1 x 41y x + 1y
rol1 01— —i -1 =1 i i VL, 240, ) Ly +iL,

E ryl1 -1 o —w i —i w® —w

1/ gra 1 -1 —® o —i i —e e

E g I, 1 -1 —w w i —i —of w?

3/ T, 1 -1 0 —wd —i i w —w

w = exp(in/4)
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Groues Dy, Cy, , AND Dy
c, € C@ 26y 26,
D, |E R 4 4 4 z - D,
CfR C,R Cg&R 2C/R 2C,R
~ C, cg C& 20, 204 ~
Co |E R Ceo
“ CSR C,R CgR 20,R 20,R 4
S Se C, 20 20
Dy | E ¢ D
e SPR S,R C,R 2Cy/R 2¢,R u
4, 11 1 1 1 1 1 1 z
4, L1 1 1 1 1 -1 =1 z,L, L, L,
B, i1 1 -1 —1 1 1 -1
B, i1 1 —1 -1 1 =1 1 z
E FB 2 2 0 0 -2 0 0 x)y)Lz)Lv x)y)Lz)va)y,Lz,Lv
Enl|2 =2 v2 —-vZ 0 0 0
E I 2 —2 —v2 v2 0 0 0
Grours Dy, Cs, , aAND Dy,
b, b.| E C, C, Cg C, Cg& 3C 39;’ b,
C,R Ci:R C,R CgR CeR 3C,/R 3C,R
- C, Cy C? Cy C¢ 30, 3
Co Cu| E R [° 72 78 w0 7o S0 0% Ceo
C,R Cy'R C,R CSR CeR 30,R 30.R
Cs C S; S 3C, 3e
I)) I)) E R On 3 3 3 3 2 v I))
o o R Cy?R C,R SR SR 3CyR 30,R a»
4 4, |1 1 1 1 1 1 11 1 z
4 4, Tl 1 1 1 1 1 1 1 -1 —=1|zL | L, | L,
4 B, I'yil1 1 -1 1 1 -1 -1 1 -1
4 B, I yl1 1 -1 1 1 -1 =1 -1 1 z
x)y x’y
E" E | 2 2 -2 -1 -1 1 1 o0 L,,L,
L, ,Ly|{L., L,
E E, I'!l 2 2 2 -1 -1 -1 -1 0 0 %,y
EnEpD! 2-2 0 1 —1 v3—-v3 0 0
EpEpla|l 2 -2 0 1 —1 —v3 V3 0 0
EpoEple| 2 -2 0 —2 2 0 0 o0 0
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(9ur)dxo = o
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Group T
T E R % 4, scR ace aceR
302R 3 8 3 3
I 1 1 1 1 1 1 1
31"2 1 1 1 w w w? w?
Iy 1 1 1 w? w? ® ®
I, 3 3 -1 0 0 0 0 x,v,2L,, L, L,
Ey, I, | 2 =—2 0 1 ~1 1 -1
G gI‘c 2 -2 0 w —w w? —w?
32 I, 2 -2 0 w? —w? w —w
w = exp(2ni/3)
Groups O anp T,
ol & 4C, 4Cg 3C¢ 3C, 3CP 3G 5
4C4:R 4C3R 3C2R 3C3R 3C,R 3C,/R
4C, 4Cg 3CE 38, 3S° 60,
T;| E T,
4C32R 4C3R 3C2R 3SR 3S,R 604R
A, Iy 1 1 1 1 1 1 1 1
A, TI,1 1 1 1 1 1 —1 -1 -1
E I';1 2 2 -1 -1 2 0 0 0
T, I,| 3 3 0 -1 1 1 —1 \xy,2L,L,LL,L,L,
T, I';| 3 3 0 0 -1 —1 —1 1 X, 9,2
(E)) Eypp Ty 2 -2 1 —1 0 V2 —v2 0
(Ep) Espp Iy | 2 -2 1 —1 0 —v2 V2 0
(G) Gsp Is| 4 —4 —1 1 0 ] 0 o




Appendix I TABLES OF CLEBSCH-GORDAN
COEFFICIENTS, (I,v,fy,Iry), WITH CUBIC BASES!

Ay X Ay
r A,y
Y1 V2 i €1
ey ey —1
Ay X E
r E
71 72\7 u v
0 -1
e v 1 0
Ay X Ty
r T,
71 yxy §E 7 I
a 1 0 0
e, B 0 1 0
y 0 0 1

* The C-G coefficients in Griffith’s book (J. S. Griffith, “The Theory of Transition-
Metal Ions.” Cambridge Univ. Press, London and New York, 1964 ) are different from
ours only in phase. The comparison of Griffith’s phase and ours is given in the book
by J. S. Griffith, “The Irreducible Tensor Methods for Molecular Symmetry Groups.”
Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
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Clebsch-Gordan Coefficients, {I'yy, gy, | I'y) 287

Ay X Ty
r T,
71 7:\7 a By
¢ -1 0 o0
e, 7 0 —1 0
L 0 0 —1
E X E
r 4, A, E
Y1 ')’x')’ (51 [ u v
u 1/v2 0 - —1vZ 0
“ e 0 Yvi- 0 1v3
u 0 - -UYvi- 0 1v32
¢ 1/v3 0 - VI 0
E x Ty
r T T,
Y1 Y2 N\ Y o B Y 3 7 4
« 12 0 0:v32 0 0
u 0 ~12 0:- 0 —v32 0
y 0 0 1- 0 0 0
o viz 0 0 1]2 0 0
v B 0 —Vv320:- 0 12 0
y 0 0 0 0 0 —1
E X T,
r T T,
7 Ay @ B v £ 7 4
¢ -Vv32 0 0:-12 0 0
u 7 0 V32 0 -0 —-1/2 0
¢ 0 0 0- 0 0 1
¢ -12 0 0:-v3i2 0 0
v 7 0 -2 0- 0 —v32 0
¢ 0 0 1:- 0 0o 0




r 4, E T, T,
71 }N}’ e u v « B y n 4

3
« | -yv3:iyvB-1vi: 0 0 0 - 0 0 0
« B 0 o o 0 0 —Uvi: 0 0 —1/yv2
y 0 o o 0 YvZ 0 - 0 —1vi 0
o 0 o o 0 0 Uvi: 0 0 —1v2
B B | -Uv3-1UvE LjyZ:- 0 0 0 o o o
y 0 0 0 ‘-yvZ 0 0 —1vZ 0 0
« 0 o o 0 —1vZ 0 0 —1vZ 0
y B 0 0 0 -1yvZ 0 0 —Ivi 0 0
y | —Uv3i-2vE 0 o o o o o0 o
T, X T,
r 4, E T T,
71 }Nv e u v o B y ¢ 7 14
¢ ~1v3: —1vZ -1/vE: 0 0 0 - 0 0 0
« 0 0 0 0 0 Uvi- o e 12
4 0 0 0 0 YvZ 0 - 0 1vi 0
¢ 0 0 0 0 yvi- o0 0 vz
B n —1v3: vZ —1/v6- 0 0 0 0 0 0
¢ 0 0 ‘vz 0 0 ‘—-1vi 0 0
0 0 0 0 1vZ o 0 —UyvZ o
y 0 0 0 ‘yvZ 0 0 - 1vi 0 0
4 ~1v3: 0 2v8- 0 0 0 0 0 0
T, X T,
r 4 E T, T,
nov: \Y @ u v o B Y 3 ] ¢
¢ VI —1/vE v : 0 0 o -0 0o 0
£ o - o o - 0 0o UYvz:i o 0 1v3
4 o - 0 o - 0 —1/v/2 0 0 1/v2 0
¢ .0 o - 0 0 —yvi- 0 0 1v3
7 V3 —1v8 —1/vi: 0 0 o -0 0 0
4 0o - 0 0 ‘vz 0 0o ‘yv:i o o
¢ 0 0 0 o Yvi 0 0 yvi o0
4 0 0 0 ‘-1vZi 0 0 ‘v o0 0
{ 1v3: 2/v6 0 0 0 0 o o0 o
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Appendix Il WIGNER COEFFICIENTS:
{jymyjm, | jm)

A general formula for calculating Wigner coefficients is given as
follows:

{Jamyfomy | jmd = 8(my + my , m)(2j + 1)/% A(jyjf)
X [( + m)! Gy — m)! (o + m)! (jo — mo)! (G + m)! (§ — m)!J/2
X g(—l)”[z! (r+ie =7 =L —m — ) (G + my — 2)!
X(J—fatm+)(G—jh—m+ )7 (AIIL-1)
where
A(Ge) = [ +7e =DV G+ =5 G +Je — Y0 +J +7 + DI

* Here we use notations j; ,j.,j, and m in place of s;, 55, S, and M, respectively.
Wigner coefficients {jm;j.m, | jm).are related to the 3-f symbol

(jl Ja J)
m, m, m

(=17 25+ 1) gy 1§ — md = (

as
1 J2 J)
my my, m)

Numerical values of the 3-f symbol with various sets of parameters can be found in
the book: M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr., “The 3-f
and 6-f Symbols,” Technology Press, MIT, 1959,
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APPENDIX III

In (AIII-1) summation parameter 2 takes on all integral values which
make none of the factorials meaningless. Note that 0! = 1.

Simplified formulas* for calculating Wigner coefficients with j, = 3},
1, §, 2 are given as follows:

Je = %‘
j= my = % My = — %
. \/J'1+m+% \/Jl—m+%
ntsz . -
25 + 1 25, + 1
. _\/jl—m+% \/j1+m+%
iz 2, + 1 2, + 1
jo =1
j= my =1 my = 0 my = —1
i1 Grtm)(Gy+m+1) \/ (jr—m+ D +m-+1) (Gr—m)(Gi—m+1)
! @i+ D25, +2) @i+ DG+ D) @i+ 125 +2)
i \/ (i tm)(jy—m+1) m \/ (jr—m)(j1+m+1)
1 - . N Y . .
2711+ 1) ViGi+1) 2,1+ 1)
i1 \/ Gi=m)Gi—m+1) | [ Gi—m)Gitm) Gy m+ 1)y +m)
! 2j,(25,+1) 712+ 1) 2.2+ 1)

*# These formulas are taken from the book: E. U. Condon and G. H. Shortley, “The
Theory of Atomic Spectra,” pp. 76 and 77. Cambridge Univ. Press, London and

New York, 1964.
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Ja = %
Jj= my = % my = “21
- \/(fl+m—%)(jl+m+%>(f1+m+%) \/ 3Gi+mt PGt m+ G —m+ )
n Qi+ D2+ 22+ 3) Qi+ D27+ 2251 +3)
. 3Gitm— DG+ m+DGi—m+3) \/ Jitm+d
1| — _
e \/ 2.2t D2+ 3) Gi=3m+ DN 5 00T
., 3tm—PU—miHG—mtD | \/ ji—m+%
hTe \/ Cii— D27+ 127 +2) Ut 3m =D G D@ D@D
sl \/ Gi=m =Pl —m+PHli—m+) \/ 3G +m—PGi—m—PGi—m+ )
hTE 2225~ D(2j +1) 25,25 —1)2j,+ 1)
Jj= my = — % my = — %
3 \/ 3(i+m+PGi—m+ PG —m+P) \/ Gi—m—PUr—m+HGi—m+3)
e i+ D27+ 22+ 3) i+ 12+ 2)(27:13)
o1l (s ama )\/ —m+} \/3(fl+m+%)(f1—m—%>(fl—m+é)
e D\ 3G @5 27,5+ D2+ 3)
P _3m_%)\/ itm+d \/3(1'1+m+%)(f:+m+%)(f1—m—%)
i (25— 121+ 125, +2) 2 — D+ 125, +2)
sl - \/3(i1+m—%)(ix+m+%)(ix—m—%) \/(f1+7n—%)(f1+m+%)(]'1+m+%)
172

212h— D2+ 1)

22— D@+
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(I+¥Y (- -Y)

I+ - -)

U+ (1-") T ")

(1 — w1+ H)( -1~ Y)g \( (L s+ - =) =) (1 +m-1) \(1 at?é:+s;5€-521s;5\( e
a+Ha+ra-—"H N, - @+ 1+ (a-1) (1— g+ ) T+"a+¥Y (-1 oy
(w41 —")g (u—=t)(1+m-1) (T +u—"0) (1 +u )~ (] ~w+)
E A+ DYA-IN EHRCRIA) N €+ P+ (1-F2) y
(T +H)H~ g e+ ) (1 +u-"0)g \(A et AN+§L.3:+§L.£§+§_lsﬁcm\( )
@+OHA+Ta+Y \(s @+IOA+A+¥) % \(ATSNISI (I+¥0e+1Na+H'e e
(T +u+1 )1+ (u+)(1+w+) (T+u— )y ot T Y+ TN~ w+ )
@MU+ + )1+ ) @+IOE T +UNL+H7) W+ e+ )X+ )1 +'2) o
(s T +u+ TN +u—" W g +u—"0)g [ | (et 0T -+ut+TE) (g +u+ L) (g +m—TL) (T +u+ ) (+u+ )+ YT —u+ ) )
0="‘u [ =% T ="‘u =f
=4
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| jm>

Jaty Jotg

Wigner Coefficients {

I+ -z ")

(Q+"R (-0 -

_1f
(@ +ue+ D)1 +u+ )+ )1 —w+ ) (- ete@tcfstoc —u— 5\( o
T+ +H G- @+ +RHa-9 (1—wg—10)— |1
555::.3:55: - @+ 1+t D) e .
E+Hoe+a-"% E+HIRHDIA—YD) N 1
(Z+ue+ )1 e+ ) - T0)([ —m— )¢ (1 +w+)m~")¢ .
W+ + O+ )Y ateat@at@q @ ug+i) |3
(Tru+ L)1 +u =) -1)(1—m—T) (=) 140" ¢ ’
b+ E+ )T+ )1+ D) @+'OE+"RNT+H(1+YT) -
(THu =101+ )~ )]~ -) (T+u+ )= +u-")g+m-"f) ’
=f

- =

[— = fu

(pomuyuos) ¢ =



Appendix IV MATRIX ELEMENTS
OF COULOMB INTERACTION

In order to satisfy the phase relation between the L- and R-states as
given in (4.29), the phases of the base functions for the states indicated
below are chosen to be opposite to those in the reference cited:*

43T, , t2 1T, , t,A1E,
1} (3Ty)e 2T, 1,51 Ty)e *T, , 43 Ty)e * Ty,
t,4(1T,)e 2Ty , t,%(*E)e 2E, t,%(*E)e 24, ,

t,4('E)e 24, , t,}(3Ty)e * Ty, t,Y(3Ty)e T, .

Accordingly, the signs of some matrix elements listed here differ from
those in the original table.*

When each matrix listed here is diagonalized, its eigenvalues give the
energies of the terms of the free ion indicated in brackets above the
corresponding matrix.

Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 766 (1954). According to such
phase change of the base functions, we should reverse the signs of the CFP involving
1,48 (SI" = 3T, , 'T, , 'E) which are tabulated in Table II of this paper. Furthermore,
we should reverse the signs of the reduced matrix elements (2,314, || X ()| t,4ST")
(ST = 3T, 1T, , *E) which are tabulated in Table Ia of the paper by Y. Tanabe and
H. Kamimura, ], Phys. Soc. Japan 13, 394 (1958). The signs of the reduced matrix
elements of the spin-orbit interaction are corrected in Appendix VII.
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Matrix Elements of Coulomb Interaction

(i) 4

4,(G, 1S)

t22 e?

10B+5C V6(2B+C)
8B+4C

E(D, *G)

t22 e?

B+2C —2v/3B
2C

T D, 'G)

t,2 t,e

B+2C 2v3B

2C
STy(F, *P)
t,2 toe
—5B 6B
4B

t,e'T, (G) 4B+2C
t,e*T,  (F) -8B
et 4, (*F) —8B
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(i) d®
2Ty(a D, b 2D, *F, G, *H)
WoORCTYe 0T ueCd)  4eCE)
5C —3v3B —5v3B 4B4-2C 2B
—6B4-3C 3B —-3v3B —3v3B
4B+ 3C —+3B V3B
6B4-5C 10B
—2B+3C
*T\(P, *F, G, *H)
t,® 5,2 Te 1} (1 Tp)e 1,6(*4,) 1,6°('E)
—6B+3C —3B 3B 0 —-2v3B
3C —3B 3B 3V3B
—6B+3C —3B —+3B
—6B+43C 2v3B
—2B+3C
2E(a ®D, b %D, G, *H)
2,° 2,2(LA4,)e t,2CE)e &
—6B4-3C —6v2B —3v2ZB 0
8B-+6C 10B V3(2B+C)
—B+3C 2V3B
—8B4-4C
“Ty(P, 4F)
.23 T1)e 1,6°(*4,)
—3B 6B
—12B
1,244, (*F) —15B,
1,2(3T)e 4T, (*F) —15B,
t,2(LE)e 24, (&) —11B+3C,
t,2(CE)e 24, (2F) 9B+3C,

APPENDIX IV
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(i) d*
3Ty(a®P,b %P, a®F, b%F, *G, *H)
tt BCTYe  4CTYe  HCTYHCA)  LCTIACE)
—15B4-5C V6B 3v2B —v2(2B+C) 2v2B
~11B+4C  5V3B ViB ~ViB
—3B+6C —3B —3B
—B4-6C —10B
—9B+4C
BOTYECA) et
0 0
3B %3
5v3B VIB+C)
0 3v1B
—2v3B  —3vIB
—11B+4C V6B
—16B+5C
Tya D, 5D, a1G, b G, 'F, I)
= WCT)e  t62(Tde  tCTIECA)  tH(T)ECE)
—-9B+7C —3v2B 5v6B 0 2v2B
—9B+6C —5v3B 3B -3B
3B+8C  —3v3B sviB
—9B+6C —6B
—3B+6C
B3O Te (A tae?
—v2(2B+C) 0
-3B ~ V6B
—-5v3B Vv2(3B+C)
0 ~3V6B
—10B V6B
5B4-8C V6B
7C
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14,(aS,b1S, a'G, b 'G, )

Lt L'(E)e (1 4)e*('4)  6*(E)e(E) et
10 —12vZB  V2(4B+20) 2v2B 0
6C —12B —6B 0
14B+11C 20B V8(2B+C)
—3B+6C 2vVéB
—16B+8C

1E(a'D, D, a G, b G, I)

& t*(*E)e L'CE)(4;))  L(A)e*(E)  t*(E)e(E)
—9B+7C —6B —vZ(2B+C) 2B 4B
—6B+6C -3v2B —12B 0

5B+8C 10v2ZB —10v2B
6B+9C 0

—3B+6C

3Ty(°D, a°F, b*F, 3G, *H)

.*(*Ty)e L To)e L'(CT)ECA) 6 CTy)eCE) fye®
—9B+4C  —-5v3B V6B V3B V6B
—5B+6C -3v2B 3B vI(3B+0)
—13B+4C —2v2B —6B
—9B+4C 3v2B
—8B+5C

1T\(F, a'G, b1G, )

*(Ty)e 8°(*Ty)e L (1 Ty)e(CE) Le®
—3B-+6C 5v3iB 3B V6B
—3B+8C -5v3B V2B+C)
—3B+6C -V6B
—16B+7C

SE(SD’ SG’ SH)

1°(*4,)e L*(*E)e t*(E)e*(*4,)
—13B+4C —4B 0
—10B+4C —3v32B

—11B+4C
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34,(a °F, b°F)

t,%(*E)e t,%(*A1)e*(*4,)
—8B+4C —12B
—2B+7C
LACF, )
LCE)e  4X(E)ACE)
—12B4-6C 6B
—3B+6C
t,5(*A4,)e °E D) —21B,
t,2(CT1)e*(*4,)° T, (*D) ~21B,
,3(2E)e * A4, (*G) —12B+4C,
(iv) &
2Ty(a °F, b*F, a *G, b *G, 2H, *I, a *D, b D, ¢ *D)
t,° 1,4(*Te 5,4 (*To)e L CT)EY(*4s) 1:°(2T)e*(E)
—20B+10C —3v6 B —+v6B 0 —2v3B
—8B+9C 3B —+6 B/2 3v2 Bj2
—18B+9C —3v6Bj2 3v2 Bj2
—16B+8C 2v3B
—12B+8C
5,3 (Ty)e*(*4y) t,*(*T,)e(\E) 5, (1 Ty)e® 1,2 Tye® tyet
4B-+-2C 2B 0 0 0
—3+6 Bj2 —3v6B/2 0 —4B—-C 0
—5v6 B2 546 BJ2 —C 0 0
0 0 —3+/6 BJ2 — 16 BJ2 0
—10v3B 0 3v2 B2 3v2 Bj2 —-2v3B
2B+ 12C 0 —54v6 B/j2 —3+6 Bj2 4B+ 2C
—6B+10C —5v6 BJ2 3v6 BJ2 —2B
—18B+49C 3B —+v6B
—8B+9C —3v6B
—20B+10C
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*T,(*P, a °F, b*F, a *G, b :G, *H, *I)

WOT)e  40T)e  LCTIECA)  WOTIECE)  CTIACA)
—22B+9C —3B 3v2 B2 —3v2Bj2 3vIBJ2
—8B+9C —3v2 B2 —3v2 B2 —15v2 B2
—4B410C 0 0
—12B+8C 0
—10B+410C
t.°(*T,)e*(*E) 1,2 ( To)e? 6.2 T)e®
3v6 B2 0 -C
—~5v6 B2 —4B—-C 0
10v3B 3v2 B2 —3v2ZBj2
0 —3v2Bj2 —3v2BJ]2
2v3B 15v2 BJ2 —3v2Bj2
—6B-+10C 5v6 B2 —3v6 B2
—8B+9C —3B
—22B+49C
tE(a®D, b %D, ¢ 2D, a ®G, b G, 2H, 2I)
WA BBl GCDECA)  tCECA)  WCEWCE)
—4B+12C —10B 6B 6v3B 6viIB
—13B+-9C 3B —3v3B 0
—4B+10C 0 0
—16B+8C 2v6B
—12B+8C
WOBNE  teA)e
—2B 4B+2C
—2B—-C —2B
—3B —6B
—3v3B 6V3B
0 6Vv2ZB
—13B+9C —10B

—4B+12C
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14,(S, a °G, b °G, *I)
Li(1E)e L*CE)(E)  £,%(*42)e(PA4,) L,*(E)e?

—3B+9C 3v2B 0 —6B—C
—12B+8C —4v3B 3v2B
—19B+8C 0
—3B+9C

24,(a®F, b2F, %)
L'(CE)e &,°(*E)e*('E) t,*("E)e®

—23B+9C —3v2B 2B—-C
—12B+-8C —3v2B
—23B4-9C

‘Ty(*P, °F, °G)
5,4(3Ty)e 1.’ T,)e*(*4.) LG Ty)e

—25B+6C 3v2B -C
—16B+7C —-3v2B
—25B+6C

‘Ty(°F, *G, *D)
iCTe  6%(CTYeC4y)  *CTye

—17B+6C — V6B —4B—-C
—22B+5C —v6B
—17B+6C
{E(4D, G)

t°(CE)(°A;)  t2*(*A5)e*CE)

—22B+5C —2v3B
—21B+5C
t,°(44;)e*(*4,) °4, ¢S) —35B,
1,32 4,)e*(*4,) *4,  (*G) —25B+5C,

1,3(*4,)e*(* 4,) 24, (*F) —13B+7C,



Appendix V. COMPLEMENTARY STATES
IN THE (t,,e) SHELL

Here, we will give the proof of (4.27). First note that, by using (4.25)
and (4.26), Eq. (4.24) can be reexpressed as follows:

P(t,0e114,)
== [1oCy] /2 Z (=1y™ Z Z
SISyl MM, Sy'Ty'SyTy’
SrMy viva My'My'yi vy’

n',m'(n’+m’=N)
X A(—=1)5Maypo (81T 5 Sely 0 Si'TY, So'Ty)
X (S, MySgMy | SMXCS,' —My'Sy —My' | S —M)

X Ty Doy | Ty )Xy’ Dy'ye | Ty
X [%',m’TL(tngIFIMIYI) Wi(e™ Sl yMoy,)]

X [ Ly 4 PR Sy Ty = My'yy) Wa(e™ S Ty = My'yy)],
(AV-1)
in which &, - and &%_, , , are operators antisymmetrizing, respec-
tively, the functlons in the ﬁrst and second square brackets with respect

to the exchange of electrons in each of the #, and e shells. Operators

Ly e and &g, 4 .- involve normalization factors

[vCn] /2 and [10-nCo—n']™*/%
302
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respectively. It should be remarked that
VoS My, Pu(e™ SalyMayy),
VR(tS ™S, Ty —My'y))  and  Welet ™Sy Ty —My'yy)

are, respectively, the antisymmetric function of electrons 1, 2,...,7;
that of electrons n’ + 1, n' + 2,..., N; that of electrons N -1,
N + 2,...,6 4+ m': and that of electrons 7 + m’, § 4+ m',..., 10.

On the other hand, by using (4.16), ¥(t,%* 14,) can also be expressed as

(e, 14,) = A F(1,° 14,) Ple* 14,)

=[Ca X fCul ™ ) (—1)SttSMMy

S1I1SeTy
My Myy,

X [%,4¥IL(t2"SIP 1Myy1) TR(tg—"Slr 1 —Myyy)
X Wi(emSelsMyys) Fr(e* ™Sy — Myy,)]
= [0 X (Cal M T (=l 1)t

ST SpTy
MyviMay,

X [ P (ta"S1 T Myyy) Fr(e™ Sl sMyy,)
X TR(tg_"Slr 1~ Ml')’l) WR(34_mS2F 27 Mz‘)’z)]» (AV"2)

in which % 4 is the operator &7, ,, with n = 6 and m = 4. We should
mention that in the third expression Wi(t5~"S,Iy —M,y,) and
Y (emS,IyMyy,) are, respectively, the function of electrons, n 4 1,
n + 2,...,6, and that of electrons, 7,8,...,6 - m, but in the last
expression they are, respectively, the function of electrons N + 1,
N + 2,..., 6 + m’, and that of electrons, n + 1, n 4+ 2,..., N.

Now, multiplying the last expressions of (AV-1) and (AV-2) by

’I’L(tz"SII’ 1Myyr) 'I’L(emS2F 2 M5s) ’I’R(tg_"Sl'P 1 —Mll)'l’)
X Prlet™Sy Ty — My'yy'),

integrating over all the electron coordinates, and then wusing the
orthogonality relations between the wavefunctions, one obtains

anm(Slrl s S2P2 : SIIFII) S2'P2’) = ag&m S(SISII) 8(5252’) 8(1"11"1’) 8(F2P2’)-
(AV-3)
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304
Use of (AV-3) simplifies (AV-1) into the following form:
Z (_1)S1+S2—M1~M2
5171831
Myy,Myy,
n',m'(n’+m’=N)

X o0 —1)" ™ [y Pr(ts ST M) Pr(e™ S Myy,)]

(2, 14,) = [1Cn]

X [Tt g PR S,y —Myyy) Pr(e™ Sol'y —May)].
(AV-4)

In deriving (AV-3), use was made of the relation,
(SIMS, My | SMy = (—1)514505(8; —M,S; —M, | S —M).  (AV-5)

Now, again multiplying the last expressions of (AV-2) and (AV-4) by

V(™S 1 Myyy) Vi(emSeI'sMyy,)
X WR(ts "SIy —Myyy) Pr(e" ™ Sely —Myy,)

and integrating over all the electron coordinates, one obtains
oy, = 1. (AV-6)
In deriving (AV-6) we used the relation
(AV-7)

10Cx X ¥Cp X 10-8Con = 10Cs X §Ca X 4Cp -



Appendix VI TABLES OF CLEBSCH-GORDAN
COEFFICIENTS WITH TRIGONAL BASES,
{(FTMIM, [ TM) = (FTM [T M T ,M)*

A, x E
M, M,
Uy
€2
u_
Ay x Ty
r T,
M; M, M x, x_ %,
a, 1 0 0
e, a_ 0 1
a, 0 0 1
A, x T,
r T
M, M, M a, a._ a,
x, -1 0 0
ey,  X_ 0 -1 0
£ 0 0 -1
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r 4 4, E
M, M\M e o us u
o ouy 0 0 0 —1
o ~UYvZ:—ilv2-0 0
u, ~1vZ- i§vZ-0 0
u
T w 0 0 1 0
E X T,
r T, T,
M, M, M a, a_ a, x, x_ X
a, 0 1v2 0 0 iIv2 0
u, a_ 0 0 —1/v2 0 0 —iv2
ay vz o 0 -iv2 0 0
a, 0 0 —1v3i- 0 0 iIV32
u_ a —-1vZ o 0 -iVv2 0 0
a 0 1/V2 0 0 —iv2 0
E X T,
r T, T,
M, M, M a, a_ a, x, x_ X
xy 0 —iv2 o - 0 1v32 0
U,  x_ 0 0 z/\/i: 0 0 —1/v2
%o —i|V32 0 0 - 1vZ o0 0
x4 0 0 —iv2 0 0  —1/v2
u.  x —i|V32 0 0 - —1/vZ 0 0
%o 0 iIv2 0 0 1/v2 0
T, x Ty
r 4 E T, T,
M, M, M e U, u_ a, a_ a, x4y x_ X
a, 0 - 0 -1/v3: 0 0 0 : 0 -vIVI 0
a, a_ yvi- o 0 0 0 iv2- 0 0 -1/v8
ay -1yv3 0 - ivi 0 0 - 1/v8 0 0
a, Yvi- 0 o - 0 0 -i/VZ- 0 0 -1/v8
a_ a_ : 1/v3 0 - 0 0 0 :\/2/\/3 0 0
ay 0 - 0 -v3i: 0 -ijvZ 0 - 0 yvé 0
a, 0 -v3 0 ~ijvZ 0 0 - 1vE 0 0
a a. 0 - 0 -vi- 0 ivZ 0 0 yvé 0
ay ~1/V3i- 0 0 0 0 0 0 0 -v2IV3
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T, X Ty
r 4, E T, T,
M, Mz\\ M ey u, u. a, a_ a, x4 x_ xq
x, 0 - 0 -ijv3i: 0 vIVZ 0 - 0 0 0
a, x_ 1/\/§: 0 0 - 0 0 1/v6 -0 0 iv2
xo 0 -iv3 0 - -1v8 ] 0 -ivZ o0 0
%, yvi:- 0 0 - 0 0 yv8: 0 0 —ijv2
a_ x_ ‘-i/\/j 0 ‘-\/2/\/3 0 o - o0 0 0
%, 0« 0 ~/v3: 0 -vB 0 - 0 -ivZ 0
xs 0 - i§v3i 0 - -1/vE 0 0 ~/vi 0 0
ay x_ o - 0 —i/\/j: 0 -1/v6 o - 0 iivZ 0
X —1/\/3: 0 o - 0 0 \/2/\/3: 0 0 0
T, X T,
r 4, E T, T,
M, M, M e u, u_ a, a_ a xy x_ X,
x, 0 - 0 Ivi: 0 0 0 : 0 VIV 0
X, x_ —1/\/3: 0 0o - 0 0 —1'/\/2: 0 0 1/4/6
%, 0 - 1v3 0 ~jvZ 0 0 - -1/v8 0 0
x, “v3i 0 0 - 0 0 ivii 0 0 1v8
X x_ 0 ~~1/v3 0 - 0 0 0 =v3v3i 0 0
%, 0 - 0 Iv3: 0 §ivZi 0 - 0 -1v& 0
x, 0 - 1v3 0 -ivZ 0 0 :-v8 0 0
X x 0 - 0 1v3: 0 -i/vZ 0 - 0 -1/v& 0
%, yvi- 0 0 - 0 0 0 : 0 0 V2/V3




Appendix VIl TABLES OF REDUCED MATRICES
OF SPIN-ORBIT INTERACTION?*

E‘ GIo ATt = 3L (tllo(IT)le> = —3V3l

(t2ST VAT 28T

S 14, 3Ty 1E 1T,
ST 14, —/2/V3
3T, V2IV3 -1 —1/v/3 —1/v2
g 1/\/3 X <t o1 Tyl 2>
T, 1/4/2

$t,eST 1| VAT ST

S'r T, ST, T, 1T,
SI 3T, 1/2 V32 12v2 V3)2v2
ST, V32 —1/2 VIR2VE —1)2V3
. Clavi — vy X <tall o1 Tyl 25
1T, —V3/2v2 1/2v2

* The signs of some reduced matrix elements in the original table [Y. Tanabe, Progr.
Theor. Phys. (Kyoto), Supplement No. 14, 52-65 (1960)] are changed according to the
phase change of the twelve wavefunctions of the t,* and #,% configurations given in the
note of Appendix IV. Misprints found in the original table are also corrected.
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ST VAT 168717

ST AT, s, 1T, 1T,
Sr 14, 1/ V3
T, UV VIIVE 12 —viR2
» VI3
7, 12 ViR
(teST | VAT 5T
S'r’ 14, 34, 1E
S 31 —1/v2 —1/v2
3T, 1 1/v2
17y
1T, —1/v2
(1) <t3ST | VAT 58T
S'r’ 44, 2R T, 2T,
SI' ¢4, 2/ v3
» —VIV3
T, —1
:T, 2V VIV —1
@) <GAS:TY) ST VAT 1,%(SsT) eS'T7
(@) <BHETY) ST VAT (T eS'T"
ST T T, i, e,
ST s, V3BVE VivE  13vE /v
‘T, V5/v6 —15/13v/2 1/v/6 —1/3v/2
2T, —1/3v2 —1/v/6 1/3 1/v/3
T, —1/v/6 1/3v2 1jv3 —1/3
(B) <120y eST | VAT 3Ty eS'I"
s'r’ T 4T, T T,
SI' :E —2v2/3 —2v2/3 -2/3 -2/3
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X L | (1Tl &>

X Lt | o(1 T &

x <ty fo(1 Tl 5>

x (W o(1 T )

X <ty L o(1T) t2>
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(©) (2T eST{| V(1T £,°CE) ST

ST 24, 24, g

ST 4T, —Vv2/3 V33
Ty VI3 —V73
’Ty 1/3 —1/3 X Lt fo(1TYl 25>

*T, —1/3 13

(d) <t2(CTy) eST|| V(I TN 6,2 Ty) eS' T

S'r 2T, 2T,
ST 4Ty —1/V32 1/v8
‘T, 1vé  1/v3
*Ty 12 —12v3 X o1 Tl 2>
T, —12v3 —1)2

(3) <t*(SaTs) STI| VAT t56%(S, 1) ST

(@) <(taCAPTe I VAT 102 A)*T) = {ta || v(1 T} 12>
(b) <(1ae*(A) ST VAT tae*CAs) ST

ST 4T1 2T1
*Ty 2v2)3 3 X CwlleGTVle)

(© <(ueCE)ST| VAT tue*(E) ST

ST °T, T,

ST °T,
2T2

2 V32

V3 —1/2 X Lt [l o(1 Ty £5>

() <t3ST| VAT t,S,Ts) eS'T">

@ <P Toll VAT 2040 e °E> = (V2] V3)t: | (1 TYil &>
(b) <tAST | VAT t.2(CTY) ST

S/Iv 4T1 4T2 2T1 2T2
ST 44, V103 —2v3/3
:E 2733 1
T, -1 —1/v3 122 128 X Lty fo(1 Tl e

T, 1 1/v3 —1/2v2 —1/2v6
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S]_F]
lAl
5T,

E

1 Tz

() (B*STI VAT t,*(E)eST)>

sS4, 24, g
SI 2T, —1/v32 —1/v2
2T, 1/4/6 —1/v6

(d) <BESTH VAT 20Ty eS' T

s T, 2T,

:E 1

2T, —1/2v/2 V32v2
:T, 12V2 —V32V2

(5)  <8X(SiTy) eST|| VATl £6*(Se L) ST

:E

AT,
4T,
2T,
2T,
24,
24,
*E

2T,
2T,

(6) (1S, Ty) ST|| V(1 Tyl & °ED

x L o(1 Tyl &

x L fo(1Tol €

S,y 4 34, g
s T, 5T, °T, eT, 2T,
—1/v8 2/3 1/3v2  1/v6 —1/vE
-1 —V303 1/3 2/v3
—1/v3 V3IvV3 —1/v3 2/v3
—12v2 13 —5/6v2 1/v6
—1/2v/6 —1/v3  5/2v6 1/v6
2/3 13v2  1/v6
1/v6 1/v6
—1/vE  —2/3 —13vVZ —1/v6 —1/v6
12v2  —1 —12v3 —1/v32
—VIRVE  —1V3 —12vE V3

S, T,
14,
34,

E

*E

Sr
2T,
4T,
2T,
2T,
2T,

X il v(1 Tl e>
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(1) <eAST VAT 6,481

S/Iv lAl STI 1E sz
Sr 4, v2iV3
T, -v2ivi 1 1vV3 1/v2
lEl —1/v3 X <t Fo(1 Tyl 85D
1T, —1/v2

() <6*S:iTy) eST I VAT 6,%(SsTs) eS'T">
@) <8:°(\4y) eST|| V(T t°CTy) eS' T

S'r’ 3T, 3T, b 1T,
SI' °E V3iv3 V5/V3
3E —1/v3 —1v3 VIV3 VIV3 X Lt 1 o(1 Ty £

(b) <t2CE)eST || V(T 6,32 Ty) ST

s °Ty 8T, Ty 1T,
Sr 24, 1/v3 1/v8
A, —1/v3 —~1/v6
°E UvV3 —1vV3 1/vé6 —1/v8
14, —1/v6 X <ty | o(1TY) 2>
A, 1/v8
'E —1/v6 1V

(©) <t*CTy) eST|| VAT t,°CTy) eS'I">

s STy ST, Ty 1T,
ST °T, - V32 1/2 ~-v32v2  1)2v2
ST, 1/2 V3|2 12vZ V32v2
17 ViRvE  —112v3 X <L | o(1 Tyl 22
T, —12v2 —v3)2v2

(B)  <8X(S:Ty) e¥(S,Iy) ST V(I Tl £,%(SeT ) €2(Se 1) STy
(a) <2(S 1Y) €24y SiTi il VAT 6,585 1) e2(dy) SeTsD>

SsI's 3T, E T,
' ST 1 1T
s.I, sr > 1 E 2
4, 4, —V2/v3
Ty T —1 —1/vV3 —1/v3
1 g 1/v3 X <ty [ o(1 T 22>

1T, 1T, 1/v/2
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(b) (ASTH VAT 6,°CE) ST

ST 04, 24, E 14, 4, 1E

Sr 3T, —1/v3 ~1/v3 1/v6 1/v6

1T, 1/\/2 _1/\/2 X <t2 ” U(lTl)” €>

(© BSTHVATYI L CT) eS T

ST ST, T, 1T, 1T,
SI' °T, —V32 —12 V3[2VvI 1)2v3
E —1 x Lty [l (1Tl &>
1T, —V312v2 —1/2v2

(d) <LSTH VAT 63CTy) eS' I

S'r’ 3T, 3T, Ty 1T,
Sro4, v2{V3
5T, 1/2 —V3/2 —1/2v2 V/3[2v2
19 ~1/v3 x Lt | o(1T)l &>
1T, 12v2 —+/3)2v2

(6) <t*(S1) eST|| VAT £,5(S,Ts) e3(SyIy) ST

(@) <t°(4y) eSTH VAT £°CTr) eX( STy ST

STy 14, 34, 9.0
ST Ty Ty 5Ty T, Ty T,
ST *E —V5/v6 V32 —V3)2v3 —V3/v6 V3/v6
*E —1/v/6 —+/5/6 V3/2 —2/3 —1/v/6 1/v6

X { 1o(1Ty)| &

() (B°CE)eST|| VAT :.*CT1) €X(Sel’y) S'T7)

SeTy 4, 84, E
ST 3T Ty, T, T, Ty BT,
Sr 24, 1/v6 1/v%
A v3/3 ~1/6 1/v6
°E 1/vé V33 —1/6 1/v6 1/v®
14, 1/2v/3 123 X Ll o(1TY) &>
4, 1/v8 1/2v/3
B 12v3 1/v6 12v3 1/2v3
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(@ <P(Ty) eSTH V(1T £:°(*4s) (S Ty) S'T7>

S.T, 14, 34, 1E
S;Iv lAl 3A2 1E
o 2IV3 V3
. V2| V3 il Tl e
1
', —1/v3

(b)) <&*CTy) eST I VAT 62CTy) €2(S. L) ST

S, T 14, 24, E
s’ 3Ty 5T, T, 1T, 3Ty 3T,
SI' Ty 112v2 /32 —1/4 —1v2
’T, —~V32v2 V3/2vV3 —1/4+/3 —1/v2
1Ty 1/4 V3/2v2 —1/2
1T, — /34 1/2v2 —1/2

X <t {l (1T &
() <B*(*Te) eST || VAT t,°CE) (S, Ty S'T>

S, 4, 34, 1E
S E g 14, 14, g
ST’ *T, 1/v6 1/2v3 —1/2v3
3T, —1/V3 1/2v/3 —1/2v3
7, X <l o1 Tl
1T, 1/v/6

() <&*CTy) eST [ VAT £, Ty) (S Ty) ST

s, 14, 34, g
ST 1T, 3Ty T, 1T,
SI 3T, —1/4 V3/2v2 1/2
3T, V3/4 12vZ2 —1j2
7 Vs X <t (1T e>
1T, —1/4

() @HSiT) eX(SeT) ST V(ITY)i 1,681
() <8*(*Ay) €¥(SpT5) Solu || V(ITY 1,638 T
S T, 3T, Ty 1T,

Sr 14, Ve
34, —1/v3 —1/vVe x < llo(1Tl e
E —1/v6  1/vE
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(B) (5T XS l7y) ST V(T £,¢°S°T7>

S’ 8Ty 3T, Ty 1T,

S, I, SI
14, Ty —1/2 V32 12v2 —v3)2v2
34, 5T, —vV3/v2Z  —+35/v6

3 — —

1;: 112v2 1/2v6 V3 12 X (& Jo(1Ty)l e
E 8Ty —1 1/v2

3T, —1 1/v2

(€) <(£P(E) eX(Sely) SI|| V(1T £638°T")

ST, SI ST 3Ty 3T, 1T, 1T,

14, 1E 1/v3

34, °E —V2/V3 —1/V3

E 14, —1/v6 X Lt | v(1 Ty &>
14, ~1/v6
1E 1/v/6 1/v6

(d)  <2('Ty) eX(Sel7) ST V(1T £,6°ST7)

SZI--2 Sr s'rr 3T1 3T2 1T1 1T2
A T —12v2 V32v3
A V32 12 V32VI 12v2
‘B 1/v2 x <& llo(1Tll €
T —1/v2
®) LTy VAT e 14y = —(nllo(1 Tl e

() &SI VAT 6 = <l o1 T &>

(2) <t VAT tre®> = <ty 0(1TY)]| 22>

(3) <&MSiI) eST || V(1T £,4SsTs) ST
= (&SI eSTI VAT £%(Ssle) e8I

(4)  <&*(Si1) eST V(AT t,3(SsT7s) ST
= (B¥S1I1) eST I V(1T £,%(S, ) eS'T7)
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(5)  <%(S1T7) (S, 1) STH V(1 Tl £.3(S5T5) €¥(S, 1) S’ I
(@) <8,°(*4p) (S, T,) ST V(I T 8,22 Ty) €%(S,T,) S'I»

S,I, 14, 34, iE
S T, AT, 2T, 2T, T,
S,I, ST
14, 44, 2/v3
34, %4, V2
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Appendix VI CALCULATION OF (aSr | L] a’SF")

The calculations of matrix elements of the orbital angular momentum
L (7 = o(x), B(¥), y(z)) are reduced to those of reduced matrices
(aST' || Ll o/ SI"") by using the relation

(aSTMy | Ly | o S'T"M'y"> = §(SS") S(MM’)
X (LY M aST|| L[ o/ ST )Ty | Iy Ty,
(AVIIL-1)

as L, transforms like the ¥ base of the T, irreducible representation of
the O-group. Since L is a one-electron operator, it is evident that,
corresponding to (6.117), (6.118), and (6.119), respectively, one has the

relations
(4Re"ST|| L || 7% ™*ST"> =0 for |k|>2, (AVIII-2)

(e"ST || L | 57 %™ STy = Colt, | 1] &, (AVIII-3)
and
(tre™ ST L || 1™ STV = Cilty |l 1] o). (AVIII-4)

In (AVIII-4), we used the fact that the orbital angular momentum is
completely quenched in the e-state. In (AVIII-3) and (AVIII-4) C, and
C, are numerical coefficients depending upon the states of interest, and
are calculated by using the explicit forms of the wavefunctions in the
same way as was done in the case of low-symmetry fields. It is convenient
to express (&, || 1]l 2,> and {2, ]|l || &> in terms of k and &’ defined as

) 1] ty = V6 (€ | A | t2’7> = \/3 ik (AVIII'S)
323



324 APPENDIX VIII
and
ollllle> = — V3L L | ev> = —24/3ik. (AVIII-6)

Comparing (AVIII-5) and (AVIII-6) with (7.5), one sees that k = &' = 1
in the d-function approximation.

Now let us examine the reduced matrices of L in the complementary
states. Since the matrices of L is Hermitian and purely imaginary for real
bases, the matrix elements of L, in the complementary states are related
to each other as

(S, Ty) €(SeTy) STMy | Ly | £ (S,Ty) €™ (S5 Ty) ST"My'>
= C(S\Ty) (S T) STMy | Ly | 657 (SyTY) €™ (S, Ty) ST"My'>
(n+m=n+m +£5). (AVIII-7)

Note that all the diagonal elements are zero. In deriving (AVIII-7) we
used the fact that, if the one-electron operator is L, (4.48) should be
replaced by

Fuw ™ = Fge . (AVIII-8)
This is because (4.44) is now given as
For¥N = —agsq | bl apy = <oy | I | agig)- (AVIII-9)
Equation (AVIII-7) tells us that
<1"(SiT) €"(S;Ty) ST LI 85 (SyTy) ™ (S Ty) ST
= §T(S,Ty) € (SeTy) ST LI 57 (Sy'Ty) ™ (Sy'TY) ST
m+m=n+m #5). (AVIII-10)

For the states of a half-filled subshell configurations, it would not be
difficult to show by following the arguments given in Section 6.3.2 that
GAST| L[| t3ST> =0 (AVIII-11a)

for the combinations
SI" = 2E, *T,, SI" =23T,, (AVIII-11b)

and vice versa. Equation (AVIII-10) can be shown to hold even for
n+m=mn 4+m =5ifn #%3andn £ 3,and,ifn = »’ = 3, one has

S TY) (S,Ty) ST L 1,3(S, Ty) (S, Ty) SIS = 0
2(11) (22) H |2(1 l) (2 2) (AVIII-IZ)

for STy, S,Th, SyTy, and S, T, giving pypop,py’ = —1, etc.



Appendix X SYMMETRIC AND
ANTISYMMETRIC PRODUCT REPRESENTATIONS

Let ¢,(I'y) (i = 1, 2) be the y base of irreducible representation I of
group G. We consider function ([I" x I'] yy') given by

W X Tlyy') = oiTy) 9 TY) + @i TY) 9l I)- (AIX-1)

For symmetry operation R of group G, this function transforms as
follows:

RUT X Tlyy') = ¥ o(Tr) el I'y2)

Yiv2

x [D{R(R) DIHR) + DID(R) D(R)]

vy voy vy 234

= Z [p1(Ly1) el Iya) + @1(Iys) oI y1)]

Yive

x HDENR) DLAR) + DDAR) DLY(R)]

iy VoY viY

= Y (T x Tlyy') DigEAR), (AIX-2)

Y1V
where
DT (R) = 3[DSUR) DENR) + DIENR) DI(R). (AIX-3)

1224 $23% $7%%

Therefore, H([I" X I'] yy') is the base of representation DI"™*T1 whose
matrix elements are given by (AIX-3). We call D" the symmetric
product representation of DD,
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Similarly, one can show that function $({I" x I'} yy’) defined as

YT X Dyy) = ouTy) 9TY') — 1Y) ol Ly) (AIX-4)

is the base of representation D™} whose matrix elements are given by

DI (R) = HDYNR) DOAR) — DIEM(R) DIXYR).  (AIX-5)

viy vay vy vey

Representation DIr*T} is called the antisymmetric product representation
of D,
The characters of DIrXT] and D{TxT} are obtained as follows:

X[rxr]( R) — 2 D[rxr],( R)

vy vy
vy’

=3 [Z 02 3 DER) + ¥ DE(RY)]

_ % [X(F)(R)2 + X(F)(R2)]’ (AIX'6)
and
XOR) = I PR — xR (AIX-7)
From the relation
X"PR) = xR + TR, (AIX-8)

we see that a product representation can always be decomposed into a
symmetric and an antisymmetric representation. By using (A1X-6) and

Table 1.7, (9.89) can easily be derived.
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A

Absorption coefficient, 118, 230
Accidental degeneracy, 26
Adiabatic approximation, 213-215
Adiabatic potential, 215
surface

branch point of, 248

intersection point of, 248
Al,O4, 1
Angular behaviors of wavefunction, 16
Angular frequency, 220
Anharmonicity of vibration, 238, 241
Antibonding orbital, 252, 261, 263, 264
Atomic unit (a.u.), 13, 39
Avogadro number, 118

B

Bethe’s cyrstalline-field theory, 2, 249

Bethe’s notation for irreducible representa-
tions, 280

Bohr magneton, 115, 196

Bonding orbital, 252, 261, 263, 264

Born—Oppenheimer  aproximation, see
Adiabatic approximation

Breathing mode, 117

C

c*(Im, I'm’), numerical values of, 11-13

Character, 27
Character table

for C;-group, 36

for cubic double-group, 164

for Dy-group, 131

for Ds-group, 34

for double Dj-group, 166

for double D,-group, 165

for O-group, 30

for O,-group, 37

for thirty-two double point groups,

280-285

Chromium alum, 2
Circular polarization, left and right, 139
Class, 20
Clebsch—Gordan coefficient, 4649

with cubic base, 286-288

with trigonal base, 305-307
Closed-shell configuration, 86, 251
Closure approximation, 139, 228
Closure relationship, 232
Complementary states,

in #, shell, 86

in (¢;, e) shell, 91-93, 302-304
Configuration interaction, 250
Configuration mixing, 60, 83, 120
Coulomb integral, 56, 256
Coulomb interaction, 39
Covalency, 262-279

calculation of, 276-279
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paramters, 260-262 Electric-quadrupole moment, 115

€, 275 Electric-quadrupole transition, 115

7 and y,, , 276 Empirical values of B and 10Dg, 123
Covalent bond, 254 Energy level diagram, 107-111
Covalent configuration, 254 Energy matrices, 102-105
Cr®* ions, gaseous, 1 for %E, 83
[€r(H,0)e]2t, 2 Exchange integral, 56
Cry04, 2 Exchange potential, 256
Crystal-field splitting parameter, 249 Extinction coefficient, 118

Crystal quantum number, 207
Crystalline-field theory, 2

Cubic field, potential energy of, 8, 127 F
Cubic-field splitting, 14 Fine structure, 154, 179-212
parameter 10Dg, 106, 265-268 Franck—Condon approximation, 232, 247
Cubic harmonics, 143, 191
Cubic symmetry, 6
CuSiF, - 6H,0, 240 G
g-shift, 202
D g-value, 201
calculation of, 202-204
d-character, 62, 249 covalency effect, 273
d-function approximation, 62, 249, 250 of CuSiF, - 6H,0, 240
d-orbital, 260 Gaussian shape, 119
dy orbital, 111 Generating element, 21
de orbital, 111 Group, 20
Degeneracy, accidental, 26 C;, 35
Delta function, 231, 233 continuous rotation, 30
Dipole strength, 230 D,, 33
temperature dependence of, 230 Dy, 37
Dirac equation, 154 elements of, 20
Direct product of groups, 35 finite, 20
Displacement vector space, 216 Oy, 36
Double group, 160-168 order of, 27
cubic, 162-165 point-, 20
E H
e, orbital, 249, 262-265 Half-filled configuration, 90
e, shell, 38 Half-width, 119
e, state, 14 Hamiltonian operator, 26
wavefunctions for, 15 Harmonic oscillator, 220, 243
Effective Hamiltonian, 187-196 Hartree—Fock equation, 255-257
for 'Ein D, , 194 for open shells, 257-258
for 'E in Dy, 193 Hartree—Fock theory, see Self-consistent
for 2E in Dy, 194 field theory
general, 192 Hartree-Fock (HF) Hamiltonian, 256
Electric-dipole moment, 113 Heitler—L.ondon theory, 249-279
Electric-dipole transition, 113 Hermite polynomial, 221
effective moments, 138-142 Hermitian conjugate, 88

parity-forbidden, 138 Hermitian matrix, 96, 188
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High-spin system, 112
Hole, 86-105, 97
Hund rule, 58
break down of, 112
Hydrogen atom, 6
wavefunction, 9
Hydrogen molecule, 254

I

Identity operation, 18

Initial splitting, 207

Inner-shell electrons, 38
Intersystem combination, 115
Intrasystem combination, 113
Inverse operation, 20

Inversion symmetry, 35

Ionic configuration, 254

Ionic model, purely, 250
Ionization potential, 259
Iron-group metal complexes, 124
Irreducible representation, 21-26

Jahn-Teller effect

dynamical, 241-248

static, 235-241
Jahn—-Teller instability, 237
Jahn-Teller motion, 241
Jahn—-Teller theorem, 235~237

K
k-electron jump, 116
KMnF,;, 270
K,NaCrF,, 270
KNiF;, 267

Kleiner’s correction, 267
Koopman’s theorem, 259

Kramers degeneracy, 179-182, 209
Kramers doublet, 185, 192, 236
Kramers theorem, 181-182, 185
Kronecker product, 44

L
L-state, 90

Lagrange’s undetermined multiplier, 256,

258

329

Laplace equation, 130

Laplace’s expansion, 75

LCAO method, 251

LCAO MO, 251

Legendre polynomials, 7

Ligand, 38

Ligand-field potentials, derivation of, 126—
135

Ligand-field theory, 2, 249

Linear polarization, 142

Line width, 117

Low-spin system, 112

M

Magnetic-dipole moment, 114
Magnetic-dipole transition, 114
Matrix element
in complementary states, 93-102
of Coulomb interaction, 294-301
of one-electron operator, 77-78, 94-97
between Slater determinants, 55-56
of two-electron operator, 79-81, 97-102
MnF,, 117, 122-123
absorption spectrum of, 124
Molecular orbital (MO), 251
Molecular orbital (MO) theory, 249-279
for open shells, 257-262
Mulliken’s notation for irreducible repre-
sentations, 280
Multiplet, 1
in optical spectra, 106-125
theory of atomic, 2

N

Normal-coordinate, 221
of XY molecule, 223
Normal mode of vibration, 215-222

o

Octahedral group, 20
Odd-parity field, 113, 120
Odd-parity potential

of D;, 135

of D,;, 129
One-electron jump, 120
One-electron orbital, 249
Operator equivalent, 168-173
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Orbital angular momentum, 155-156, 202

reduction factor, 271
Orbital energy; 259-260
Orbital function, 39
Orbital picture, 259
Orthogonality relation

of first kind, 28

of second kind, 28

of spherical harmonics, 127
Oscillator strength, 113, 118
Overlap integral, 253, 265

P

Paramagnetic resonance, see Spin resonance
Parity, even and odd, 36
Parity-allowed transition, 113
Parity-forbidden transition, 113
intensity of, 227-230
Pauli principle, 40, 58
Permutation operator, 257
Perturbation method, 7, 13
m-orbital, 264
Point-charge model, 6
Point-dipole model, 17
Polar coordinates, 237
Potential
of axially symmetric field, 129
of D,, 142
of Dy, , 133
of Dy, , 128
Product representation
antisymmetric, 236
symmetric, 236
symmetric and antisymmetric, 325-326

R

R-state, 90
Racah parameters, 64, 106, 275
for free ions, 107
Radial function, 9
expansion of, 125
Slater type, 106
Reduced matrix, 143-146
in complementary states, 152
of orbital angular momentum, 323-324
of spin-orbit interaction, 308-322
Representation, 24
bases of, 24
degree of irreducible, 28

SUBJECT INDEX

double-valued, 163

equivalent, 25

identity, 29

irreducible, 25

product, 43, 44

reducible, 25

single-valued, 164

unitary, 28
Resonance integral, 252
Rotation

in coordinate space, 17, 160-162

in spin space, 160-162
Rotation-inversion, 217
Rotational operation, 17
Ruby, 1

absorption spectrum of, 118

multiplets in, 117-122

R lines, 178, 185

Stark effect of, 212

Zeeman effect of, 200, 204
Rutile structure, 112

S

s-orbital, 264
Sapphire, white, 1
Schrédinger equation, time~dependent, 179
Schrodinger-type equation, 258
Selection rule, 205

configuration, 116

parity, 113

spin, 116
Self-consistent field (SCF) theory, 251, 255
Shur’s lemma, 27
g-orbital, 264
Slater—-Condon parameters, 64
Slater determinant, 38, 40
Slater integrals, 62, 64, 275
Small determinant, 75
Spectral line shape, 230-235, 247-248
Spectral shape function, 231
Spherical harmonics, 7

addition theorem for, 7
Spin-coordinate, 39
Spin density, unpaired, 249, 269
Spin-forbidden transition, 116
Spin function, 39
Spin Hamiltonian, 187

for D, , 190

for Dy, 191
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Spin-only value, 201 Trace, 27
Spin-orbital, 39 Transferred hyperfine interaction (THFI),
Spin-orbit coupling constant, 273 268-271
Spin-orbit interaction, 154-178 Transformation
in complementary states, 175 of function, 21
operator equivalent of, 172 of points, 18
reduced matrix of, 308-322 similarity, 25
Spin-orbit splitting, 156-160, 171 Transition moment operator, effective, 205
first order, 172 Transposed matrix, 88
Spin resonance, 204-208, 240 Trigonal bases, 132, 133
Splitting of ¢,, and ¢, , 62 Trigonal field, 118
Stark effect, linear, 209-212 Trigonal invariant, 198, 210
Stark shift, 211 Trigonal splitting, 137
Stark splitting, pseudo, 212 Tsuchida’s spectrochemical series, 125
Stark term, 209 Two-electron integrals, 62, 64
Strong-field scheme, 249-250
Subgroup, 31 U

Symmetry operations, 17-21
Unitary matrix, 87

Unitary transformation, 15

T
t,, molecular orbital, 262-265 \'
Z; :;:;313,8249 Variation principle, 256
t,, state, 14
wavefunctions for, 15 w
Tensor operators Wavefunctions
irreducible, 142 of e2, 53
irreducible spin, 191 of £,2, 53
Term, 1, 40, 42 of t;%, 66-71
Term energy, 1, 54 of t,e, 54
of Cr3* ion, 1 of t,2, 72
of €%, 59 of t,"e™, 711-76
of £,%, 56 two-electron, 43-54
of ¢,°, 81-82 Weak-field scheme, 249-250
of tse, 59 Wigner coefficient, 49-50, 289-293
Term shift, 135-138 Wigner-Eckart theorem, 142-149, 145, 169
Term splitting, 135-138 Wigner’s time-reversal, 180
Tetragonal splitting, 136, 146
Time-reversal, 179 Z
degeneracy, 182
invariance, 189 Zeeman effect, 196-208
operator, 94, 161, 179-181 Zeeman pattern, 178, 204-208
pair states, 182 Zeeman splitting, 196
Wigner’s, 180 Zeeman term, 196

T-P equivalence, 156 Zero-point vibration, 114, 213
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